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Abstract

Given a significative class F of commutative rings, we study the precise conditions under

which a commutative ring R has an F -envelope. A full answer is obtained when F is the

class of fields, semisimple commutative rings or integral domains. When F is the class of

Noetherian rings, we give a full answer when the Krull dimension of R is zero and when the

envelope is required to be epimorphic. The general problem is reduced to identifying the class

of non-Noetherian rings having a monomorphic Noetherian envelope, which we conjecture is

the empty class.
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1 Introduction

The classical concepts of injective envelope and projective cover of a module led to the intro-

duction of envelopes and covers with respect to an arbitrary class of objects in a given category.

These more general concepts were introduced by Enochs ([7] and, under the names of left and

right minimal approximations, by Auslander’s school ([4], [3]). Lets recall their definition. Given

an arbitrary category C, a morphism f : X −→ Y in it is called left minimal if every endo-

morphism v : Y −→ Y such that vf = f is necessarily an isomorphism. Dually one defines the

concept of right minimal morphism. If F is a given class of objects in C, a F-preenvelope of an

object X is a morphism f : X −→ F , with F ∈ F , satisfying the property that any morphism

X −→ F ′ to an object of F factors through f . When, in addition, the morphism f is left minimal

that preenvelope is called a F-envelope. The concepts of F-precover and F-cover are defined

dually. Since in this paper we shall deal only with preenvelopes and envelopes, a left minimal

morphism will be called simply minimal. The study of envelopes and covers is generally rather

fruitful when the class F is a significative one, i.e., a class of objects having nice properties from

different points of views (homological, arithmetical, etc).
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In particular, the concepts have proved very useful in module categories and, more generally,

in the context of arbitrary additive categories. For example, a long standing open question asked

wether every module had a flat cover. The question was answered affirmatively by Bican, El

Bashir and Enochs ([5]) for modules over an associative ring with unit and it has turned out

to be very useful in the study of adjoints in the homotopy category of an abelian category, in

particular in the homotopy category of a module category or that of quasicoherent sheaves on a

scheme (see, e.g. [14] and [13]).

It seems however that, apart from the additive ’world’, the concepts have been somehow

neglected. In this paper we consider initially the situation when C = Rings is the category of

rings (always associative with unit in this paper) and F is a significative class of commutative

rings. If CRings denotes the category of commutative rings, then the forgetful functor j :

CRings −→ Rings has a left adjoint which associates to any ring R its quotient Rcom by the

ideal generated by all differences ab − ba, with a, b ∈ R. As a consequence if f : R −→ F is a

morphism, with F ∈ F , it is uniquely factored in the form

R
pr
։ Rcom

f̄
−→ F

and one readily sees that f is a F-(pre)envelope if, and only if, so is f̄ . That allows us to restrict

to the world of commutative rings all through the paper. So in the sequel, unless otherwise

specified, the term ’ring’ will mean ’commutative ring’.

Our initial motivation for the paper was of geometric nature. Algebraic schemes have the

nicest properties when they enjoy some sort of Noetherian condition. Therefore it is natural to

try to approximate any given scheme by a Noetherian one and, as usual in Algebraic Geometry,

the first step should be to understand the affine case. Given the duality between the categories

of affine schemes and rings [9], our initial task was to understand envelopes and cover in CRings

with respect to the class of Noetherian rings. But once arrived at this step, it was harmless to

try an analogous study with respect to other significative classes of rings (e.g. fields, semisimple

rings or domains).

The content of our paper is devoted to the study of envelopes of rings with respect to those

significative classes. The organization of the papers goes as follows. The results of section 2 are
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summarized in the following table, where F is a class of commutative rings:

F rings R having a F-envelope F-envelope

fields R local and K − dim(R) = 0 R
pr
։ R/m, m maximal

semisimple rings Spec(R) finite R
can
−→

∏
p∈Spec(R) k(p)

integral domains Nil(R) is a prime ideal R
pr
։ Rred = R/Nil(R)

In the subsequent sections we study the more complicated case of Noetherian envelopes,

i.e., envelopes of rings in the class of Noetherian rings. In section 3 we prove that if R is a

ring having a Noetherian preenvelope then R satisfies ACC on radical ideals and Spec(R) is a

Noetherian topological space with the Zariski topology (Proposition 3.1). In section 4 we prove

that a ring of zero Krull dimension has a Noetherian (pre)envelope if, and only it, it is a finite

direct product of local rings which are Artinian modulo the infinite radical (Theorem 4.7). In

section 5 we show that a ring R has an epimorphic Noetherian envelope if, and only if, it has a nil

ideal I such that R/I is Noetherian and pIp = Ip, for all p ∈ Spec(R) (Theorem 5.2). After this

last result, the identification of those rings having a Noetherian envelope reduces to identify those

having a monomorphic Noetherian envelope. We then tackle in the final section the problem of

the existence of a non-Noetherian ring with a monomorphic Noetherian envelope. The existence

of such a ring would lead to the existence of a ’minimal’ local one (Proposition 6.1) of which the

trivial extension Z(p) ⋊ Q would be the prototype. We prove that this ring does not have an

Noetherian envelope (Theorem 6.3) and conjecture that there does not exist any non-Noetherian

ring having a monomorphic Noetherian envelope.

The notation and terminology on commutative rings followed in the paper is standard. The

reader is referred to any of the classical textbooks [2], [10] and [11] for all undefined notions. For

the little bit of Category theory that we need, the reader is referred to [12].

2 Envelopes of rings in some significative classes

In this section we will have a class F of (always commutative) rings, made precise at each step,

and we shall identify those rings which have a F-(pre)envelope. A trivial but useful fact will be

used all through, namely, that if f : R −→ F is a F-(pre)envelope, then the inclusion Im(f) →֒ F

is also a F-(pre)envelope.

Our first choice of F is the class of fields or the class of semisimple rings. For the study of

envelopes in these classes, the following well-known result will be used. We include a short proof

for completeness.
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Lemma 2.1 Let p and q two prime ideals of R and up : R −→ k(p) and uq : R −→ k(q) the

canonical ring homomorphisms to the respective residue fields. If h : k(p) −→ k(q) is a field

homomorphism such that hup = uq, then p = q and h = 1k(p) is the identity map.

Proof. We have uq(p) = (hup)(p) = 0. That means that the ideal pRq of Rq is mapped

onto zero by the canonical projection Rq ։ k(q). In case p 6⊆ q, that leads to contradiction

for pRq = Rq. So we can assume p ⊆ q. If this inclusion is strict, then we choose an element

s ∈ q\p and get that h(s+p) = h(up(s)) = uq(s) = s+q = 0. Since every field homomoprhism

is injective, we conclude that s+ p = 0 in k(p), which is false because 0 6= s+ p ∈ R/p ⊂ k(p).

We then necessarily have p = q. If we denote by ip : R/p →֒ k(p) the inclusion, then we get

that hip = ip and, by the universal property of localization with respect to multiplicative sets,

we conclude that h = 1k(p).

Theorem 2.2 Let F be the class of fields, let S be the class of semisimple commutative rings

and let R be any given commutative ring. The following assertions hold:

1. R has a F-(pre)envelope if, and only if, R is local and K − dim(R) = 0. In that case, the

projection R։ R/m is the F-envelope, where m is the maximal ideal.

2. R has a S-(pre)envelope if, and only if, Spec(R) is finite. In that case, the canonical map

R −→
∏

p∈Spec(R) k(p) is the S-envelope.

Proof. 1) Suppose that f : R −→ F is a F-preenvelope. If m is any maximal ideal of R, then

the canonical projection p : R։ R/m factors through f , so that we have a field homomorphism

h : F −→ R/m such that hf = p. Then f(m) ⊆ Ker(h) = 0, so that m ⊆ Ker(f) and

hence m = Ker(f). It follows that R is local with Ker(f) as unique maximal ideal. Let then

f̄ : R/Ker(f) −→ F be the field homomorphism such that f̄p = f and, using the F-preenveloping

condition of f , choose a field homomorphism g : F −→ R/Ker(f) such that gf = p. Then we

have that gf̄p = gf = p, so that gf̄ = 1 and hence f̄ and g are isomorphisms. Since there is

a canonical ring homomorphism R −→ k(p) for every p ∈ Spec(R), Lemma 2.1 implies that

Spec(R) = {Ker(f)} and, hence, that K − dim(R) = 0.

