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Resumen

En este articulo proporcionamos una definicién de tranaliées! para el sistema de control in-
finito dimensional del siguiente sistema

#(t) = Ax(t) + Bu(t) t>0
{ z(0) =20 X; ul)eUCU, z(t*)eGtY),

para un tiempo minima* > 0; dondez(t) € X, X y U son espacios de Banach, A es el gen-
erador infinitesimal de un grupo fuertemente contifu®¢) };cg en X, B € L(U,X), G es un
subconjunto blanco d& vy el control pertenece al espaéioque es convexo y délbilmente compacto.

Para este sistema damos una condicion necesaria para durerel satisfaga la condicion de la
transversavilidad éptima. Finalmente, como una aplicacansidera el problema de control 6ptimo
gobernado por la ecuacién de onda

yu — Ay =u(t,z), re QL teR

y=0, on R x9Q,

y(OaI) = yO(x)v yt(OaI) = yl(I)a T e Qa
Ju(t, )|z <1, teR,

donde(2 es un dominio acotado €r", el controlu € L?(0,t1; L*(Q)); para este problema calcu-
lamos un control extremal.

Palabras Claves:Transversalidad, control extremal, tiempo Gptimo, sisterormal.

Abstract

In this paper we provide a definition of transversality fa tbllowing infinite dimensional control
system
#(t) = Ax(t) + Bu(t) t>0
z(0) =20 X; ul)eUCU, z(t*)eGtY),
for ¢t* >0 minimum; where the state(t) € X, X andU are Banach spaces, A is the infinitesimal

generator of a strongly continuous groufS(¢)}cr in X, B € L(U, X), the target seG € X
and the control values sét are convex and weakly compact. For this system we give a sages
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condition for a control satisfying the transversality citinth to be optimal. Finally, as an application
we consider the optimal control problem governed by the veapeation

yu — Ay =u(t,z), € Q, t € R
y=0, on R xJ9Q,

y(o,(E) = y0($)7 yt(oax) = yl(x)a S Qa
Ju(t, )|z <1, teR,

where( is a bounded domain iR, the distributed contrak € L?(0,¢1; L()); for this problem
we compute the extremal control.
key words. Transversality, extremal control, time optimal, normatsgs
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1 Introduction and Preliminaries

For finite dimensional linear systems a sufficient condifimrthe optimal control is given in [4] and [5],
this condition is referred to as transversality conditiowl & is contained in Theorem 19 from [5], page
132. That s to say, i is a finite dimensional Banach space, then under certainthgpis the extremal
control satisfying the transversality condition is uniqumimal. Also, it is proved in Theorem 18 of [5]
that, ifu*(¢) € Q on0 < ¢ < ¢* is a minimal time-optimal controller for the finite dimensa system

(1.1)

z(t) = A(t)x + B(t)u, teR, xR
z(0) =x9 € R", w(t) e QCR™, z(t*)eG(t")CR",

thenu*(¢) is extremal; that is to say; the following maximum principlelds

m(t) = maz (n(t), Bt)) = (n(t), B)w (1))

vEQ

and

M(t) = max<77(t), At)z* (1) + B(t)v> - <77(t), A)z*(t) + B(t)u*(t)>

vEQ
almost every wheré <t < t*.

Here A(t) and B(t) are matrices of ordet x n andn x m respectivelyf) is compact, the target set
G(t) is also compact and varies continuously [6no]; andn(t) is a nontrivial solution of the adjoint
system
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andn(t*) is an outwards unit normal vector to a supporting hyperptaribe set of attainability< (¢*) at
x*(t*) in 0K (t*). Furthermore, ifG(t) = G is constat, then*(¢*) lies in the new frontier of< (¢*). In
this case, provided\(¢) and B(t) are continuous, the norma(t*) can be selected so that

M(t) > 0. (1.2)

