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Abstract

In this paper we find a variational constant formula for the following system of functional
partial parabolic equations



∂u(t, x)

∂t
= D∆u + Lut + f(t, x), t > 0, u ∈ R

n

∂u(t, x)

∂η
= 0, t > 0, x ∈ ∂Ω

u(0, x) = φ(x)

u(s, x) = φ(s, x), s ∈ [−τ, 0), x ∈ Ω

where Ω is a bounded domain in IRN , D is a n× n non diagonal matrix whose eigenva- lues
are semi-simple with non negative real part and f : IR× Ω → IRn is a smooth function. The
standard notation ut(x) defines a function from [−τ, 0] to IRn (with x fixed) by ut(x)(s) =
u(t+ s, x),−τ ≤ s ≤ 0. Here τ ≥ 0 is the maximum delay, which is suppose to be finite. We
assume that the operator L : L2([−τ, 0];Z) −→ Z is a bounded linear(linear and continuous)
with Z = L2(Ω) and φ0 ∈ Z, φ ∈ L2([−τ, 0];Z).

Resumen

En este artículo encontramos una fórmula de variación de parámetro para el siguiente sistema
de ecuaciones parabólicas parciales funcionales:





∂u(t, x)

∂t
= D∆u+ Lut + f(t, x), t > 0, u ∈ R

n

∂u(t, x)

∂η
= 0, t > 0, x ∈ ∂Ω

u(0, x) = φ(x)

u(s, x) = φ(s, x), s ∈ [−τ, 0), x ∈ Ω

donde Ω es un dominio acotado en IRN , D es una matriz n × n no diagonal, cuyos au-
tovalores son semisimples con parte real no negativa y f : IR × Ω → IRn es una función
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suave. La notación estandar ut(x) define una función de [−τ, 0] en IRn (con x fijo) dada por
ut(x)(s) = u(t+ s, x),−τ ≤ s ≤ 0. Aquí τ ≥ 0 es el máximo retardo, el cual se supone finito.
Se asume que el operador L : L2([−τ, 0];Z) −→ Z es lineal y acotado con Z = L2(Ω) y
φ0 ∈ Z, φ ∈ L2([−τ, 0];Z).

key words. functional partial parabolic equations, variation constant formula, strongly conti-

nuous semigroups.
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1 Introduction

In this paper we find a variational constant formula for the following system of functional partial

parabolic equations





∂u(t, x)

∂t
= D∆u+ Lut + f(t, x), t > 0, u ∈ IRn

∂u(t, x)

∂η
= 0, t > 0, x ∈ ∂Ω

u(0, x) = φ(x)

u(s, x) = φ(s, x), s ∈ [−τ, 0), x ∈ Ω

(1.1)

where Ω is a bounded domain in IRN , D is a n × n matrix non diagonal whose eigenvalues are

semi-simple with non negative real part and f : IR×Ω → IRn is an smooth function. The standard

notation ut(x) defines a function from [−τ, 0] to IRn (with x fixed) by ut(x)(s) = u(t+ s, x),

− τ ≤ s ≤ 0. Here τ ≥ 0 is the maximum delay, which is suppose to be finite. We assume the

operator L : L2([−τ, 0];Z) −→ Z is linear and bounded with Z = L2(Ω) and φ0 ∈ Z, φ ∈

L2([−τ, 0];Z).

The variational constant formula plays an important role in the study of the stability, existence

of bounded solutions and the asymptotic behavior of non linear ordinary differential equations.

For the following finite dimensional semi-linear ordinary differential equations of the type:
{
x′(t) = A(t) + f(t, x), x ∈ IRn

x(0) = x0,
(1.2)

the variation constant formula is well known and is given by

x(t) = Φ(t)x0 +

∫ t

0
Φ(t)Φ−1(s)f(s, x(s))ds
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where Φ(·) is the fundamental matrix of the system

x′(t) = A(t)x. (1.3)

Due to the importance of this formula for semi linear ordinary differential equations, in 1961 the

Russian mathematician Alekseev, V. M. [1], found a formula for the following non linear ordinary

differential equation:

y′(t) = f(t, y) + g(t, y), y(t0) = y0 (1.4)

which is given by

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))g(s, y(s))ds,

where x(t, t0, y0) is the solution of the initial value problem

x′(t) = f(t, x), x(t0) = y0, (1.5)

and

Φ(t, s, ξ) =
∂x(t, t0, y0)

∂y0
.

