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Resumen

En este trabajo, se estudia la existencia de puntos fijos para las asignaciones definidas en total,
(secuencialmente compacto) cono espacio métrico, (M, d) que satisface una desigualdad de
contracción general de depender de otra función
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Abstract

In this paper, we study the existence of fixed points for mappings defined on complete,
(sequentially compact) cone metric space, (M, d) satisfying a general contractive inequality
depend on another function
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1 Introduction

The concept of cone metric space was introduced by Huan Long - Guang and Zhang Xian [2],

where the set of real numbers is replaced by an ordered Banach space. They introduced the basic

definitions and discuss some properties of convergence of sequences in cone metric spaces.

They also obtained various fixed point theorems for contractive single - valued maps in such

spaces. Subsequently, some other mathematicians, ([4],[5],[6],. . . ), have generalized the results of

Guang and Zhang [2].

Recently, A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh [1] introduced a new class

of contractive mappings: T−contraction and T−contrative extending the Banach’s contraction

principle and the Edelstein’s fixed point theorem, (see [3]) respectively.
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The purpose of this paper is to analyze the existence of fixed points for a self-map S defined

on a complete, (sequentially compact) cone metric space, (M,d) satisfying the T−contraction

and T−contractive condition.

Our results extend some fixed points theorems of [1] and [2].

2 Preliminary facts

Consistent with Guang and Zhang [2], we recall the definitions of cone metric space, the notion

of convergence and other results that will be needed in the sequel.

Let E be a real Banach space and P a subset of E. P is called a cone if and only if:

P1.- P is nonempty, closed and P 6= {0};

P2.- a, b ∈ R, a, b ≥ 0 and x, y ∈ P ⇒ ax + by ∈ P ;

P3.- x ∈ P and −x ∈ P ⇒ x = 0 ⇔ P ∩ (−P ) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤ on E with respect to P by

x ≤ y , if and only if y − x ∈ P.

We shall write x < y to indicate that x ≤ y but x 6= y, while x ≪ y will stands for y − x ∈ Int P,

where int P denotes the interior of P. The cone P ⊂ E is called normal if there is a number

K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y, implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying inequality above is called the normal constant of P .

The cone P is called regular if every increasing sequence which is bounded from above is

convergent. That is, if (xn) is a sequence such that

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . ≤ y

for some y ∈ E, then there is x ∈ E such that ‖xn − x‖ −→ 0, (n → ∞).

In the following we always suppose E is a Banach space, P is a cone with int P 6= ∅ and ≤ is

a partial ordering with respect to P .
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Definition 2.1 ([2]) Let M be a nonempty set. Suppose the mapping d : M×M −→ E satisfies:

d1.- 0 < d(x, y) for all x, y ∈ M and d(x, y) = 0 if and only if x = y;

d2.- d(x, y) = d(y, x) for all x, y ∈ M ;

d3.- d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ M.

Then d is called a cone metric on M and (M,d) is called a cone metric space.

It is obvious that cone metric spaces generalize metric spaces.

Example 2.2 1. ([2, Example 1]) Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, M = R

and d : M × M −→ E such that

d(x, y) =

(

|x − y|, α|x − y|
)

where α ≥ 0 is a constant. Then (M,d) is a cone metric space.

2. Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂ E, M = R and d : M × M −→ E such that

d(x, y) = |x − y|ϕ

where ϕ(t) = et ∈ E. Then (M,d) is a cone metric space.

Definition 2.3 ([2]) Let (M,d) be a cone metric space. Let (xn) be a sequence in M. Then:

(i) (xn) converges to x ∈ M if, for every c ∈ E, with 0 ≪ c there is n0 ∈ N such that for all

n ≥ n0,

d(xn, x) ≪ c.

We denote this by lim
n→∞

xn = x or xn −→ x, (n → ∞).

(ii) If for any c ∈ E, there is a number n0 ∈ N such that for all m,n ≥ n0

d(xn, xm) ≪ c,

then (xn) is called a Cauchy sequence in M ;

(iii) (M,d) is a complete cone metric space if every Cauchy sequence is convergent in M.
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The following lemma will be useful for us to prove our main results.