If in addition GG is convex, them(¢*) can be selected satisfying tiransversality condition; namely,
n(t*) is normal to a common supporting hyperplane separdtifg) andG.
In this paper we generalize these results to the followifigite dimensional optimal control system
#(t) = Ax(t) + Bu(t) t>0
(t) (t) (t) 1.3)
x(0)=z0 € X; wu(t)eUCU, x(t)eaq,
where the state(t) € X; X andU are separable Banach spaces whttbeen reflexiveB € L(U, X),
the controlsu € L} (R, ,U), the target se’ C X and the control values satare convex and weakly

loc

compact, and A is the infinitesimal generator of a stronglgtiomous group {S(¢)}:cr of bounded
linear operators iX. A mild solution of (1.3) is a functior:, () : [0,00) — X defined by

2y (t) = S(t)xo + /t S(t — a)Bu(a)da, t>0, (1.4)
0
whereu € L} (R, U).

loc

Definition 1.1 For ¢; > 0 the set ofadmissible controls on [0, 1] is defined by
C(t1) ={uec L'0,t;;U) s u(t) cU aein [0,t]}
and the corresponding set aftainable points by

K(t1) = {xy(t1) : z,(-) is mild solution of (1.3)u € C(t1)}.

Sincel{ is convex and weakly compact abdis separableBC(¢;) can be considered as a mensurable
multifunction taking weakly compact values andisdt, ) is weakly compact inX ([1], [7]).

Through this work we suppose that iaft;) # 0, where inf<(¢;) anddK (¢;) denote the interior
and the boundary oK (¢, ) respectively.

The following definition is a generalization of a similar ogigen in [5] page 73.

Definition 1.2 A controlu € C(t1) is called anextremal control if the corresponding solution,, of
(1.3) satisfiese, (t1) € 0K (t1).
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Definition 1.3 If t* > 0 andu* € C(¢*) with corresponding solution*(-) of (1.4) satisfying:* (t*) € G,
thenu™* is called anoptimal control if

t" =inf{t €[0,00): K(t)NG # 0}.

As an application of our result we shall consider the follmgvoptimal control problem governed by the
wave equation

yn — Ay =u(t,x), z€ Q t €R

y=0, on R x9N,

y(0,2) =yo(x), w(0,2) =yi(x), €,
Jut, 2 <1, teR,

(1.5)

and prove that the optimal control is given by:

772(t7x) i .
ult, z) :{ T2 ()l 12 it lm2(t, )|l # 0

1 it [lna2(t, )l =0
where
(s, ) = Z(—AJ% sin(y/Ajs) < ¢, 27 > ¢(x) + cos(\/Njs) < by, a5 > pj()),
i=1

andz} € HY(), 25 € L*(Q), where); and ¢; are the eigenvalues and the eigenfunctions-af
respectively andg;, z}) = [, ¢j(x)z} (x)dx.

2 Main Results

Following the lead of Lee-Markus [5] we state the forthcognrasults.

Theorem 2.1 A controlu € C(t;) is extremal if, and only if, there ig* € X*\{0} such that

T€%<n(s),Bv>:<77(3),Bu(s)> ae on [0,t] (2.1)

where
n(s) = S*(—s)z*, 0<s<t.
Proof By Theorem 4.3 of [1] a contral € C(t;) is extremal if and only if, there existg € X*\{0}

such that for almost every € [0, t1]

Tg}@*’s(tl —s)Bv) = (y",8(t1 — 5)Bu(s)) = (S*(t1 — s)y*, Bu(s))
= (5%(=s)S*(t1)y", Bu(s)) a.e
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SinceS™* is a group,5*(t;) is invertible; theme* = S*(¢1)y* # 0, and by putting)(s) = S*(—s)z*
we get the result.

Definition 2.2 An extremal control, € C'(¢1) satisfies theransversality condition if the hyperplane

(t1) = {z € X : (n(t1), — zu(t1)) = 0}
separatess (¢;) and G at the point:,, (¢1).

Theorem 2.3 Supposery € D(A) andu* € C(t*) is anoptimal control which satisfies

S(—s)Bu* € D(A) a.e on [0,t*], t*>0 ”5
AS(t — )Bu*(-) € L'(0,; X), Vt € [0,t%). (22)

Then

M(t) = max<77(t), A(t)a* (t) + B(t)v> - <77(t), A()a*(t) + B(t)u*(t)>

veEQ
is defined a.e oD, t*], wherez*(-) = x,+(-) andn(t) = S(—t)z* with z* # 0 according to Theorem

2.1. Moreover, we can choogét*) such that
M(t*) >0

and satisfying théransversality condition.