This formula is used to compare the solutions of (1.4) with solutions of (1.5). In fact, it was used

in [9].

In infinite dimensional Banach spaces Z we have the following general situation. If A is the

infinitesimal generator of strongly continuous semigroup {T (t)}t≥0 in Z and f : [0, β] → Z is a

suitable function, then the solution of the initial value problem

{
z′(t) = Az(t) + f(t), t > 0, z ∈ Z
z(0) = z0,

(1.6)

is given by the variation constant formula

z(t) = T (t)z0 +

∫ t

0
T (t− s)f(s)ds, t ∈ [0,∞). (1.7)

So, any solution of the problem (1.6) is also solution of the integral equation (1.7), but not the

conversely since a solution of (1.7) is not necessarily differentiable. We shall refer to a continuous

solution of (1.7) as a mild solution of problem (1.6); a mild solution is thus a kind of generalized

solution. However, if {T (t)}t≥0 is an analytic semigroup and the function f satisfies the following

Hölder condition

‖f(s) − f(t)‖ ≤ L|s− t|θ, s, t ∈ [0, β],

with L > 0, θ ≥ 1, then the mild solution (1.7) is also solution of the initial value problem (1.6).
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Our work and many others are motivated by the legendary paper du to Borisovic J.U.G and

Turbabin A.S., see [3]; there they found a variational constant formula for the following system

of nonhomogeneous differential equation with delay




z′(t) = Lzt + f(t), t > 0, z ∈ IRn

z(0) = z0,
z(s) = φ(s), s ∈ [−τ, 0),

(1.8)

where f : IR+ → IRn is a suitable function. The standard notation zt defines a function from

[−τ, 0] to IRn by zt(s) = z(t + s),−τ ≤ s ≤ 0. Here τ ≥ 0 is the maximum delay, which is

suppose to be finite. We assume that the operator L : Lp([−τ, 0]; IRn) −→ IRn is linear and

bounded, and z0 ∈ IRn, φ ∈ Lp([−τ, 0]; IRn). Under some conditions they prove the existence and

the uniqueness of solutions for this system and associate to it a strongly continuous semigroup

{T (t)}t≥0 in the Banach space Mp([−τ, 0]; IR
n) = IRn ⊕ Lp([−τ, 0]; IR

n).

Therefore, the systems (1.8) is equivalent to the following systems of ordinary differential equa-

tions in Mp:





dW (t)

dt
= ΛW (t) + Φ(t), t > 0

W (0) = W0 = (z0, φ(·))

(1.9)

where Λ is the infinitesimal generator of the semigroup {T (t)}t≥0 and Φ(t) = (f(t), 0).

Hence, the solution of system (1.8) is given by the variational constant formula o mild solution:

W (t) = T (t)W0 +

∫ t

0
T (t− s)Φ(s)ds. (1.10)

Finally, the formula we found here is valid for those system of PDEs that can be rewritten in

the form ∂
∂tu = D∆u, like damped nonlinear vibration of a string or a beam, thermoplastic plate

equation, etc; for information about this, one can see the paper by Luiz de Oliveira ([12]).

To the best of our knowledge, there are variational constant formulas for reaction diffusion equa-

tions, functional equations and neutral equations [6], but for functional partial parabolic equations

we are not aware of results similar to the one presented here. At the same time, if we change the

Neumann boundary condition by Dirichlet boundary condition, the result follows trivially.

2 Abstract Formulation of the Problem

In this section we choose a Hilbert Space where system (1.1) can be written as an abstract

functional differential equation, to this end, we consider the following hypothesis:
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H1). The matrix D is semi simple (block diagonal) and the eigenvalues di ∈ C of D satisfy

Re(di) ≥ 0 . Consequently, if 0 = λ1 < λ2 < ... < λn −→ ∞ are the eigenvalues of −∆ with

homogeneous Neumann boundary conditions, then there exists a constant M ≥ 1 such that :

‖e−λnDt‖ ≤M , t ≥ 0, n = 1, 2, 3, ...