Lemma 2.4 ([2]) Let (M,d) be a cone metric space, P a normal cone with normal constant K

and (xn) is a sequence in M.

(i) (xn) converges a x ∈ M if and only if

lim
n→∞

d(xn, x) = 0;

(ii) If (xn) is convergent then it is a Cauchy sequence;

(iii) (xn) is a Cauchy sequence if and only if lim
n,m→∞

d(xn, xm) = 0;

(iv) If xn −→ x and xn −→ y, (n → ∞) then x = y;

(v) If xn −→ x and (yn) is another sequence in M such that yn −→ y, then d(xn, yn) −→ d(x, y).

Definition 2.5 Let (M,d) be a cone metric space. It for any sequence (xn) in M, there is a

subsequence (xni
) of (xn) such that (xni

) is convergent in M. Then M is called a sequentially

compact cone metric space.

Next Definition and subsequent Lemma are given in [1] in the scope of metric spaces, here

we will rewrite it in terms of cone metric spaces.

Definition 2.6 Let (M,d) be a cone metric space, P a normal cone with normal constant K and

T : M −→ M. Then

(i) T is said to be continuous if lim
n→∞

xn = x, implies that lim
n→∞

Txn = Tx for every (xn) in M ;

(ii) T is said to be sequentially convergent if we have, for every sequence (yn), if T (yn) is

convergent, then (yn) also is convergent;

(iii) T is said to be subsequentially convergent if we have, for every sequence (yn), if T (yn) is

convergent, then (yn) also is convergent.

Lemma 2.7 If (M,d) be a sequence compact cone metric space, then every function T : M −→
M is subsequentially convergent and every continuous function T : M −→ M is sequentially

convergent.
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3 Main results

In this section, first we introduce the notions of T−contraction, T−contrative and then we extend

the Banach Contraction Principle and Edelstein’s fixed point Theorem given in [1] and [2].

Definition 3.1 ([1]) Let (M,d) be a cone metric space and T, S : M −→ M two functions. A

mapping S is said to be a T−contraction if there is a ∈ [0, 1) constant such that

d(TSx, TSy) ≤ ad(Tx, Ty) (3.1)

for all x, y ∈ M.

Example 3.2 Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂ E, M = R and d(x, y) = |x − y|et,

where et ∈ E. Then (M,d) is a cone metric space. We consider the functions T, S : M −→ M

defined by Tx = e−x and Sx = 2x + 1. Then

(i) It is clear that S is not a contraction;

(ii) S is a T−contraction. In fact,

d(TSx, TSy) = |TSx − TSy|et

=
1

e
|e−x − e−y||e−x − e−y|et

≤ 2

e
|e−x − e−y|et =

2

e
d(Tx, Ty).

The next result extend the Theorem 1 of Guang and Zhang [2], and Theorem 2.6 of Beiran-

vand, Moradi, Omid and Pazandeh [1].

Theorem 3.3 Let (M,d) be a complete cone metric space, P be a normal cone with normal

constant K, in addition let T : M −→ M be an one to one and continuous function and S :

M −→ M a T−contraction continuous function. Then

1. For every x0 ∈ M ,

lim
n→∞

d(TSnx0, TSn+1x0) = 0;

2. There is y0 ∈ M such that

lim
n→∞

TSnx0 = y0;
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3. If T is subsequentially convergent, then (Snx0) has a convergent subsequence;

4. There is a unique z0 ∈ M such that

Sz0 = z0;

5. If T is a sequentially convergent, then for each x0 ∈ M the iterate sequence (Snx0) converges

to z0.