Conversely, let R be a local ring with maximal ideal m such that K − dim(R) = 0. Any ring

homomorphism f : R −→ F , which F field, has a prime ideal as kernel. Then Ker(f) = m and

f factors through the projection p : R։ R/m. This projection is then the F-envelope of R.

2) It is well-known that a commutative ring is semisimple if, and only if, it is a finite direct

product of fields. Given a ring homomorphism f : R −→ S, with S semisimple, it follows that
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f is a S-preenvelope if, and only if, every ring homomorphism g : R −→ K, with K a field,

factors through f . If we fix a decomposition S = K1 × ... × Kr, where the Ki are fields, any

ring homomorphism h : S −→ K to a field vanishes on all but one of the canonical idempotents

ei = (0, ...,
i
1, ...0), so that h can be represented by a matrix map

h =
(
0 ... 0 h′ 0 ... 0

)
: K1 × ...×Kr −→ K,

where h′ : Ki −→ K is a field homomorphism. We shall frequently use these facts.

Suppose that f =





f1

.

.
fr



 : R −→ K1 × ... × Kr is a S-preenvelope (each fi : R −→ Ki

being a ring homomorphism). For every j ∈ {1, ..., r}, we put pj := Ker(fj), which is a prime

ideal of R. By the universal property of localization, there is a unique field homomorphism

gj : k(pj) −→ Kj such that gjupj
= fj. Let now p ∈ Spec(R) be any prime ideal. The canonical

map up : R −→ k(p) factors through f and, by the last paragraph we get an index i ∈ {1, ..., r}

together with a morphism h′ : Ki −→ k(p) such that h′fi = up. But then h′giupi
= up and

Lemma 2.1 tells us that p = pi. That proves that Spec(R) = {p1, ...,pr}.

Conversely, suppose that Spec(R) = {p1, ...,pr} is finite. If g : R −→ K is a ring ho-

momorphism, with K a field, then q := Ker(g) is a prime ideal and g factors through uq :

R −→ k(q) and, hence, also through the canonical map f : R −→
∏

1≤i≤r k(pi). So f be-

comes a S-preenvelope. It only remains to check that it is actually an envelope. Indeed, if

ϕ :
∏

1≤i≤r k(pi) −→
∏

1≤i≤r k(pi) is a ring homomorphism such that ϕf = f then, bearing in

mind that f =





up1

.

.
upr



, Lemma 2.1 tells us that ϕ = 1∏
k(pi) is the identity map.

Example 2.3 A Noetherian ring of zero Krull dimension is a typical example of ring having a

semisimple envelope. An example with nonzero Krull dimension is given by a discrete valuation

domain D (e.g. the power series algebra K[[X]] over the field K).

We end this section with the characterization of rings which have preenvelopes in the class

of integral domains. Recall that a ring R is reduced if Nil (R) = 0. We define the reduced ring

associated to a ring R as Rred = R/Nil (R).

Proposition 2.4 Let R be a commutative ring and D the class of integral domains. The following

conditions are equivalent:
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1. R has a D-(pre)envelope;

2. Nil (R) is a prime ideal of R.

In that case, the projection p : R։ Rred is the D-envelope.

Proof. 2) =⇒ 1) Every ring homomorphism f : R −→ D, with D ∈ D, vanishes on Nil(R).

That proves that f factors through p : R։ Rred, so that this latter map is a D-envelope.

1) =⇒ 2) Let f : R −→ D be a D-preenvelope. Then f(Nil(R)) = 0 and the induced map

f̄ : Rred −→ D is also a D-preenvelope. Replacing R by Rred if necessary, we can and shall

assume that R is reduced and will have to prove that then R is an integral domain.

Indeed q := Ker(f) is a prime ideal and the projection πq : R։ R/q is also a D-preenvelope.

It is actually a D-envelope since it is surjective. But then, for every p ∈ Spec(R), the projection

πp : R ։ R/p factors through πq. This implies that q ⊆ p, for every p ∈ Spec(R), and hence

that q ⊂
⋂

p∈Spec(R) p = Nil(R) = 0 (cf. [10][Corollary I.4.5]). Therefore 0 = q is a prime ideal,

so that R is an integral domain.

3 Rings with a Noetherian preenvelope

All through this section we fix a ring R having a Noetherian preenvelope f : R −→ N . An ideal

I of R will be called restricted if I = f−1(f(I)N) or, equivalently, if I = f−1(J) for some ideal

J of N . The following result gathers some useful properties of the rings having a Noetherian

preenvelope.

Proposition 3.1 Let f : R −→ N be a Noetherian preenvelope. The following assertions hold:

1. Ker(f) is contained in Nil(R)

2. Every radical ideal of R is restricted

3. R satisfies ACC on restricted ideals

4. Spec(R) is a Noetherian topological space with the Zariski topoloy. In particular, if I is an

ideal of R there are only finitely many prime ideals minimal over I

Proof. 1) If follows from the fact that, for every p ∈ Spec(R), the canonical map up : R −→ k(p)

factors through f , and hence Ker(f) ⊆ Ker(up) = p.
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2) Since the assignment J  f−1(J) preserves intersections, it will be enough to prove that

every prime ideal of R is restricted. If g : R −→ A is any ring homomorphism and we consider

the R-module structures on A and N given by restriction of scalars via g and f , respectively,

then A⊗R N becomes an R-algebra which fits in the following pushout in CRings:

R - N

? ?

A - A⊗R N

f

g

⋆

In case A ⊗R N is Noetherian, the universal property of pushouts tells us that the botton

map A −→ A ⊗R N is a Noetherian preenvelope of A. We shall frequently use this fact in the

paper.

For our purposes in this proof, we take A = R/p and g = πp : R։ R/p, the projection, for

any fixed p ∈ Spec(R). Then the map f̄ : R/p −→ N/f(p)N ∼= (R/p) ⊗R N is a Noetherian

preenvelope and, in particular, the inclusion ip : R/p →֒ k(p) factors through it. This implies

that f−1(f(p)N)/p = Ker(f̄) ⊆ Ker(ip) = 0 and, hence, that p is a restricted ideal.

3) Clear since N is Noetherian and every ascending chain I0 ⊆ I1 ⊆ ... of restricted ideals of

R is the preimage of the chain f(I0)N ⊆ f(I1)N ⊆ ... of ideals of N .

4) There is an order-reversing bijection between (Zariski-)closed subsets of Spec(R) and rad-

ical ideals of R. Therefore Spec(R) is Noetherian if, and only if, R has ACC on radical ideals

(cf. [10][Chapter I, section 2]). But this latter property is satisfied due to assertions 2) and 3).

Finally, if I is any ideal of R then the prime ideals of R which are minimal over I are precisely

those corresponding to the irreducible components of the closed subset V(I) = {p ∈ Spec(R) :

I ⊆ p}, which is a Noetherian topological space since so is Spec(R). Therefore those prime ideals

are a finite number (cf. [10][Proposition I.2.14]).

4 The case of Krull dimension zero

In this section we shall identify the rings of zero Krull dimension having a Noetherian (pre)envelope.

Lemma 4.1 Let R = R1 × ...× Rn be a ring decomposed into a finite product of nonzero rings.

The following assertions are equivalent:

1. R has a Noetherian (pre)envelope
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2. Each Ri has a Noetherian (pre)envelope.

In such a case, if fi : Ri −→ Ni is a Noetherian (pre)envelope for each i = 1, ..., n, then the

diagonal map f = diag(f1, ..., fn) : R1 × ...×Rn −→ N1 × ...×Nn is a Noetherian (pre)envelope.

Proof. We shall prove the equivalence of 1) and 2) for the case of preenvelopes, leaving the

minimality of morphisms for the end.

1) =⇒ 2) Fix a Noetherian preenvelope f : R = R1 × · · · × Rn −→ N . If now ei =(
0, . . . ,

i
1, 0, . . . , 0

)
(i = 1, . . . , n), then we have that Ni =: f (ei)N is a Noetherian ring, for

every i = 1, . . . , n. Clearly f (Ri) ⊆ Ni and we have an induced ring homomorphism fi = f pRi
:

Ri −→ Ni, for every i = 1, . . . , n.. We clearly have N ∼= N1 × ... × Nr and f can be identified

with the diagonal map

diag(f1, ..., fn) : R1 × ...×Rn −→ N1 × ...×Nn.