H2). For all I > 0 and z ∈ L2
loc([−τ, 0);Z) we have the following inequality

∫ t

0
| Lzs | ds ≤M0(t) | z |L2([−τ,t),Z), ∀t ∈ [0, I],

where M0(·) is a positive continuous function on [0,∞).

Consider H = L2(Ω, IR) and 0 = λ1 < λ2 < ... < λn −→ ∞ the eigenvalues of −∆, each one

with finite multiplicity γn equal to the dimension of the corresponding eigenspace. Then :

(i) There exists a complete orthonormal set {φn,k} of eigenvectors of −∆.

(ii) For all ξ ∈ D(−∆) we have

−∆ξ =

∞∑

n=1

λn

γn∑

k=1

< ξ, φn,k > φn,k =

∞∑

n=1

λnEnξ, (2.1)

where < ·, · > is the inner product in H and

Enx =

γn∑

k=1

< ξ, φn,k > φn,k. (2.2)

So, {En} is a family of complete orthogonal projections in H and

ξ =
∞∑

n=1

Enξ, ξ ∈ H.

(iii) ∆ generates an analytic semigroup {T∆(t)} given by

T∆(t)ξ =
∞∑

n=1

e−λntEnξ. (2.3)

Now, we denote by Z the Hilbert space L2(Ω, IRn) and define the following operator

A : D(A) ⊂ Z −→ Z, Aψ = −D∆ψ

with D(A) = H2(Ω, IRn) ∩H1
0 (Ω, IRn).

Therefore, for all z ∈ D(A) we obtain,

Az =
∞∑

n=1

λnDPnz
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and

z =

∞∑

n=1

Pnz, ‖ z ‖2=

∞∑

n=1

‖ Pnz ‖
2, z ∈ Z

where

Pn = diag(En, En, ..., En)

is a family of complete orthogonal proyections in Z.

Consequently, system (1.1) can be written as an abstract functional differential equation in Z:




dz(t)

dt
= −Az(t) + Lzt + f e(t), t > 0

z(0) = φ0

z(s) = φ(s), s ∈ [−τ, 0)

(2.4)

Here f e : (0,∞) −→ Z is a function defined as follows:

f e(t)(x) = f(t, x), t > 0, x ∈ Ω.

3 Preliminaries Results

From now on, we will use the following generalization of lemma 2.1 from [8].

Lemma 3.1 Let Z be a separable Hilbert space, {Sn(t)}n≥1 a family of strongly continuous semi-

groups and {Pn}n≥1 a family of complete orthogonal projection in Z such that:

ΛnPn = PnΛn, n ≥ 1, 2, . . .

where Λn is the infinitesimal generator of Sn.

Define the following family of linear operators

S(t)z =

∞∑

n=1

Sn(t)Pnz, t ≥ 0.

Then:

(a) S(t) is a linear and bounded operator if ‖ Sn(t) ‖≤ g(t), n = 1, 2, ..., with g(t) ≥ 0, continuous

for t ≥ 0.

(b) {S(t)}t≥0 is an strongly continuous semigroup in the Hilbert space Z whose infinitesimal

ge-nerator Λ is given by

Λz =
∞∑

n=1

ΛnPnz, z ∈ D(Λ)
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with

D(Λ) =

{
z ∈ Z /

∞∑

n=1

‖ ΛnPnz ‖2<∞

}

(c) the spectrum σ(Λ) of Λ is given by

σ(Λ) =

∞⋃

n=1

σ(Λ̄n), (3.1)

where Λ̄n = ΛnPn : R(Pn) → R(Pn).

Proof First, from Hille-Yosida Theorem we obtain

Sn(t)Pn = PnSn(t) since ΛnPn = PnΛn.

So, {Sn(t)Pnz}n≥1 is a family of orthogonal vectors in Z. Then

‖ S(t)z ‖2 = 〈S(t)z, S(t)z〉

=

〈
∞∑

n=1

Sn(t)Pnz,

∞∑

m=1

Sm(t)Pmz

〉

=
∞∑

n=1

‖ Sn(t)Pnz ‖
2

≤ (g(t))2
∞∑

n=1

‖ Pnz ‖
2

= (g(t) ‖ z ‖)2

Therefore, S(t) is a bounded linear operator.