Proof If hypothesis (2.2) is satisfied, then Lemma 2.22 of [2] ireplthatz* is differentiable almost
every where or0, t*] becauseX is reflexive and

#*(t) = Ax*(t) + Bu*(t) a.e on [0,t"],
which impliesM (¢) is well defined. Since:*(-) may not be differentiable in every point &f, ¢*], we

will use a limit process to prov&/ (t*) > 0.

It is clear thatr*(t*) ¢ K (1) if 0 < t; < t*. Thus, by Theorem 6.3 of [4] thereiigt;) € X*, with
[In(t1)[| = 1 and

0< inf [lo*(t) —a| = inf (n(tr),z*(t") —z). (2.3)
z€K (t1) €K (t1)

SinceK (t1) is weakly compact, there is(t;) € K (¢;) such that

0< inf [la*(t) —af = (n(t1), 2" () — z(tr)). (2.4)
€K (t1)
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From (2.3) and (2.4) we get
(n(t1),x —a*(t1)) <0 forevery z e K(t).

Thusn(t,) separates™(t*) from K (¢;) atz(t;) € K(t1).

This implies that
(n(tr), z*(t*) —x(t1)) >0 and (n(t1),z —=x(t1)) <0, =z € K(t) (2.5)
Now, we will prove that there ist; € (¢,¢*) such that{n(t1),#(t1)) > 0. Otherwise,
(nt),&* (1) <O t€ [t
wheneveri*(t) exist on[0, t*].

Sincex*(-) is absolutely continuous,

/t (n(t2), & (8))dt < 0 = (n(t1), 2*(t*) — 2* (1)) < 0

which implies

0< <"7(t1),l’*(7§*) — l’(tl)> — <77(7f1),$*(t*) _ ZL'*(tl)>
£ (nltn)at (0) — 2(t)) <0

which contradicts (2.5).

In this way we can choose a sequence
O<ti<ti<to<ty< - <t,<t,<---<t*
with ||n(t,)|| = 1, for all n, and satisfying
(n(ty), " (tn)) > 0 <= (n(ty), Az*(t,) + Bu*(t,) > 0. (2.6)

Sincel/ weakly compact, and (¢) is weakly compact and uniformly bounded fdr < ¢ < ¢*, we can

suppose:
w — nllrrgou*(An) =uecl, w — nhiléo”(t") = n(t*) (2.7)

and
lim ((tn),z(tn)) = a € R. (2.8)

n)—oo



The Transversality Condition for Infinite Dimensional CaniSystems. 31

Consider the hyperplarié(t*) given by
(t*) = {z € X : (n(t*),z — a*(t*)) = 0}.
Claim. II(¢t*) separates*(t*) and K (t*). In fact,
(n(t*),z —a*(t*)) <0, Vze K(t).
Otherwise, there isy € K (t*) such that
(n(t*), zo — 2*(t*)) > 0. (2.9)
Since by (2.5)
(n(tn), a*(t) —2(ta)) 20 n=1,2,--;
then, by inequality
(ntn), 2" () — x(tn)) < [l2* () — 2" (ta),
we get
Tim (y(tn), 2(tn)) = (n(t), 2" ().

Since lim h(K(t,), K(t*)) = 0, whereh denotes the Hausdorff metric (see [1]), there is a sequence
{Zn} C K(tn),n=1,2,--- with lim ||Z,, — z¢|| = 0 and by (2.9) we get

(N(tn),Tn —x(ty)) <0 n=1,2---. (2.10)
But, however
nh_fgo<77(tn),§n - $(tn)> = nlingo(@(h)’fn - 330>

+ (ntn), wo) — (ntn), (tn)))
(n(*), mo — a*(t)) > 0,

which is a contradiction with (2.10). S6(¢*) separates*(¢t*) and K (t*).

SinceA is closed, our hypothesis together with Theorem 11.2.6 diritply

in
Az*(t,) = AS(tp)zo + AS(t,) S(—s)Bu*(s)ds
0
bn
= S(tp)Azo + S(t,) S(—s)ABu*(s)ds
0
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which implies that

lim Az*(t,) = S(t*)Azg+ S(t*) /t* S(—s)ABu*(s)ds
0

= Az*(t").

