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A study of meromorphically starlike and convex functions
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Abstract

In the present paper we introduce and study certain new subclasses of starlike and convex
functions in the domain of meromorphic functions. Moreover we discuss coefficient inequal-
ities, growth and distortion theorems, radii of starlikeness and convexity and convex linear
combinations for the functions belonging to the newly introduced.
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1. Introduction and preliminaries

Let
∑

r denote the class of functions f of the form,

f(z) =
1
z

+
∞∑

n=1

anzn z ∈ Dr, an ≥ o. (1)

which are analytic in the punctured disk Dr = {z : 0 < |z| < 1}.
Also let

∑′
r denote the class of functions f of the form,

F (z) =
1
z

+
∞∑

n=1

anzn−n
α α ∈ N \ {1}, z ∈ Dr, an ≥ o (2)

which are also analytic in the punctured disk Dr(cf.,[18,19,20]). When α goes to infinity then

n− n/α approaches to n where
∑′

r =
∑

r.

A function F ∈ ∑′
r is called starlike of order β(0 ≤ β < 1) and is denoted by Mr(β) if and only

if

−Re(
zF ′(z)
F (z)

) > β, z ∈ Dr.

Similarly a function F ∈ ∑′
r is called convex of order β(0 ≤ β < 1) and is denoted by Nr(β) if

and only if

−Re(1 +
zf ′′(z)
f ′(z)

) > β, z ∈ Dr
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Note that F ∈ Nr(β) ⇔ −zF ′ ∈ Mr(β).

Many important properties and characteristics of various interesting subclasses of meromorphic

functions such as starlike and convex functions were studied rather extensively by (amongothers)

Uralgeddi[9], Aouf et.al([2][3]), Kulkarni et.al [7], Mogra([1],[8]) and Srivastava et.al ([5])(cf.,[6,10-

17]. A summary of such papers is in the book by Srivastava and Owa [4].

2. Coefficient inequalities

Theorem 2.1. If F ∈ ∑′
r and satisfy the following ineqality

∞∑

1

(k + n(α− 1/α) + |2β − k + n− n/α|) |an| rn−n/α+1 ≤ 2(1− β) (3)

for some β(0 ≤ β < 1) and k(β < k ≤ 1), then F ∈ Mr(β) .

The result is attained for a function f given by

f(z) =
1
z

+
2(1− β)

(k + n(α− 1/α) + |2β − k + n− n/α|)z
n−n/α.

Ozaki [6] has proved that a necessary and sufficient condition that f ∈ ∑
with an ≥ 0, (n =

1, 2, 3, ...) is meromorphic in D is that there should exist the relation

∞∑

n=1

nanzn+1 ≤ 1

between its coefficients.

Lemma 2.2. Let a function F ∈ ∑′
r is also contain in the class Mr(β) then,

∞∑

1

(k + n(α− 1/α) + |2β − k + n− n/α|) |an| rn−n/α+1 ≤ 2

Proof. Since F ∈ ∑′
r implies

∞∑

n=1

nanzn+1 ≤ 1.

Therfore ∞∑

n=1

(k + n(α− 1/α) + |2β − k + n− n/α|) |an| rn−n/α+1

=
∞∑

n=1

(2n(α− 1/α) + 2β) |an| rn−n/α+1
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= 2
∞∑

n=1

(n(α− 1/α) |an| rn−n/α+1 +
∞∑

n=1

(2β) |an| rn−n/α+1

≤ 2(1) + (2β)(
1

n(1− 1/α)
) ≤ 2, because n →∞

henca proved.

3. Growth and Distortion theorems

Theorem 3.1. If the functions F defined by (2) are in the class Mr(β), then for 0 < |z| ≤ 1 we

have
1
r
− 2(1− β)

k + p + |2β − k + p|r
p ≤ |f(z)| ≤ 1

r
+

2(1− β)
k + p + |2β − k + p|r

p

where, p = α− 1/α and equality holds for

f(z) =
1
z

+
2(1− β)

k + p + |2β − k + p|z
p.

Proof. Since F ∈ Mr(β), by using theorem 2.1, we have

∞∑

1

(k + n(α− 1/α) + |2β − k + n− n/α|) |an| rn−n/α+1 ≤ 2(1− β)

thus, for 0 < |z| = r ≤ 1 we have

|F (z)| =
∣∣∣∣∣
1
z

+
∞∑

n=1

anzn−n/α

∣∣∣∣∣ ,

≤ 1
|z| +

∞∑

n=1

|an| |z|p ,

≤ 1
r

+
2(1− β)

k + p + |2β − k + p|r
p,

and,

|F (z)| =
∣∣∣∣∣
1
z

+
∞∑

n=1

anzn−n/α

∣∣∣∣∣ ,

≥ 1
|z| −

∞∑

n=1

|an| |z|p ,

≥ 1
r
− 2(1− β)

k + p + |2β − k + p|r
p,

This implies that

1
r
− 2(1− β)

k + p + |2β − k + p|r
p ≤ |f(z)| ≤ 1

r
+

2(1− β)
k + p + |2β − k + p|r

p
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Theorem 3.2. If the function F defined by (2) is in the class Mr(β), then for 0 < |z| ≤ 1 we

have
1
r2
− 2p(1− β)

k + p + |2β − k + p|r
p−1 ≤ ∣∣f ′(z)

∣∣ ≤ 1
r2

+
2p(1− β)

k + p + |2β − k + p|r
p−1

where, p = α− 1/α

Proof. Since F ∈ Mr(β), by using theorem 2.1,we have

∞∑

1

(k + n(α− 1/α) + |2β − k + n− n/α|) |an| rn−n/α+1 ≤ 2(1− β)