Second, we have the following relations:

(i)

S(t)S(s)z =

∞∑

n=1

Sn(t)PnS(s)z

=
∞∑

n=1

Sn(t)Pn

(
∞∑

m=1

Sm(s)Pmz

)

=

∞∑

n=1

Sn(t+ s)Pnz

= S(t+ s)z

(ii)

S(0)z =
∞∑

n=1

Sn(0)Pnz =
∞∑

n=1

Pnz = z
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(iii)

‖ S(t)z − z ‖2 = ‖

∞∑

n=1

Sn(t)Pnz −

∞∑

n=1

Pnz ‖
2

=

∞∑

n=1

‖ (Sn(t) − I)Pnz ‖
2

=

N∑

n=1

‖ (Sn(t) − I)Pnz) ‖
2 +

∞∑

n=N+1

‖ (Sn(t) − I)Pnz ‖2

≤ sup
1≤n≤N

‖ (Sn(t) − I)Pnz ‖
2

N∑

n=1

+ K

∞∑

n=N+1

‖ Pnz ‖
2

where K = sup
0≤t≤1; n≥1

‖ (Sn(t) − I) ‖2≤ (g(t) + 1)2.

Since {Sn(t)}t≥0 (n = 1, 2, ...) is an strongly continuous semigroup and {Pn}n≥1 is a complete

orthogonal projections, given an arbitrary ǫ > 0 we have, for some natural number N and

0 < t < 1, the following estimates:

∞∑

n=N+1

‖ Pnz ‖2<
ǫ

2K
, sup

1≤n≤N
‖ (Sn(t)−I)Pnz ‖2≤

ǫ

2N
and ‖ S(t)z−z ‖2 <

ǫ

2N

N∑

n=1

+K
ǫ

2K
< ǫ

Hence, S(t) is an strongly continuous semigroup.

Let Λ be the infinitesimal generator of this semigroup. By definition, we have for all z ∈ D(Λ)

Λz = ĺım
t−→0+

S(t)z − z

t
= ĺım

t−→0+

∞∑

n=1

(Sn(t) − I)

t
Pnz.

Next,

PmΛz = Pm

(
ĺım

t−→0+

∞∑

n=1

(Sn(t) − I)

t
Pnz

)
= ĺım

t−→0+

Sm(t) − I

t
Pmz = ΛmPmz

So,

Λz =

∞∑

n=1

PnΛz

=
∞∑

n=1

ΛnPnz

and,

D(Λ) ⊂

{
z ∈ Z/

∞∑

n=1

‖ ΛnPnz ‖2<∞

}

On the other hand, if we suppose that z ∈

{
z ∈ Z/

∞∑

n=1

‖ ΛnPnz ‖2<∞

}
, then

∞∑

n=1

ΛnPnz = y ∈ Z



Variation Constant Formula for Functional Partial Parabolic Equations 45

Next, making zn =
n∑

k=1

Pkz we obtain that

ĺım
t−→0+

S(t)zn − zn
t

=

n∑

k=1

PkΛkz <∞.

Therefore, zn ∈ D(Λ) and Λzn =
n∑

k=1

PkΛkz.

Finally, if zn −→ z when n −→ ∞ and ĺım
t−→0+

Λzn = y, then, since Λ is closed, we obtain

that z ∈ D(Λ) and Λz = y.

To complete the proof of the lemma, we shall prove part (c). It is equivalent to prove the

following:
∞⋃

n=1

σ(Λ̄n) ⊂ σ(Λ) and σ(Λ) ⊂

∞⋃

n=1

σ(Λ̄n).

To prove the first part, We shall show that ρ(Λ) ⊂
⋂∞

n=1 ρ(Λ̄n). In fact, let λ be in ρ(Λ). Then

(λ− Λ)−1 : Z → D(Λ) is a bounded linear operator. We need to prove that

(λ− Λ̄m)−1 : R(Pm) → R(Pm)

exists and is bounded for m ≥ 1. Suppose that (λ− Λ̄m)−1Pmz = 0. Then

(λ− Λ)Pmz =
∞∑

n=1

(λ− Λn)PnPmz

= (λ− Λm)Pmz = (λ− Λ̄m)Pmz = 0.

Which implies that, Pmz = 0. So, (λ− Λ̄m) is one to one.