Let now h : Ri −→ N ′ be a ring homomorphism, with N ′ Noetherian. Then the matrix map

(
0 .. 0

i

h 0 .. 0

)
: R1 × ...×Rn −→ N ′

is also a ring homomorphism, which must factor through f ≡ diag(f1, ..., fn). That implies that

h factors through fi, so that fi is a Noetherian preenvelope for each i = 1, ..., n.

2) =⇒ 1) Suppose that fi : Ri −→ Ni is a Noetherian preenvelope for i = 1, . . . , n and let

us put

f := diag(f1, ..., fn) : R1 × ...×Rn −→ N1 × ...×Nn.

Given any ring homomorphism g : R = R1 ×· · ·×Rn −→ N ′, where N ′ is a Noetherian ring, put

N ′
i = N ′g(ei) for i = 1, ..., n. Then we have an isomorphism N ′ ∼= N ′

1 × ...×N ′
n and the N ′

i are

also Noetherian rings, some of them possibly zero. Viewing that isomorphism as an identification,

we can think of g as a diagonal matrix map

g ≡ diag(g1, ..., gn) : R1 × ...×Rn −→ N ′
1 × ...×N ′

n
∼= N ′,

where each gi is a ring homomorphism. Then gi factors through fi, for every i = 1, ..., n, and so

g factors through f . Therefore f is a Noetherian preenvelope.
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We come now to the minimality of morphisms. We can consider a Noetherian preenvelope

given by a diagonal map f = diag(f1, ..., fn) : R1 × ...×Rn −→ N1 × ...×Nn, where each fi is a

Noetherian preenvelope. If f is a minimal morphism in CRings one readily sees that each fi is

also minimal. Conversely, suppose that each fi is minimal and consider any ring homomorphism

ϕ : N1 × ... × Nn −→ N1 × ... × Nn such that ϕf = f . We can identify ϕ with a matrix (ϕij),

where ϕij : Nj −→ Ni is a a map preserving addition and multiplication (but not necessarily the

unit) for all i, j ∈ {1, ..., n}. Viewing the equality ϕf = f as a matricial equality, we get:

ϕijfj = 0, for i 6= j

ϕiifi = fi.

The first equality for i 6= j gives that ϕij(1) = (ϕijfj)(1) = 0, and then ϕij = 0 since ϕij preserves

multiplication. Therefore ϕ = diag(ϕ11, ..., ϕnn) and the minimality of the morphisms fi gives

that each ϕii is a ring isomorphism. It follows that ϕ is an isomorphism.

Lemma 4.2 If R has a Noetherian preenvelope and K − dim(R) = 0 then R is finite direct

product of local rings with zero Krull dimension.

Proof. If K − dim(R) = 0 and R has a Noetherian preenvelope then, since all its prime ideals

are both maximal and minimal, Proposition 3.1 tells us that there are only finitely many of them.

Then R is a semilocal ring and, since Nil(R) is a nil ideal, idempotents lift modulo Nil(R) (cf.

[15][Proposition VIII.4.2]). The result then follows immediatly since Rred = R/Nil(R) is a finite

direct product of fields (cf. [10], Proposition I.1.5).

The last two lemmas reduce our problem to the case of a local ring. We start by considering

the case in which R has a monomorphic Noetherian preenvelope.

Lemma 4.3 Let R be a local ring with maximal ideal m and K-dim (R) = 0. If R has a

monomorphic Noetherian preenvelope then m is nilpotent. In particular, the following conditions

are equivalent:

1. R is a Noetherian ring;

2. R is an Artinian ring;

3. m/m2 is a finite dimensional R/m-vector space.
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Proof. Let j : R −→ N be a Noetherian monomorphic preenvelope of R. Since m = Nil(R)

is nil it follows that mN is a nil ideal in a Noetherian ring. Then it is nilpotent, and so there is

a n > 0 such that mn ⊂ (mN)n = 0.

For the second part, note that when K-dim (R) = 0 then R is Artinian if and only if R is

Noetherian (see [2, Theorem 8.5]). Assume that m/m2 is finitely generated. If {x1, ..., xr} is

a finite set of generators of m modulo m2, then the products xσ(1) · ... · xσ(m), with σ varying

in the set of maps {1, ...,m} −→ {1, ..., r}, generate mm/mm+1 both as an R-module and as a

R/m-vector space. In particular, each mm/mm+1 (m = 0, 1, ...) is an R-module of finite length.

Since there is a n > 0 such that mn = 0 we conclude that R has finite length as R module, i.e.,

R is Artinian.

Lemma 4.4 Let A be a non-Noetherian commutative ring and a be an ideal of A such that the

projection p : A։ A/a is a Noetherian envelope. Then a does not have a simple quotient.

Proof. Any simple quotient of a is isomorphic to a/a′, for some ideal a′ such that a′ ( a. Now

the canonical exact sequence

0 → a/a′ →֒ A/a′ ։ A/a → 0

has the property that its outer nonzero terms are Noetherian A-modules. Then A/a′ is Noethe-

rian, both as an A-module and as a ring. But then the projection q : A։ A/a′ factors through

the Notherian envelope p, which implies that a = Ker(p) ⊆ Ker(q) = a′. This contradicts our

choice of a′.

Lemma 4.5 Let R be a local ring with zero Krull dimension having a monomoprhic Noetherian

preenvelope. Then R is Artinian.

Proof. By Lemma 4.3 it is enough to prove that R is Noetherian. Suppose then that there

exists a non-Noetherian local R such that K−dim(R) = 0 and R has a monomorphic Noetherian

preenvelope. Fix such a preenvelope j : R −→ N and view it as an inclusion. The set of restricted

ideals I of R such that R/I is not Noetherian has a maximal element, say J (see Proposition 3.1).

Note that the induced map j̄ : R/J −→ N/JN is also a monomorphic Noetherian preenvelope.

Then, replacing R by R/J if necessary, we can and shall assume that R/I is Noetherian, for every

restricted ideal I 6= 0.

By the proof of assertion 2 in Proposition 3.1, we know that the induced map R/m2 −→

N/m2N is a Noetherian preenvelope and it factors in the form
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R/m2
p
։ R/I  N/m2N ,

where I := m2N ∩R. If m2 6= 0 then p : R/m2 ։ R/I would be a Noetherian envelope because

I is nonzero and restricted. Since, by Lemma 4.3, R/m2 is not a Noetherian ring it follows

that m2 ( I. But then we contradict Lemma 4.4 for I/m2 is a semisimple R/m2-module (it is

annihilated by m/m2) and, hence, it always has simple quotients.

We then have that m2 = 0. Consider the set

I = {a ideal of R : 0 6= a ⊆ m and a not restricted}.

In case I 6= ∅, we pick up any a ∈ I. Then aN ∩ R/a is a nonzero semisimple R-module

since it is a subfactor of the R/m-vector space m. We can then find an intermediate ideal

a ⊆ J ( aN ∩ R =: J ′ such that J ′/J is a simple module. Notice that aN = JN = J ′N . Now

the induced map j̃ : R/J −→ N/JN is a Noetherian preenvelope and an argument already used

in the previous paragraph shows that the projection R/J ։ R/J ′ is a Noetherian envelope. This

contradicts Lemma 4.4 for J ′/J is simple. Therefore we get I = ∅. Since m is a semisimple

R-module, we can take a minimal ideal I0 ⊂ m, which is then necessarily restricted. Then I0

and R/I0 are both Noetherian R-modules, from which we get that R is a Noetherian ring and,

hence, a contradiction.

Definition 4.6 Let R be a local ring with maximal ideal m such that K− dim(R) = 0. We shall

call it Artinian modulo the infinite radical in case R/
⋂

n>0 mn is Artinian. Equivalently,

if there is an integer n > 0 such that mn = mn+1 and R/mn is Artinian.

We are now ready to prove the main result of this section.

Theorem 4.7 Let R be a commutative ring such that K-dim (R) = 0. The following assertions

are equivalent

1. R has a Noetherian (pre)envelope

2. R is isomorphic to a finite product R1 × ... × Rr, where the Ri are local rings which are

Artinian modulo the infinite radical.

In that situation, if mi is the maximal ideal of Ri and pi : Ri ։ Ri/
⋂

n>0 mn
i is the projection,

for each i = 1, ..., r, then the ’diagonal’ map diag(p1, ..., pn) : R1 × ... × Rr −→ R1/
⋂

n>0 mn
1 ×

...×Rr/
⋂

n>0 mn
r is the Noetherian envelope.
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Proof. Using Lemmas 4.2 and 4.1, the proof reduces to the case when R is local, something

that we assume in the sequel.