Now by applying theorem 3.1,we have

∣∣F ′(z)
∣∣ ≤ 1

|z|2 +
∞∑

n=1

p |an| zp−1,

≤ 1
r2

+
2p(1− β)

k + p + |2β − k + p|r
p−1,

Similarly,
∣∣F ′(z)

∣∣ ≥ 1
|z|2 −

∞∑

n=1

p |an| zp−1 ≥ 1
r2
− 2p(1− β)

k + p + |2β − k + p|r
p−1

this implies,

1
r2
− 2p(1− β)

k + p + |2β − k + p|r
p−1 ≤ ∣∣f ′(z)

∣∣ ≤ 1
r2

+
2p(1− β)

k + p + |2β − k + p|r
p−1

as required.

Corollary 3.3. If f(z) ∈ ∑′
r then, by lemma 2.2,

1
r2
− 2p

k + p + |2β − k + p|r
p−1 ≤ ∣∣f ′(z)

∣∣ ≤ 1
r2

+
2p

k + p + |2β − k + p|r
p−1

4. Radii of Starlikeness and Convexity

The radii of starlikeness and convexity for the functions belonging to the class Mr(β), is given

by the following theorem.

Theorem 4.1. If the function F defined by (2) is in the class Mr(β), then f is starlike of order

β(0 ≤ β < 1) in the unit disk |z| < γ1(α, β, k, p), where γ1(α, β, k, p), is the largest value for

which

γ1(α, β, k, p) = inf(
k + n− n/α + |2β − k + n− n/α|

2(np + 2− β
)1/np+1, p = 1− 1/α
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The result is sharp for functions f given by (3).

Proof. It suffices to show that

∣∣zF ′(z)/f(z) + 1
∣∣ ≤ (1− β), for |z| ≤ r1, ,

since

F (z) =
1
z

+
∞∑

n=1

anznp z ∈ Dr, an ≥ o, p = 1− 1/α.

this implies,
∣∣zF ′(z)/F (z) + 1

∣∣ =
∣∣∣∣
∑∞

n=1(np + 1)anznp+1

1 +
∑∞

n=1 anznp+1

∣∣∣∣ ≤ (1− β),

by using the theorem (1) we have,

∞∑

n=1

(
2(np + 1)(1− β) |z|np+1

k + n− n/α + |2β − k + n− n/α|) ≤ (1− β)−
∞∑

n=1

(
2(1− β)2 |z|np+1

k + n− n/α + |2β − k + n− n/α|)

which implies,
∞∑

n=1

(
2(np + 2− β) |z|np+1

k + n− n/α + |2β − k + n− n/α|) ≤ 1

it follows that,

|z| ≤ (
k + n− n/α + |2β − k + n− n/α|

2(np + 2− β)
)1/np+1, n ≥ 1

then,

r1 = inf(
k + n− n/α + |2β − k + n− n/α|

2(np + 2− β)
)1/np+1, n ≥ 1

as required.

Theorem 4.2. If the function F defined by (2) is in the class Nr(β), then f is starlike of order

β(0 ≤ β < 1) in the unit disk |z| < γ2(α, β, k, p), where γ2(α, β, k, p), is the largest value for

which

γ2(α, β, k, p) = inf(
k + n− n/α + |2β − k + n− n/α|

2np(np + 1− β)
)1/np+1, p = 1− 1/α

The result is sharp for functions f given by (3).

Proof. It suffices to show that,

∣∣zF ′′(z)/F ′(z) + 2
∣∣ ≤ (1− β), for |z| ≤ r2,

∣∣zF ′′(z)/F ′(z) + 2
∣∣ =

∣∣∣∣
∑∞

1 (np)2anznp+1

−1 +
∑∞

1 npanznp+2

∣∣∣∣
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≤
∑∞

1 (np)2( 2(1−β)
k+n−n/α+|2β−k+n−n/α|) |z|np+1

1−∑∞
1 (np)( 2(1−β)

k+n−n/α+|2β−k+n−n/α|) |z|np+1

≤ (1− β)

this implies that,

|z| ≤ (
k + n− n/α + |2β − k + n− n/α|

2np(np + 1− β)
)1/np+1, n ≥ 1

r2 = inf(
k + n− n/α + |2β − k + n− n/α|

2np(np + 1− β)
)1/np+1, n ≥ 1

5. Convex linear Combination

Our next result involve a linear combination for functions of the type given in (2).

Theorem 5.1. The class Mr(β) is closed under convex linear combinations.

Proof. Suppose that the functions f1 and f2 defined by,

fi(z) =
1
z

+
∞∑

1

an,iz
n−n/α i = 1, 2

be in the class Mr(β). Setting

f(z) = µf1(z) + (1− µ)f2(z), (0 ≤ µ ≤ 1)

implies

f(z) =
1
z

+
∞∑

n=1

(µan,1 + (1− µ)an,2)zn−n/α

in view of theorem 2.1, we have

∞∑

n=1

(k + n− n/α + |2β − k + n− n/α|)(µan,1 + (1− µ)an,2)

= µ
∞∑

n=1

(k + n− n/α + |2β − k + n− n/α|) |an,1|+

(1− µ)
∞∑

n=1

(k + n− n/α + |2β − k + n− n/α|) |an,2|

≤ µ(2(1− β)) + (1− µ)(2(1− β))

≤ (1− β)(2µ + 1− 2µ)
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≤ 2(1− β)

which show that

f(z) ∈ Mr(β)

.
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