Proof: For every x1, x2 ∈ M,

d(Tx1, Tx2) ≤ d(Tx1, TSx1) + d(TSx1, TSx2) + d(TSx2, Tx2)

≤ d(Tx1, TSx1) + ad(Tx1, Tx2) + d(TSx2, Tx2)

so,

d(Tx1, Tx2) ≤
1

1 − a
[d(Tx1, TSx1) + d(TSx2, Tx2)] . (3.2)

Now, choose x0 ∈ M and define the Picard iteration associated to S, (xn) given by xn+1 = Sxn =

Snx0, n = 0, 1, 2, . . .

d(Txn, Txn+1) = d(TSnx0, TSn+1x0) ≤ ad(TSn−1x0, TSnx0)

hence,

d(TSnx0, TSn+1x0) ≤ and(Tx0, TSx0). (3.3)

Since P is a normal cone with normal constant K, we get

‖d(TSnx0, TSn+1x0)‖ ≤ anK‖d(Tx0, TSx0)‖

which implies that

lim
n→∞

d(TSnx0, TSn+1x0) = 0. (3.4)

therefore, for m,n ∈ N with m > n, by (3.2) and (3.3) we have

d(Txn, Txm) = d(TSnx0, TSmx0)

≤ 1

1 − a

[

d(TSnx0, TSn+1x0) + d(TSm+1x0, TSmx0)

]

≤ 1

1 − a

[

and(Tx0, TSx0) + amd(Tx0, TSx0)

]

,
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hence,

d(TSx0, TSmx0) ≤
an + am

1 − a
d(Tx0, TSx0). (3.5)

Taking norm to inequality above, we obtain that

‖d(TSnx0, TSmx0)‖ ≤ an + am

1 − a
K‖d(Tx0, TSx0)‖.

Consequently,

lim
n,m→∞

d(TSnx0, TSmx0) = 0. (3.6)

Which prove 1. On the other hand, (3.6) implies that (TSnx0) is a Cauchy sequence in M. By

the completeness of M , there is y0 ∈ M such that

lim
n→∞

TSnx0 = y0. (3.7)

Proving in this way assertion 2. Now, if T is subsequentially convergent, then (Snx0) has a

convergent subsequence. So, there exist z0 ∈ M and (ni)
∞

i=1 such that

lim
i→∞

Snix0 = z0, (3.8)

since T is continuous we have,

lim
i→∞

TSnix0 = Tz0 (3.9)

from equality (3.7) we conclude that

Tz0 = y0. (3.10)

Since S is continuous, (and also by using (3.8)) then

lim
i→∞

Sni+1x0 = Sz0

as well as,

lim
i→∞

TSni+1x0 = TSz0. (3.11)

Again by (3.7), the following equality holds,

lim
i→∞

TSni+1x0 = y0
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hence, TSz0 = y0 = Tz0. Since T is injective,then Sz0 = z0, so S has a fixed point. Therefore

assertion 3. is proved. On the other hand, since T is one to one and S is a T−contraction, S has

a unique fixed point. i.e., conclusion 4.

Finally, if T is sequentially convergent, (Snx0) is convergent to z0, that is,

lim
n→∞

Snx0 = z0,

proving in this way conclusion 5. which finishes the proof of the theorem. �

Corollary 3.4 ([2], Theorem 1) Let (M,d) be a complete cone metric space P ⊂ E be a nor-

mal cone with normal constant K. Suppose S : M −→ M is a contraction function then S has a

unique fixed point in M and for any x0 ∈ M (Snx) converges to the fixed point.

Now, if we take E = R+ in Theorem 3.3 we obtain the following

Corollary 3.5 (Theorem 2.6, [1]) Let (M,d) be a complete metric space and T : M −→ M be

an one to one, continuous and subsequentially convergent mapping. Then for every T−contraction

continuous function S : M −→ M has a unique fixed point. Moreover, if T is sequentially

convergent, then for each x0 ∈ M, the sequence (Snx0) converge to the fixed point of S.

If we take E = R and Tx = x in the Theorem 3.3 then we obtain the Banach’s Contraction

Principle

Corollary 3.6 Let (M,d) be a complete metric space and S : M −→ M is a contraction mapping.

Then S has a unique fixed point.

The following result is the localization of the Theorem 3.3.

Theorem 3.7 Let (M,d) be a complete cone metric space, P ⊂ E be a normal cone with normal

constant K and T : M −→ M be an injective, continuous and subsequentially mapping. For

c ∈ E with 0 ≪ c, x0 ∈ M, set

B(Tx0, c) = {y ∈ M : d(Tx0, y) ≤ c}.

Suppose S : M −→ M is a T−contraction continuous mapping for all x, y ∈ B(Tx0, c) and

d(TSx0, Tx0) ≤ (1 − a)c. Then S has a unique fixed point in B(Tx0, c).