1) =⇒ 2) Let f : R −→ N be the Noetherian preenvelope. Then we have a factorization

f : R
p
։ R/Ker (f)

f
 N ,

where f is a Noetherian (monomorphic) preenvelope. It follows from Lemma 4.5 that R/Ker (f)

is artinian. Putting I = Ker (f), we then get that the projection R
p

−→ R/I is the Noetherian

envelope. The case I = 0 is trivial, for then R is Artinian. Suppose that I 6= 0. In case I2 6= I,

we get a contradiction with Lemma 4.4 for I/I2 is a nonzero module over the Artinian ring R/I

and, hence, it always has simple quotients. Therefore we have I = I2 in that case, which implies

that I = In, for all n > 0, and hence that I ⊆
⋂

n>0 mn. But, since R/I is Artinian, we have

that mn ⊆ I for n >> 0. It follows that there exists a k > 0 such that I = mn, for all n ≥ k.

Then R is Artinian modulo the infinite radical.

2) =⇒ 1) Let R be local and Artinian modulo the infinite radical and let n be the smallest

of the positive integers k such that mk = mk+1. Then R/mn = R/
⋂

n>0 mn is Artinian.

We shall prove that if h : R −→ N is any ring homomorphism, with N Noetherian, then

h(mn) = 0, from which it will follow that the projection p : R ։ R/mn = R/
⋂

k>0 mk is

the Noetherian envelope. Since m = Nil(R) is a nil ideal of R it follows that h(m)N is a nil

ideal of the Noetherian ring N , and thus nilpotent. But the equality mn = mk implies that

(h(m)N)n = (h(m)N)k, for all k ≥ n. It then follows that h(mn)N = (h(m)N)n = 0 and,

hence, that h(mn) = 0.

The final statement is a direct consequence of the above paragraphs and of Lemma 4.1.

Example 4.8 Let an (n = 1, 2, ...) by the n-th term of the Fibonacci sequence 1, 1, 2, 3, 5, ... and

within the power series algebra K[[X1,X2, ...]] over the field K, consider the ideal I generated by

the following relations:

Xn = Xn+1Xn+2

Xan+1
n = 0,

for all positive integers n. Then R = K[[X1,X2, ...]]/I is a local ring of zero Krull dimension

which is Artinian modulo the infinite radical, but is not Artinian.

Proof. Since m = (X1,X2, ...) is the only maximal ideal of K[[X1,X2, ...]] it follows that m̄ =

m/I is the only maximal ideal of R, so that R is local. On the other hand, the second set of
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relations tells us that m̄ is a nil ideal for all generators xn := Xn + I of m̄ are nilpotent elements.

In particular, we have K − dim(R) = 0.

On the other hand, the first set of relations tells us that xn ∈ m̄2, for all n > 0, so that

m̄ = m̄2. Then R/
⋂

n>0 m̄n is isomorphic to the field R/m̄ ∼= K, so that R is Artinian modulo

the infinite radical. In order to see that R is not Artinian it will be enough to check that the

ascending chain

Rx1 ⊆ Rx2 ⊆ ... ⊆ Rxn ⊆ ...

is not stationary. Indeed if Rxn = Rxn+1 then there exists a ∈ R such that xn+1 = axn, and

hence xn+1 = axn+1xn+2. This gives xn+1(1 − axn+2) = 0. But 1 − axn+2 is invertible in R

since every power series of the form 1 − Xn+2f is invertible in K[[X1,X2, ...]]. It follows that

xn+1 = 0. So the equality Rxn = Rxn+1 = ... implies that xn+k = 0, for all k > 0. By the first

set of relations, this in turn implies that xi = 0 for all i > 0.

The proof will be finished if we prove that x1 6= 0. But if x1 = 0 then in the successive

sustitutions using the first set of relations, we shall attain a power xt
n, with t > an, for some

n > 0. The successive sustitutions give x1 = x2x3 = x2
3x4 = x3

4x
2
5 = x5

5x
3
6 = .... The n-th

expression is of the form xan
n x

an−1

n+1 , for all n > 0, convening that a0 = 0. Therefore none of them

is zero. That ends the proof.

5 Rings with an epimorphic Noetherian envelope

We start the section with the following lemma.

Lemma 5.1 Let A be a local Noetherian ring with maximal ideal m. Let M be a (not neces-

sarily finitely generated) A-module such that Supp (M) = {m}. If there exists a finite subset

{x1, x2, . . . , xr} ⊂M such that annA (M) = annA (x1, . . . , xr), then mM 6= M .

Proof. If Supp (M) = {m} then Supp (Ax) = {m}, for every x ∈ M\ {0}. Fixing such an

x, we have that
√
annA (x) = m (cf. [11, Theorem 6.6, pg. 40]). Then there exist an integer

n > 0 such that mnx = 0. It follows that M =
⋃

n>0
annM (mn).

If now {x1, x2, . . . , xr} ⊂ M is a finite subset such that annA (M) = annA (x1, . . . , xr),

then there exists a large enough n > 0 such that xi ∈ annM (mn) for i = 1, . . . , r. Then

mn ⊆ annA (x1, . . . , xr) = annA (M), so that mnM = 0. If we had mM = M it would follow

that M = 0, which is impossible since Supp (M) 6= ∅.
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We are now ready to prove the main result of this section. Given any module M , we denote

by Mp the localization at the prime ideal p.

Theorem 5.2 Let R be a ring and I an ideal of R such that R/I is Noetherian. The following

assertions are equivalent:

1. The projection p : R −→ R/I is a Noetherian envelope;

2. I is a nil ideal and pIp = Ip, for all p ∈Spec (R).

Proof. 1) =⇒ 2) By Proposition 3.1, we have that I = Ker (p) ⊆ Nil (R) and so I is a nil

ideal.

Let know p be a prime ideal of R. Then, by the proof of assertion 2 in Proposition 3.1, we see

that the canonical projection π = pp : Rp −→ Rp/Ip is also a Noetherian envelope. So, replacing

R and I by Rp and Ip respectively, we can assume that R is local (with maximal ideal m) and

have to prove that mI = I. Indeed, if mI 6= I then I/mI (and hence I) has simple quotients,

which contradicts Lemma 4.4.

2) =⇒ 1) We have to prove that if f : R −→ N is a ring homomorphism, with N Noetherian,

then f (I) = 0. Suppose that is not true and fix an f such that f (I) 6= 0. Note that f (Nil (R))N

is a nil ideal of the Noetherian ring N . It follows that f (Nil (R))N is nilpotent and, as a

consequence, that f (Nil (R) I)N = f (Nil (R))Nf (I)N 6= f (I)N for otherwise we would get

f (I)N = 0 and hence f (I) = 0, against the assumption.

We next consider the composition

I
f

−→ f (I)N −→ f (I)N/f (Nil (R) I)N.

Its kernel is I ∩ f−1 (f (Nil (R) I)N) and we get a monomorphism of R-modules

f : M =: I/
[
I ∩ f−1 (f (Nil (R) I)N)

]
−→ f (I)N/f (Nil (R) I)N.

Note that M 6= 0 for otherwise we would have f (I) ⊆ f (Nil (R) I)N and hence f (I)N =

f (Nil (R) I)N , that we have seen that is impossible.

On the other hand, since I is a nil ideal, we have that I ⊆ Nil (R) and hence Rred
∼=

(R/I)red is a Noetherian ring. We shall view this latter isomorphism as an identification and

put A = Rred in the sequel. Since we clearly have Nil (R)M = 0 it follows that M is an

A-module in the canonical way. Moreover Im
(
f
)

generates the finitely generated N -module
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f (I)N/f (Nil (R) I)N , which allows us to choose a finite subset {x1, x2, . . . , xr} ⊂M such that
{
f (x1) , . . . , f (xr)

}
generates f (I)N/f (Nil (R) I)N (as an N -module). We shall derive from

that that annA (M) = annA (x1, . . . , xr). Indeed if r = r+Nil (R) is an element of A such that

rxi = 0 for i = 1, . . . , r, then f (r) f (xi) = 0 for all i = 1, . . . , r. It follows that f (r) f (I)N ⊆

f (Nil (R) I)N , so that f (rI) ⊆ f (Nil (R) I)N and hence rI ⊆ f−1 (f (Nil (R) I)N). This

implies that rM = rM = 0.