Now, given y in R(Pm) we want to solve the equation (λ− Λ̄m)w = y. In fact, since λ ∈ ρ(Λ)

there exists z ∈ Z such that

(λ− Λ)z =
∞∑

n=1

(λ− Λn)Pnz = y.

Then, applying Pm to the both side of this equation we obtain

Pm(λ− Λ)z = (λ− Λm)Pmz = (λ− Λ̄m)Pmz = Pmy = y.

Therefore, (λ− Λ̄m) : R(Pm) → R(Pm) is a bijection. Since Λ̄m is close, then, by the closed-graph

theorem, we get that

λ ∈ ρ(Λ̄m) = {λ ∈ C : (Λ̄m − λI) is bijective} = {λ ∈ C : (Λ̄m − λI)−1 is bounded}
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for all m ≥ 1. We have proved that

ρ(Λ) ⊂

∞⋂

n=1

ρ(Λ̄n) ⇐⇒

∞⋃

n=1

σ(Λ̄n) ⊂ σ(Λ).

Now, we shall prove the other part of (c), that is to say:

σ(Λ) ⊂
∞⋃

n=1

σ(Λn).

In fact, if λ ∈ σ(Λ), then

(1) λ ∈ σp(Λ) = {λ ∈ C : (Λ − λI) is not injective}

(2) λ ∈ σr(V ) = {λ ∈ C : (Λ − λI) is injective , but R(Λ − λI) 6= Z}

(3) λ ∈ σc(Λ) = {λ ∈ C : (Λ − λI) is injective , R(Λ − λI) = Z,but R(Λ − λI) 6= Z}.

(1) If (AΛ− λI) is not injective, then there exists z ∈ Z non zero such that: (Λ− λI)z = 0. This

implies that for some n0 we have:

(Λn0
− λI)Pn0

z = 0, Pn0
z 6= 0.

From here we obtain that λ ∈ σ(Λn0
), and therefore λ ∈

∞⋃

n=1

σ(Λn).

(2) If R(Λ − λI) 6= Z, then there exists z0 ∈ Z non zero such that:

〈z0, (AΛ − λI)z〉 = 0, ∀z ∈ D(A).

But, z =

∞∑

n=1

Pnz, so:

〈z0,

∞∑

n=1

(Λn − λI)Pnz〉 = 0.

Now, if z0 6= 0, then there is n0 ∈ N such that Pn0
z0 6= 0. Hence,

0 = 〈z0,

∞∑

n=1

(Λn − λI)Pnz〉

= 〈z0, (Λn0
− λI)Pn0

z〉

= 〈Pn0
z0, (Λn0

− λI)Pn0
z〉

So, R(Λn0
− λI) 6= Pn0

Z. Therefore, λ ∈ σ(Λn0
) ⊂

∞⋃

n=1

σ(Λn).

(3) Assume that (Λ − λI) is injective, R(Λ − λI) = Z and R(Λ − λI) ⊆ Z.
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For the purpose of get a contradiction, we suppose that λ ∈

(
∞⋃

n=1

σ(Λn)

)C

.

But, (
∞⋃

n=1

σ(Λn)

)C

⊂

(
∞⋃

n=1

σ(Λn)

)C

=
⋂

n≥1

(
σ(Λn)

)C

=
⋂

n≥1

ρ(Λn),

which implies that, λ ∈ ρ(Λn), for all n ≥ 1. Then we get that:

(Λn − λI) : R(Pn) −→ R(Pn)

is invertible, with (Λn − λI)−1 bounded.

Hence, for all z ∈ D(Λ) we obtain that

Pj(Λ − λI)z = (Λj − λI)Pjz, j = 1, 2, . . .

i.e.,

(Λj − λI)−1Pj(Λ − λI)z = Pjz, j = 1, 2, . . .

Now, since D(A) is dense in Z, we may extend the operator (Λj −λI)
−1Pj(Λ−λI) to a bounded

operator Tj defined on Z. Therefore, it follows that

Tjz = Pjz, ∀z ∈ Z, j = 1, 2, . . . ,

and

‖Tj‖ = ‖Pj‖ ≤ 1, j = 1, 2, . . . .