Proof: We only need to prove that B(Tx0, c) is complete and TSx ∈ B(Tx0, c) for all Tx ∈
B(Tx0, c). Suppose that (yn) is also a Cauchy sequence in M. By the completeness of M, there

exist y ∈ M such that yn −→ y, (n → ∞).
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Thus, we have

d(Tx0, y) ≤ d(yn, Tx0) + d(yn, y) ≤ c + d(yn, y)

since yn −→ y, (n → ∞), d(yn, y) −→ 0. Hence d(Tx0, y) ≤ c and y ∈ B(Tx0, c). Therefore,

B(Tx0, c) is complete.

On the other hand, for every Tx ∈ B(Tx0, c),

d(Tx0, TSx) ≤ d(TSx0, Tx0) + d(TSx0, TSx)

≤ (1 − a)c + ad(Tx0, Tx) ≤ (1 − a)c + ac = c.

I.e., TSx ∈ B(Tx0, c), and the proof is done. �

Corollary 3.8 Let (M,d) be a complete cone metric space, P ⊂ E be a normal cone with normal

constant K and T : M −→ M be an one to one, continuous and subsequentially convergent

mapping. Let suppose that S : M −→ M is a mapping such that, Sn is a T−contraction for some

n ∈ N and furthermore a continuous function. Then S has a unique fixed point in M.

Proof: From Theorem 3.3, we have that Sn has a unique fixed point z0 ∈ M, that is, Snz0 = z0.

But Sn(Sz) = S(Snz) = Sz, so S(z) is also fixed point of Sn. Hence Sz = z, i.e., z is a fixed

point of S. Since the fixed point of S is also fixed point of Sn, then the fixed point of S is unique.

�

Example 3.9 Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂ E,

M = [1,+∞) and d : M × M −→ E defined by d(x, y) = |x − y|et, where ϕ(t) = et ∈ E.

Then (M,d) is a complete cone metric space. Now we will consider the following functions,

TS : M −→ M defined by Tx = 1 + ln x and Sx = 2
√

x.

It is evident that S is not a contraction mapping, but it is a T−contraction because,

d(TSx, TSy) = |TSx − TSy|et =
1

2
| ln x − ln y|et

= |Tx − Ty|et ≤ 1

2
d(Tx, Ty).

Also, T is one to one, continuous and subsequentially convergent. Therefore, by Theorem 3.3 T

has a unique fixed point, z0 = y.

The following example shows that we can not omit the subsequentially convergence of the

function T in the Theorem 3.3 (5).
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Example 3.10 Consider the example 3.2. Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0}, M = R

and d : M × M −→ E defined by d(x, y) = |x − y|et where et ∈ E. Then (M,d) is a complete

cone metric space. Let T, S : M −→ M be two functions defined by Tx = e−x and Sx = 2x + 1.

It is clear that S is a T−contraction, but T is not subsequentially convergent, because Tn →
0, (n → ∞) but the sequence (n) has not any convergent subsequence and S has not a fixed point.

�

Definition 3.11 Let (M,d) be a cone metric space and T, S : M −→ M two functions. A

mapping S is said to be a T−contractive if for each x, y ∈ M such that Tx 6= Ty then

d(TSx, TSy) < d(x, y).

It is clear that every T−contraction function is T−contractive, but the converse is not true.

Example 3.12 1. Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂ E, M = [1,+∞) and

d : M ×M −→ E defined by d(x, y) = |x−y|et, where et ∈ E. Then (M,d) is a cone metric

space.

Let T, S : M −→ M be two functions defined by Tx = x and Sx =
√

x. Then:

i.- S is a T−contractive function;

ii.- S is not a T−contraction mapping.

2. Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂ E, M = [0, 1/2] and d : M × M −→ E

defined by d(x, y) = |x − y|et, where et ∈ E. Obviously (M,d) is a cone metric space and

the function S : M −→ M defined by Sx =
x2

√
2

is not contractive. If T : M −→ M is

defined by Tx = x2, then S is T−contractive, because:

d(TSx, TSy) = |TSx − TSy|et =

∣

∣

∣

∣

x4

2
− y4

2

∣

∣

∣

∣

et =
1

2
|x2 + y2||Tx − Ty|et

< |Tx − Ty|et = d(Tx, Ty).