We claim now that

SuppA (M) = V (annA (M)) = {q ∈ Spec (A) : annA (M) ⊆ q} .

Indeed if q ∈ Spec (A) and annA (x1, . . . , xr) = annA (M) " q, then we can find an element

s ∈ A\q such that sxi = 0, for i = 1, . . . , r, and hence such that sM = 0. It follows that

Mq = 0 and so q /∈ Supp (M). That proves that Supp (M) ⊆ V (annA (M)). On the other hand,

if q /∈ Supp (M) then, for every i = 1, . . . , r, we can find an element si ∈ A\q such that sixi = 0.

Then s = s1 · · · · · sr belongs to annA (x1, . . . , xr) = annA (M), so that annA (M) ( q and hence

q /∈ V (annA (M)).

The equality SuppA (M) = V (annA (M)) and the fact that we are assuming M 6= 0 (and

hence annA (M) 6= A) imply that we can pick up a prime ideal q of A which is minimal among

those containing annA (M), and thereby minimal in SuppA (M). We localize at q and obtain a

module Mq over the local ring Aq such that SuppAq
(Mq) = {qAq}. Moreover the finite subset

{x1, . . . , xr} ⊆ Mq satisfies that annAq
(x1, . . . , xr) = annAq

(Mq). Indeed if a/s ∈ Aq satisfies

that axi/s = 0 inMq, for all i = 1, . . . , r, then we can find an element t ∈ A\q such that taxi = 0,

for i = 1, . . . , r. Since annA (M) = annA (x1, . . . , xr) it follows that ta ∈ annA (M) and, hence,

that a/s = ta/ts ∈ ann
Áq

(Mq). Now we can apply Lemma 0.4 to the local Noetherian ring Aq

and the Aq-module Mq. We conclude that qMq 6= Mq.

We take now the prime ideal p of R such that p/Nil (R) = q. From the equality pIp = Ip it

follows that pMp = Mp. We will derive that Mq = qMq, thus getting a contradiction and ending

the proof. Let x ∈ M be any element. Since x ∈ pMp, we have an equality x =
∑

1≤j≤m

pjyj/sj,

where pj ∈ p, yj ∈ M and sj ∈ R\p. Multiplying by s = s1 · · · sm, we see that sx ∈ pM,

which is equivalent to sayt that sx ∈ qM , where s = s +Nil (R) ∈ A\ {q}. Then we have that

x = sx/s ∈ qMq, for every x ∈M , which implies that Mq = qMq as desired.

Recall that the trivial extension of a ring A by the A-module N , denoted by R = A⋊N ,

has as underlying additive abelian group A ⊕ N and the multiplication is defined by the rule

(a,m) · (b, n) = (ab, an+ bm).
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Example 5.3 1. Let A be a Noetherian integral domain, X be a finitely generated A-module

and D a torsion divisible A-module. Put N = X ⊕ D and take R = A ⋊ N . The ideal

I = 0 ⋊D = {(a, n) ∈ R : a = 0 and n ∈ D} satisfies condition 2 in the above theorem and

that R/I is Noetherian. Therefore p : R −→ R/I ∼= A⋊X is the Noetherian envelope.

2. If in the above example we do not assume D to be torsion then, with the same choice of I,

the projection p : R −→ R/I is not a Noetherian envelope.

Proof.

1. Nil(R) = 0 ⋊ N is contained in any prime ideal of R, which implies that any such prime

ideal is of the form p̂ = p⋊N , where p ∈ Spec (A). Now one check the following equalities:

(a) Rp̂ = Ap ⋊Np = Ap ⋊ (Xp ⊕Dp)

(b) Ip̂ = 0 ⋊ (0 ⊕Dp)

(c) p̂Ip̂ = 0 ⋊ (0 ⊕ pDp).

The divisibility of D gives that D = pD, for every p ∈ Spec (A) \ {0}, while we have

that D0 (=localization at p = 0) is zero due to the fact that D is a torsion A-module.

That proves that p̂Ip̂ = Ip̂, for all p̂ ∈ Spec (R).

2) The argument of the above paragraph shows that if D is not torsion (and hence D0 6= 0)

then I does not satifies condition 2 of the Theorem.

6 Does there exist a non-Noetherian ring with a monomorphic

Noetherian envelope?

If f : R −→ N is a Noetherian (pre)envelope of the ring R, then the inclusion R′ := Im(f) →֒ N

is a monomorphic Noetherian (pre)envelope. In order to identify the rings having a Noetherian

envelope, one needs to identify those having a monomorphic Noetherian envelope. That makes

pertinent the question in the title of this section, which we address from now on. We start with

the following result:

Proposition 6.1 Suppose that there exists a non-Noetherian ring having a monomorphic Noethe-

rian preenvelope. Then there is a non-Noetherian local ring R (with maximal ideal m) having a

monomorphic Noetherian preenvelope j : R →֒ N satisfying the following properties:
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1. R has finite Krull dimension K − dim(R) = d > 0, and every ring of Krull dimension < d

having a monomorphic Noetherian preenvelope is Noetherian

2. Rred is a Noetherian ring

3. If 0 6= I ⊆ Nil(R) is an ideal such that R/I is non-Noetherian, then D := IN∩R
I

is an

R-module such that Supp(D) = {m} and mD = D.

Proof. If A is a non-Noetherian ring with a monomorphic Noetherian preenvelope i : A N ′,

then the set of restricted ideals I ′ ⊆ A such that A/I ′ is non-Noetherian has a maximal element,

say, J . Then R = A/J is a non-Noetherian ring having a monomorphic Noetherian preenvelope

j = ī : R = A/J  N ′/N ′J =: N with the property that, a for a nonzero ideal I of R, the

following three assertions are equivalent:

i) R/I is Noetherian

ii) I = IN ∩R

iii) R/I has a monomorphic Noetherian preenvelope

We claim that there is a maximal ideal m of R such that Rm is not Noetherian. Bearing in

mind that jm : Rm −→ Nm is also a (monomorphic) Noetherian preenvelope (see the proof of

Proposition 3.1(2)), it will follow that, after replacing R by an appropriate factor of Rm, one

gets a non-Noetherian local ring with a monomorphic Noetherian preenvelope satisfying that the

properties i)-iii) above are also equivalent for it.

Suppose our claim is false, so that Rm is Noetherian for all m ∈Max(R). Let then I0 ( I1 (

... be a strictly increasing chain of ideals in R. We can assume that 0 6= I0 =: I. Then R/I cannot

be a Noetherian ring. Since the induced map j̄ : R/I −→ N/NI is a Noetherian preenvelope it

follows that j̄ is not injective, and hence 0 6= Î/I, where Î := R ∩ NI. But NÎ = NI and the

induced map R/Î −→ N/NÎ is a monomorphic Noetherian preenvelope. Our assumptions on R

imply that R/Î is Noetherian, so that the canonical projection p : R/I ։ R/Î is a Noetherian

envelope. According to Theorem 5.2, we have that m( Î
I
)m = ( Î

I
)m (*) for every m ∈ Max(R).

The fact that Rm is Noetherian implies that ( Î
I
)m = Îm

Im
is a finitely generated Rm-module. Then,

using Nakayama’s lemma, from the equality (*) we get that ( Î
I
)m = 0, for all m ∈ Max(R). It

follows that Î/I = 0, and we then get a contradiction.

So, from now on in this proof, we assume that R is a local non-Noetherian ring having a

monomorphic Noetherian preenvelope, for which condition i)-iii) are equivalent. By Proposition
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3.1, every p ∈ Spec(R) is restricted and therefore R/p is Noetherian for all p ∈ Spec(R). Since

there are only finitely many minimal elements in Spec(R) (cf. Proposition 3.1) we conclude that

Rred is a Noetherian ring and, hence, that K − dim(R) <∝. It implies, in particular, that one

could have chosen our initial ring A with minimal finite Krull dimension. Having done so, this

final local ring R is has also minimal finite Krull dimension among the non-Noetherian rings

having a monomorphic Noetherian preenvelope. In particular, we have that Rp is Noetherian,

for every p ∈ Spec(R) \ {m}.