Hence, by taking limit in (2.6) we obtaif/ (t*) > 0.

The proof of Corollary 2.4 and Theorem 2.5 are similar to pafdCorollary and Theorem 18 from
[5], pages 131 and 132, respectively.

Corollary 2.4 1If A is a bounded operator and € C(t*) is an extremal control, then

M(t) = Tecg(n(t),Aw(t)—FB@

= (n(t), Az(t) + Bu(t)) a.eon [0,t"]. (2.11)

is well defined and constant.

Proof SinceA is a bounded operatoR)(A) = X andS(t) = exp(tA), then the hypothesis of Theorem
5.3 of [1] are satisfied. Therefor®/ (-) is well defined and it is absolutely continuous, andAgois
differentiable almost every where ¢ ¢*]. We will estimate the derivative o¥/(¢) att = 7, if it exists.
Supposer > 7. Then

M(ry) — M(my) (n(r2), Ax(72) + Bu(r1)) — (n(r1), A(11) + Bu(r1))
To — T1 - To — T1
= (n(r), AQE(TZ — f1(71)> + <?7(72 — Zl(ﬁ) , Az (7))
n(r2) —n(m)
+ <ﬁ,3ﬂ(7’1)>

Without loss generality we can suppose thét,;) exists. Ifz* € X*\{0} satisfies the equation(t) =
exp(—A*t)z*, then

N(t) = —A"exp(—A*t)z* = —A*n(t).

Thus, by taking limit ag, — 71, we have

aM
™

Y

<77(7‘1 ), Az (1 > <77( A;L'(Tl)> + <7'7(7'1), Bu(ﬁ)>
= (n(n), A(Az(r1) + Bu(m))) — (A*n(n1), Az(11))
— (A*n(m), Bu(m1)) = 0.

. : dM :
Similar computation shows thath(ﬁ) < 0. Consequently M is constant ¢i ¢*].
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The following theorem prove that, under normality condaispthe Maximum Principle is sufficient
for optimality, provided that the optimal control existsdas the unique extremal control which satisfies
the transversality condition.

Theorem 2.5 Let A be a bounded linear operator such that the following cond#i are satisfied:
a) The system is normal for> 0.
b) G is a convex and weakly compact.

c)Ift > 0,u e C(t) andz,(t) € G, then there exists a contral such thatr(t) € G with ¢ > ¢ and

u is not extremal for anyt > 7.

If w; € C(t1), ug € C(ty) satisfies the transversality conditions, thgn= t, = t* anduy(t) =
ui(t) a.eon [0,¢*]. In particular u; = «* in the unique extremal control.

Proof Consider first the case; = t5. Since the system is normdk (¢) is strictly convex (see [1]).
Then, by the transversality condition, there is a hypemplanwhich separate& (¢ ) andG.

So, bothz, (1) andzy(t2) belong todG. Hencer (t1), z2(t2) € K (t1)NIL. SinceK (¢;) is strictly
convex,z(t1) = x2(t2). Applying again the normality condition, we conclude that

ui(t) =uz(t) a.eon [0,t].

Suppose now; < ty, by the transversality condition there is a hyperplane rseipgy K (t2) andG, and
by hypothesis (c) K (t2) N G # () which is a contradiction.

3 Applications

In this section we shall consider the optimal control prablgoverned by the wave equation

yuw — Ay =u(t,z), € Q, teR

y=0, on R x9N,

y(O,ZL') = y0($)7 yt(()»x) = yl(m)> T € Qa
Jult, e <1, teR,

(3.1)

where the distributed contral € L2(0,¢;; L?(£2)). We wish to steer the initial statgy, y1) to the origin
in minimal time. The system (3.1) can be written as an abissemnd order equation in the Hilbert space
X = L?(Q). But before that, we shall consider the following propertié the operator-A.
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Let X = L%*(Q) and consider the linear unbounded operator D(A) C X — X defined by
Ap = —A¢, where

D(A) = H}(Q) N H*(Q). (3.2)