�

The following result extend the Theorem 2 of [1] and Theorem 2.9 of [2].

Theorem 3.13 Let (M,d) be a compact cone metric space, P be a normal cone with normal con-

stant K and T, S : M −→ M functions such that T is injective, continuous and S is T−contractive

mapping. Then,
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i.- S has a unique fixed point;

ii.- For any x0 ∈ M the sequence iterates (Snx0) converges to the fixed point of S.

Proof: In first we are going to show that S is a continuous function. Let lim
n→∞

xn = x, we want

to prove that lim
n→∞

Sxn = Sx. Since S is T−contractive, we get

d(TSxn, TSx) ≤ d(Txn, Tx)

so,

‖d(TSxn, TSx)‖ ≤ K‖d(Txn, Tx)‖.

Now, since T is continuous, we have

lim
n→∞

‖d(TSxn, TSx)‖ = 0

also that,

lim
n→∞

d(TSxn, TSx) = 0

therefore,

lim
n→∞

TSxn = TSx. (3.12)

Let (Sxni
) be an arbitrary convergent subsequence of (xn). There is a y ∈ M such that

lim
i→∞

Sxni
= t.

By the continuity of T we infer,

lim
i→∞

TSxni
= Ty. (3.13)

By (3.12) and (3.13) we conclude that TSx = Ty. Since T is one to one then, Sx = y. Hence,

every convergence subsequence of (Sxn) converge to Sx. From the fact M a compact cone metric

space, we arrive to the conclusion that S is a continuous function.

Now, because of T and S are continuous functions, then the function ϕ : M −→ P defined

by ϕ(y) = d(TSy, Ty), for all y ∈ M , is continuous on M and from the compactness of M , the

function ϕ attains its minimum, say at x ∈ M.

If Sx 6= x, then

ϕ(Sx) = d(TS2x, TSx) < d(TSx, Tx) = ϕ(x)
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which is a contradiction, So Sx = x proving in this form part i. Choose x0 ∈ M and set

an = d(TSnx0, Tx). Since

an+1 = d(TSn+1x0, Tx) = d(TSn+1x0, TSx) ≤ d(TSnx0, Tx) = an,

then (an) is a non increasing sequence of non negative real numbers and so it has a limit, say a,

that is

a = lim
n→∞

an or lim
n→∞

d(TSnx0, Tx) = a.

By compactness, (TSnx0) has a convergent subsequence (TSnix0) i.e.,

lim
i→∞

TSnix0 = z, (3.14)

from the sequentially convergence of T , there exists w ∈ M such that

lim
i→∞

Snix0 = w

so,

lim
i→∞

TSnix0 = Tw. (3.15)

By (3.14) and (3.15), Tw = z. Then d(Tw, Tx) = a. Now we are going to show that Sw = x. If

Sw 6= x, then

a = lim
n→∞

d(TSnx0, Tx) = lim
i→∞

d(TSnix0, Tx) = d(TSw, Tx)

= d(TSw, TSx) < d(Tw, Tx) = a

which is a contradiction. In this way, we get that Sw = x and hence,

a = lim
i→∞

d(TSni+1x0, Tx) = d(TSw, Tx) = 0

Therefore, lim
n→∞

TSnx0 = Tx. Finally condition T sequentially convergent implies lim
n→∞

Snx0 = x,

which finalize the proof. �

If we take E = R and Tx = x in Theorem 3.13, we obtain the Edelstein’s fixed point theorem

(see, e.g., [3]).

Example 3.14 We must recall example 3.12 (2). Let E = (C[0,1], R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂
E, M = [0, 1] and d(x, y) = |x− y|et, et ∈ E. It is clear that M is a compact cone metric space.

The functions T, S : M −→ M defined by Tx = x2 and Sx =
x2

√
2

satisfy that T is injective and

continuous whereas S is T−contractive. So by Theorem 3.13 we have that S has a unique fixed

point, x = 0. �
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