Finally, if 0 6= I ⊂ Nil(R) is an ideal such that R/I is not Noetherian (i.e. I ( Î := R∩NI),

the third paragraph of this proof shows that the canonical projection p : R/I ։ R/Î is a

Noetherian envelope. Then Theorem 5.2 says that D = Î/I has the property that pDp = Dp,

for all p ∈ Spec(R). But then Dp = ( Î
I
)p = 0, for every non-maximal p ∈ Spec(R), because Rp

is a Noetherian ring. It follows that Supp(D) = {m} and that mD = D.

Example 6.2 Let Z(p) denote the localization of Z at the prime ideal (p) = pZ and consider the

trivial extension R = Z(p) ⋊ Q. Then R is a non-Noetherian local ring and, in case of having a

Noetherian preenvelope, this would be monomorphic and conditions 1)-3) of the above proposition

would hold.

Proof. Since 0 ×M is an ideal of R for each Z(p)-submodule M of Q it follows that R is not

Noetherian. The prime ideals of R are pZ(p) ⋊ Q and 0 ⋊ Q = Nil(R), so that R is local with

maximal ideal m := pZ(p) ⋊ Q and K − dim(R) = 1. In particular, condition 1) Proposition 6.1

is satisfied (see Theorem 4.7). Since R is a subring of the Noetherian ring Q ⋊ Q ∼= Q[x]/(x2),

any Noetherian preenvelope j : R −→ N that might exist would be necessarily monomorphic.

On the other hand Rred
∼= Z(p) is a Noetherian ring.

Finally, suppose that j : R −→ N is a Noetherian preenvelope, which we view as an inclusion,

and let 0 6= I ⊆ Nil(R) be an ideal of R such that R/I is non-Noetherian. We have that I = 0⋊A

and R/I ∼= Z(p) ⋊ (Q/A), for some Z(p)-submodule 0 6= A ( Q. Note that Î = R∩NI consists of

nilpotent elements, so that Î = 0 ⋊ B, for some Z(p)-submodule A ⊆ B ⊆ Q. We need to prove

that B = Q, and then condition 3) of Proposition 6.1 will be automatically satisfied.

Indeed, on one side we have that the induced map j̃ : R/Î −→ N/NI is a monomorphic

Noetherian preenvelope. But in case B ( Q, we have R/Î ∼= Z(p) ⋊ (Q/B) and Example 5.3 says

that the canonical projection π : R/Î ∼= Z(p) ⋊ (Q/B) ։ Z(p) is the Noetherian envelope. This

is absurd for then we would have 0 6= 0 ⋊ (Q/B) = Ker(π) ⊆ Ker(j̃) = 0.
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The last proposition and example propose the ring R = Z(p) ⋊ Q as an obvious candidate to

be a ’minimal’ non-Noetherian ring having a monomorphic Noetherian preenvelope. We have the

following result.

Theorem 6.3 The ring Z(p) ⋊ Q does not have a Noetherian envelope.

The proof of this theorem will cover the rest of the paper and is based on a few lem-

mas.We proceed by reduction to absurd and, in the sequel, we assume that i : Z(p) ⋊ Q →֒ N

is a monomorphic Noetherian envelope, which we view as an inclusion. Recall that a ring A is

called indecomposable when it cannot be properly decomposed as a product A1 × A2 of two

rings. That is equivalent to say that the only idempotent elements of A are 0 and 1.

Lemma 6.4 There is a ring isomorphism

ϕ : N
∼=

−→ Z(p) ×B2 × ...×Br

satisfying the following properties:

1. ϕi is a matrix map





π
λ2

.

.
λr




: Z(p) ⋊ Q −→ Z(p) × B2 × ... × Br, where π : Z(p) ⋊ Q ։ Z(p)

is the projection and each λi is an injective ring homomorphism into the indecomposable

Noetherian ring Bi

2. Each λi is a minimal morphism in CRings

3. If µ : Z(p) ⋊ Q S is an injective ring homomorphism, with S an indecomposable Noethe-

rian ring, then µ factors through some λi

4. There is no ring homomorphism h : Bi −→ Bj, with i 6= j, such that hλi = λj

5. The ring Bi does not contain a proper Noetherian subring containing Im(λi).

Proof. A simple observation will be frequently used, namely, that there cannot exist a proper

Noetherian subring B of N containing R as a subring. Indeed, if such B exists and u : R →֒ B

is the inclusion, then we get a ring homomorphism g : N −→ B such that gi = u. Then the

composition h : N
g

−→ B →֒ N is a non-bijective ring homomorphism such that hi = i, against

the fact that i is an envelope.
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The projection π : R ։ Z(p) is a retraction in the category CRings of commutative rings.

Moreover, since i is a Noetherian envelope, we have a ring homomorphism f : N −→ Z(p) such

that fi = π. It follows that also f is a retraction in CRings, so that we have a Z(p)-module

decomposition N = Z(p) ⊕ I, where I := Ker(f) is an ideal of N containing i(0 ⋊ Q).

Also due to the fact that i is a Noetherian envelope, we have a factorization of the inclusion

j : R
i

−→ N
ρ

−→ Q⋊ Q in CRings. Then Im(ρ) is a subring of Q⋊ Q containing R = Z(p) ⋊ Q.

One readily sees that Im(ρ) = A ⋊ Q, where A is a subring of Q containing Z(p) as a subring.

But if q ∈ Q \ Z(p), then we can write q = ap−t, for some invertible element a ∈ Z(p)) and some

integer t > 0. Then we have Z(p)[q] = Z(p)[p
−t]. Given any integer n > 0, Euclidean division gives

that n = tm+ r, where m > 0 and 0 < r < t. We then have p−n = p−r · (p−t)m = pt−r(p−t)m+1,

which proves that p−n ∈ Z(p)[p
−t] = Z(p)[q], for every n > 0, and hence that Z(p)[q] = Q. As a

consequence, we get that either A = Z(p) or A = Q, and so that either Im(ρ) = Z(p) ⋊Q = R or

Im(ρ) = Q ⋊ Q. But the first possibility is discarded for, being a factor of Noetherian, the ring

Im(ρ) is Noetherian. Therefore any ring homomorphism ρ : N −→ Q ⋊ Q such that ρi = j is

necessarily surjective.

We fix such a ρ from now on and also fix the decomposition N = Z(p) ⊕ I considered above.

We claim that the restriction of ρ

ρ|I : I −→ Q ⋊ Q

is a surjective map. Indeed ρ(I) is a nonzero ideal of Q ⋊ Q since ρ is a surjective ring homo-

morphism. Then we get that either ρ(I) = 0 ⋊ Q or ρ(I) = Q ⋊ Q. But the first possibility is

discarded for it would produce a surjective ring homomorphism

ρ̄ : Z(p)
∼= N/I ։ Q⋊Q

0⋊Q
∼= Q.

Next we claim that 0⋊Q ⊂ (0⋊Q)I, which will imply that 0⋊Q ⊂ I2 and, hence, that Z(p)+I
2

is a subring of N containing R as a subring. Indeed we have (0 ⋊ Q)N = (0 ⋊ Q)(Z(p) ⊕ I) =

(0 ⋊ Q) + (0 ⋊ Q)I and, if our claim were not true, we would get:

0 6= (0⋊Q)N
(0⋊Q)I

∼=
(0⋊Q)+(0⋊Q)I

(0⋊Q)I
∼= Q

X
,

where X is the Z(p)-submodule of Q consisting of those of those q ∈ Q such that (0, q) ∈ (0⋊Q)I.

It is routinary to see that the isomorphism of Z(p)-modules (0⋊Q)N
(0⋊Q)I

∼= Q/X gives a bijection

between the N -submodules of (0⋊Q)N
(0⋊Q)I and the Z(p)-submodules of Q/X. But this is impossible
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for, due to the Noetherian condition of N , the N -module (0⋊Q)N
(0⋊Q)I is Noetherian while Q/X does

not satisfies ACC on Z(p)-submodules.