The operatord has the following very well known properties, the spectruniaonsists of only eigen-
values

0< A <A< < Aj— 00,

each one with multiplicityy; equal to the dimension of the corresponding eigenspace.

a) There exists a complete orthonormal et} of eigenvectors ofd.

b) For allz € D(A) we have

Al’:i/\j

j=1 k=

2]

<& bk > k=D NE)E, (3.3)
1 7j=1

where< -, - > is the inner product iX and

Vi
Biz = <&k > b (3.4)
k=1
So,{E;} is a family of complete orthogonal projectionsihandz = " Ejz, = € X.
=1

c) — A generates an analytic semigrofyp 4t} given by

e Ay = Z e_)‘ftij. (3.5)
j=1

d) The fractional powered spac&g are given by:
X' =D(A) ={xeX: > (A)7|Em|* <o}, r>0,
j=1

with the norm
1/2
o0

lzllr = 1472]l = § AT IBs«l? @€ X7,
j=1

and

A’z =Y N Ejx. (3.6)
j=1
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Also, forr > 0 we defineZ, = X" x X, which is a Hilbert Space with norm given by

0]

1
= ([lwll? + [[v]?)>.

Z
y' = —Ay + u(t
y(0) =yo, ¥(0)=u (3.7)
lu(t)| <1,

where the operator A is the Laplacian operator defined above.

Using the change of variablgs = v, the second order equation (3.7) can be written as a first eydéem
of ordinary differential equations in the Hilbert spage= 7, , = X'/? x X as

2/ =Az+ Bu(t),z € Z

2(0) = zo, (3.8)
lu(t)] <1,
where
|y |y 10 - 0 Ix
v (2] (- [8) [ 5 5] e

A is an unbounded linear operator with domamA) = D(A) x X andu € L?(0,7,U) with U = X.

The proof of the following theorem follows from Theorem 3rarh [6] by puttinge = 0 andd = 1.

Theorem 3.1 The operatotA4 given by (3.9), is the infinitesimal generator of a strongintinuous semi-
group {S(t) }+er given by

S(t)z = ZeAjtsz, z€Z, t>0 (3.10)
j=1

where{P; } ;> is a complete family of orthogonal projections in the HilbspaceZ given by

Pj = diag[Ej,Ej], j >1 (311)
and
0 1
R; = { } , Aj=R;P; t>1. (3.12)
- 0
Note that
0 -1
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Moreover e?i® = efti*P; and the eigenvalues dt; are/\;i and—./\;i.

Now
eflit = {cos(\/ Nt)I + ﬁ sin(y/\;t)R;}
_ [ coS(\/Tjt) Sm(\%\—?t) ]
—/\]%sin(\//\ijt) cos(y/Ajt)
and

N

iR}

|: COS(\/)\_jt) _sin(\/\i\_?_jt) ] |
)\;sin(\/)\_jt) cos(y/Ajt)

et = {cos(/ M) +

Hence, the adjoint equation is

”;} = —A*%
where
* 0 _IX
=0

is infinitesimal generator of strongly continuous grdufff (¢) }+cr give by

> *
_R* X
S*(—s)z* = E 1e 1°Pj x*, = { w% } EX% + X.
iz

Therefore, a solution of the adjoint equation such f{é) = x* is given by
n(s) = T*(—s)x".

Now, we shall apply Theorem (2.1) to find the optimal optimaticol:

<77(8)’Bu>x%xx - < [ Z; } ’ [ 2 } >X%xX - <772(8),U>X < lIm2(s)llx-

Hence, if we put

)

n2(t,€) . '
u(t,€) = { Tk it |2t )|lx #0
! it |l (,) | x =0

then

maz(n(s), Bv) < |[n2(s)llx = (n(s), Bi(s)), ae on [0,4].



The Transversality Condition for Infinite Dimensional CaniSystems. 37

On the other hand, we known that
n(s) =T*(=s)a* =Y e f*Pa,
j=1

therefore

(e o]

na(s,z) = Z(_/\j% sin(y/;8) < ¢j, 7% > ¢j(x) + cos(y/\js) < ¢, 75 > ¢;()).

i=1
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