We next consider the subring N ′ = Z(p) + I2 of N . If {y1, ..., yr} is a finite set of generators

of I as an ideal, then {1, y1, ..., yr} generates N = Z(p) + I as a N ′-module. By Eakin’s theorem

(cf. [6], see also [8]), we know that N ′ is a Noetherian ring. By the first paragraph of this

proof, we conclude that N ′ = N , from which it easily follows that I2 = I. But then there is an

idempotent element e = e2 ∈ N such that I = Ne (cf. [1][Exercise 7.12]). Since y(1 − e) = 0

for all y ∈ I, we get that (a + y)(1 − e) = a(1 − e), for all a ∈ Z(p) and y ∈ I. Therefore

A := N(1 − e) = Z(p)(1 − e) is a ring (with unit 1 − e) isomorphic to Z(p) via the assignment

a a(1−e). We put B := I = Ne, which is a ring (with unit e), and we have a ring isomorphism

ϕ : N
∼=

−→ Z(p) × B. Bearing in mind that N = Z(p) ⊕ I as Z(p)-modules, it is easy to see that

ϕ(a+ b) = (a, ae+ b), for all a ∈ Z(p) and b ∈ B = I.

Then the composition i′ : Z(p) ⋊ Q
i
→֒ N

ϕ
−→ Z(p) ⋊B is also a Noetherian envelope. Its two

component maps are:

π : Z(p) ⋊ Q։ Z(p), (a, q) a

λ : Z(p) ⋊ Q −→ B, (a, q) ae+ (0, q).

We first note that every non-injective ring homomorphism g : R −→ S, where S is Noetherian

indecomposable, factors through π. Indeed if Ker(g) contains 0 ⋊ Q that is clear. In any

other case, we have Ker(g) = 0 ⋊ M , for some nonzero Z(p)-submodule M of Q. Then the

induced monomorphism
Z(p)⋊Q

0⋊M
∼= Z(p) ⋊ (Q/M) −→ S factors through the Noetherian envelope

of Z(p) ⋊ (Q/M) which, by Example 5.3, is the projection Z(p) ⋊ (Q/M)։ Z(p). It then follows

that g factors through π as desired.

Decompose now B as a finite product of indecomposable (Noetherian) rings B = B2× ...×Br.

Then λ is identified with a matrix map





λ2

.

.
λr



 : R −→ B2 × ...×Br,

where the λi are ring homomorphisms. We claim that these λi are necessarily injective, thus

proving property 1) in the statement. Indeed if, say, λ2 is not injective then, by the previous

paragraph, we have λ2 = uπ for some ring homomorphism u : Z(p) −→ B2. Now from the ring
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endomorphism ξ =

(
1 0
u 0

)
: Z(p) ×B2 −→ Z(p) ×B2 we derive a ring endomorphism

Φ =

(
ξ 0
0 1

)
: (Z(p) ×B2) × (B3 × ...×Br) −→ (Z(p) ×B2) × (B3 × ...×Br)

which is not bijective and satisfies that Φi′ = i′ (here 1 :
∏

3≤i≤r Bi −→
∏

3≤i≤r Bi is the identity

map). That would contradict the fact that i′ is an envelope.

Properties 2) and 3) in the statement will follow easily once we check the following two

properties for λ:

a) λ is minimal, i.e. if g : B −→ B is a ring homomorphism such that gλ = λ, then λ is an

isomorphism

b) If µ : Z(p) ⋊ Q −→ S is any injective ring homomorphism, with S an indecomposable

Noetherian ring, then µ factors through λ.

Indeed, let g : B −→ B be a ring endomorphism such that gλ = λ, then the ’diagonal’ map

ψ :=

(
1 0
0 g

)
: Z(p) ×B −→ Z(p) ×B is a ring endomorphism such that ψi′ = i′. It follows that

ψ is an isomorphism and, hence, that g is an isomorphism. Finally, if µ : Z(p) ⋊ Q  S is an

injective ring homomorphism, with S an indecomposable Noetherian ring, then the fact that i′ is a

Noetherian envelope gives a ring homomorphism υ =
(
υ1 υ2

)
: Z(p)×B −→ S such that υi′ = µ.

The fact that S is indecomposable implies that either υ1 = 0 or υ2 = 0. But the second possibility

is discarded for it would imply that µ = υ1π, and so that 0 ⋊ Q = Ker(π) ⊆ Ker(µ) = 0.

It only remains to prove properties 4) and 5) in the statement. To prove 4), take any ring

homomorphism h : Bi −→ Bj, with i 6= j. Without loss of generality, put i = 2 and j = 3. If

hλ2 = λ3, then we consider the ring homomorphism given matricially in the form

Ψ =

(
ψ 0
0 1

)
,

where ψ =




1 0 0
0 1 0
0 h 0



 : Z(p) × B2 × B3 −→ Z(p) × B2 × B3 and 1 : ⊕4≤i≤rBi −→ ⊕4≤i≤rBi is

the identity map. We have an equality Ψi′ = i′, but Ψ is not an isomorphism, which contradicts

the fact that i′ is an envelope.

Finally, suppose that N ′ ( Bi is a proper Noetherian subring containing Im(λi). Then,

putting i = 2 for simplicity, we get that Z(p) ×N ′ ×B3 × ...×Br is a proper Noetherian subring

of Z(p) ×B2 ×B3 × ...×Br
∼= N containing R as a subring. That is a contradiction.
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Lemma 6.5 Let λ : R = Z(p) ⋊ Q →֒ B be an inclusion of rings, with B indecomposable

Noetherian, and suppose that we have a decomposition B = Z(p) ⊕ I, where I is an ideal of B

containing 0 ⋊ Q. Then B admits a proper Noetherian subring B′ containing R.

Proof. We claim that (0 ⋊ Q)B + I2 is an ideal of B propertly contained in I. Indeed the

equality I = (0 ⋊ Q)B + I2 would give an epimorphism of B-modules

(0 ⋊ Q)B ։ I/I2,

thus showing that I/I2 is divisible as a Z(p)-module. But, on the other and, I/I2 is finitely

generated as a module over the ring B/I ∼= Z(p). Therefore we would get that I/I2 = 0 and

hence would find an idempotent e = e2 ∈ I such that I = Be. That would contradict the fact

that B is indecomposable.

Since our claim is true we can take the proper subring B′ = Z(p) ⊕ [(0 ⋊ Q)B + I2] of B. An

argument already used in the proof of Lemma 6.4 shows that B is finitely generated as B′-module,

and hence that B′ is Noetherian.

Lemma 6.6 Let λ : R = Z(p) ⋊ Q →֒ B be an inclusion of rings, with B indecomposable

Noetherian. Suppose that m is a maximal ideal of B and that g : A −→ B is a homomorphism

of Noetherian Z(p)-algebras such that the composition

A
g

−→ B
pr
։ B/m

is surjective. Then B̃ = A⊕m has a structure of Noetherian ring, with multiplication (a,m)(a′,m′) =

(aa′, g(a)m′+mg(a′)+mm′), such that the map ψ : B̃ −→ B, (a,m) g(a)+m, is a (surjective)

ring homomorphism.

Proof. Clearly the multiplication given on B̃ makes it into a ring, and the canonical map

ψ : B̃ ։ B is a surjective ring homomorphism. Its kernel consists of those pair (a,m) ∈ B̃ such

that g(a) +m = 0, which gives the equality

Ker(ψ) = {(a,−g(a)) : a ∈ g−1(m)}.

Note that every B̃-submodule of Ker(ψ) is canonically an A-submodule and that we have an

isomorphism of A-modules Ker(ψ) ∼= g−1(m). Since g−1(m) is an ideal of the Noetherian

ring A, we conclude that Ker(ψ) is a Noetherian B̃-module. This and the fact that the ring

B̃/Ker(ψ) ∼= B is Noetherian imply that B̃ is a Noetherian ring.
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Lemma 6.7 Suppose that in the situation of last lemma, we have A = Z(p)[X] and B/m ∼= Q .

If the homomorphism ψ : B̃ ։ B, (a,m)  g(a) +m, is a retraction in CRings, then either B

contains a proper Noetherian subring containing R or there is a maximal ideal m′ of B such that

B = Z(p) + m′.

Proof. We fix a section ϕ : B −→ B̃ for ψ in CRings. Then we put q′ := ϕ−1(0 ⊕ m) and

A′ := B/q′. We get a subring A′ of Z(p)[X] (whence A′ is an integral domain) containing Z(p).

Moreover, since p is not invertible in Z(p)[X] it cannot be invertible in A′. Therefore pA′ 6= A′ and

we have an induced ring homomorphism ϕ̄ : A′/pA′ −→ Z(p)[X]/pZ(p)[X] ∼= Zp[X]. We denote

by C its image, which is then a subring of Zp[X] isomorphic to B/q, for some q ∈ Spec(B) such

that q′ + pB ⊆ q. Then the composition Z(p) →֒ B ։ B/q = C has kernel pZ(p).

We distinguish two situations. In case the last composition is surjective, and hence Zp
∼= C,

we have that q is a maximal ideal of B such that B = Z(p)+q and the proof is finished. In case the

mentioned composition is not surjective, there exists a nonconstant polynomial f = f(X) ∈ Zp[X]

such that f ∈ C. There is no loss of generality in taking f to be monic, so that X is integral

over Zp[f ] and, hence, the inclusion C ⊆ Zp[X] is an integral extension. In particular, we have

K − dim(C) = 1 and the assignment q C ∩q gives a surjective map Max(Zp[X])։Max(C)

(cf. [10][Corollary II.2.13]).

If n is a maximal ideal of C and we put n = C ∩ n̂, with n̂ ∈ Max(Zp[X]), then we get a

field homomorphism C/n −→ Zp[X]/n̂. In particular, C/n is a finite field extension of Zp. Take

now n′ ∈ Max(B) such that n = n′/q. One easily sees that B′ = Z(p) + n′ is a subring of B

such that B is finitely generated as B′-module, and then, by Eakin’s theorem, we know that B′

is Noetherian. But 0 ⋊Q is contained in all maximal ideals of B since it consists of (2-)nilpotent

elements. In particular, we get that B′ contains R = Z(p) ⋊ Q and the proof is finished.

We are now ready to give the desired proof.

Proof of Theorem 6.3:

Put R = Z(p) ⋊ Q as usual and suppose that it has a Noetherian envelope, represented

by a matrix map as in Lemma 6.4. We first prove that at least one of the Bi of Lemma 6.4

has a maximal ideal m such that Bi/m ∼= Q. Indeed, preserving the notation of the proof of

Lemma 6.4, we see that the map ρ : I = B −→ Q ⋊ Q is a surjective ring homomorphism. But,

since Q ⋊ Q is indecomposable, ρ necessarily vanishes on all but one of the Bi appearing in the

decomposition B = B2 × ...×Br. Then we get a unique index i such that ρ|Bi
: Bi −→ Q ⋊ Q is

nonzero, and hence ρ|Bi
is surjective. Now m = ρ−1

|Bi
(0 ⋊ Q) is a maximal ideal of Bi such that
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Bi/m ∼= Q.

Let fix now i ∈ {2, ..., r} such that Bi admits a maximal ideal m with Bi/m ∼= Q. For

simplification, put C = Bi. We fix a surjective ring homomorphism Ψ : C −→ Q with kernel

m and fix an element x ∈ C such that Ψ(x) = p−1. If X is now a variable over Z(p), then the

assignment X  x induces a homomorphism of Noetherian Z(p)-algebras, g : Z(p)[X] −→ C such

that the composition

Z(p)[X]
g

−→ C
pr
։ C/m

is surjective. According to Lemma 6.6, we know that C̃ = Z(p)[X] ⊕ m has a structure of

Noetherian ring such that the canonical map ψ : C̃ −→ C, (a,m)  g(a) + m, is a surjective

ring homomorphism. Note that we have an obvious (injective) ring homomorphism h : R =

Z(p) ⋊ Q −→ C̃ = Z(p)[X] ⊕ m induced by the inclusions Z(p) →֒ Z(p)[X] and 0 ⋊ Q
λ
→֒ m.

Such a ring homomorphism has the property that ψh = λi : R −→ Bi = C. It is not difficult to

see that the only idempotent elements of C̃ are the trivial ones, so that C̃ is an indecomposable

ring. By Lemma 6.4, the morphism h factors through some λj (j = 2, ..., r). Fix such an index

j and take then a ring homomorphism h′ : Bj −→ C̃ such that h′λj = h. Then we have that

ψh′λj = ψh = λi. Again by Lemma 6.4, we get that i = j and that ψh′ is an isomorphism. In

particular, we get that ψ is a retraction in CRings.

Now from Lemmas 6.7 and 6.4, we conclude that C = Bi has a maximal ideal m′ such that

Z(p) + m′ = C. Then, according to Lemma 6.6, C̃ = Z(p) ⊕ m′ gets a structure of Noetherian

(indecomposable) ring, with multiplication (a,m)(a′,m′) = aa′ + am′ +ma′ +mm′, so that the

canonical map ψ : C̃ −→ C, (a,m)  a+m, is a surjective ring homomorphism. An argument

similar to the one in the previous paragraph shows that ψ is a retraction in CRings. We again

fix a section for it ϕ′ : C −→ C̃. Notice that the composition

ϕ1 : C
ϕ′

−→ C̃ = Z(p) ⊕ m′

(
1 0

)

−→ Z(p)

is a ring homomorphism such that ϕ′(b) = (ϕ1(b), b−ϕ1(b)), for all b ∈ B. The universal property

of localization with respect to multiplicative subsets implies that the only ring endomorphism of

Z(p) is the identity map, so that ϕ1|Zp
= 1Z(p)

: Z(p) −→ Z(p). Therefore we get that ϕ′(a) = (a, 0),

for all a ∈ Z(p). That proves that Z(p) ∩Ker(ϕ
′) = 0. But since ϕ1 is surjective we conclude that

we have a Z(p)-module decomposition B = Z(p) ⊕ I, where I = Ker(ϕ1). On the other hand,

since (0 ⋊ Q)2 = 0 and Z(p) is an integral domain, we conclude that ϕ1(0 ⋊ Q) = 0, and so that
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0 ⋊ Q ⊆ I. By Lemma 6.5, we get that C = Bi contains a proper Noetherian subring containing

R. That contradicts Lemma 6.4 and ends the proof.

We end the paper by proposing:

Conjectures 6.8 1. There does not exist any non-Noetherian commutative ring having a

monomorphic Noetherian envelope

2. A commutative ring R has a Noetherian envelope if, and only if, it has a nil ideal I such

that R/I is Noetherian and pIp = Ip, for all p ∈ Spec(R).

By Theorem 5.2 and our comments at the beginning of this section, the two conjectures above

are equivalent.

References

[1] Anderson, F.W.; Fuller, K.R.: "Rings and categories of modules", 2nd edition. Springer-

Verlag, 1992.

[2] Atiyah M.F.; MacDonald, I.G.: “Introduction to Commutative Algebra”, Addison-Wesley

Publishing Company, 1969.

[3] Auslander, M.; Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math.

86(1) (1991), 111-152.

[4] Auslander, M.; Smal∅, S.O.: Preprojective modules over Artin algebras. J. Algebra 66(1)

(1980), 61-122.

[5] Bican, L.; El Bashir; Enochs, E.E.: All modules have flat covers. Bull. London Math. Soc

33 (2001), 385-390.

[6] Eakin Jr., P.M.: The converse of a well-known theorem on Noether rings. Math. Ann. 177

(1968), 278-282.

[7] Enochs, E.E.: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39 (1981),

no. 3, 189–209.

[8] Formanek, E. and Jategaonkar, A.V.: Subrings of Noetherian rings. Proc. Amer. Math. Soc.

46(2) (1974), 181-186.



38 Rafael Parra y Manuel Saorín

[9] Hartshorne, R.: "Algebraic Geometry", 6th edition. Springer-Verlag (1993).

[10] Kunz, E.: “Introduction to commutative algebra and algebraic geometry”, Birkhauser 1985.

[11] Matsumura, H.: “Commutative ring theory”, Cambridge University Press, 1989.

[12] Mitchell, B.: "Theory of categories", 4th edition. Academic Press (1965). Also at

http://books.google.es/books?id=hgJ3pTQSAd0C

[13] Murfet, D.S.: The mock homotopy category of projectives and Grothendieck duality. Ph.

Thesis. Austral. Nat. University (2008)

[14] Neeman, A.: The homotopy category of flat modules and Grothendieck duality. Invent.

Math. 174 (2008), 255-308.

[15] Stenström, B.: “Rings of quotients”, Springer-Verlag, 1975.

RAFAEL PARRA
Departamento de Cálculo, Escuela Básica,
Facultad de Ingenieríia,
Universidad de Los Andes
Mérida 5101 - A, Venezuela
e-mail: rafaelparra@ula.ve

MANUEL SAORÍN
Departamento de Matemáticas,
Universidad de Murcia, Aptdo 4021.
30100 Espinardo, Murcia, Spain
e-mail: msaorinc@um.es