Since R(Λ − λI) = Z, we get that

‖(Λj − λI)−1‖ ≤ 1, j = 1, 2, . . . . (3.2)

Now we shall see that R(Λ − λI) = Z. In fact, given z ∈ Z we define y as follows

y =

∞∑

j=1

(Λj − λI)−1Pjz.
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From (3.2) we get that y is well defined. We shall see now that y ∈ D(Λ) and (Λ − λI)y = z. In

fact, we know that:

y ∈ D(Λ) ⇐⇒

∞∑

j=1

‖ΛjPjy‖
2 <∞.

On the other hand, we have that

∞∑

j=1

‖ΛjPjy‖
2 =

∞∑

j=1

‖Λj(Λj − λI)−1Pjz‖
2 =

∞∑

j=1

‖{I + λ(Λj − λI)−1}Pjz‖
2.

So,
∞∑

j=1

‖ΛjPjy‖
2 ≤

∞∑

j=1

‖(1 + |λ|)2‖Pjz‖
2 = (1 + |λ|)2‖z‖2 <∞.

Then, y ∈ D(Λ) and (Λ − λI) = z.

Therefore R(Λ − λI) = Z, which is a contradiction that came from the assumption: λ ∈(
∞⋃

n=1

σ(Λn)

)C

.

Lemma 3.2 Let Z be a separable Hilbert space, {Sn(t)}t≥0 a family of strongly continuous semi-

groups with generators Λn and {Pn}n≥1 a family of complete orthogonal projections such that

ΛnPm = PmΛn, n,m = 1, 2, . . . (3.3)

If the operator

Λz =

∞∑

n=1

ΛnPnz, z ∈ D(Λ)

with

D(Λ) = {z ∈ Z :
∞∑

n=1

‖ ΛnPnz ‖2<∞}

generates a strongly continuous semigroup {S(t)}t≥0, then

S(t)z =

∞∑

n=1

Sn(t)Pnz, z ∈ Z.

Proof If z0 ∈ Z, then Pnz0 ∈ D(Λ) and the mild solution of the problem

{
z′(t) = Λz(t)
z(0) = Pnz0

(3.4)
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is given by zn(t) = S(t)Pnz0 and it is a classic solution.

Using (3.3) and the Hille-Yosida Theorem, we get that PnS(t) = S(t)Pn, which implies that:

S(t)z0 =

∞∑

n=1

PnS(t)z0 =

∞∑

n=1

S(t)Pnz0. (3.5)

On the other hand, since zn(t) is a classic solution of (3.4), we obtain that

z′n(t) = Λzn(t)

= ΛS(t)Pnz0

=
∞∑

m=1

ΛmPmS(t)Pnz0

= ΛnPnS(t)Pnz0

= ΛnS(t)Pnz0 = Λnzn(t)

So, zn(t) = Sn(t)Pnz0 = S(t)Pnz0 and from (3.5) we get that

Sn(t)z0 =

∞∑

n=1

Sn(t)Pnz0.

Now, applying Lemma 3.1 we can prove the following result.

Theorem 3.3 The operator −A is the infinitesimal generator of a strongly continous semigroup

{TA(t)}t≥0 in the space Z, given by

TA(t)z =
∞∑

n=1

e−λnDtPnz, z ∈ Z, t ≥ 0. (3.6)

3.1 Existence and Uniqueness of Solutions

In this part we study the existence and the uniqueness of the solutions for system (2.4) in case

that f e ≡ 0. That is, we analyze the following homogeneous system




dz(t)

dt
= −Az(t) + Lzt, t > 0

z(0) = φ0 = z0

z(s) = φ(s), s ∈ [−τ, 0)

(3.7)
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Definition 3.4 A function z(·) define on [−τ, α) is called a Mild Solution of (3.7) if

z(t) =





φ(t); −τ ≤ t < 0

TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, α)

Theorem 3.5 The problem (3.7) admits only one mild solution defined on [−τ,∞).

Proof Consider the following initial function

ϕ(s) =





φ(s); −τ ≤ s < 0

TA(s)z0; s ≥ 0

which belongs to L2
loc([−τ,∞), Z). For a moment we shall set the problem on [−τ, I], I > 0 and

denote by G the set:

G = {ψ : ψ ∈ L2[[−τ, α], Z] and | ψ − ϕ |L2≤ ρ, ρ > 0},

where α > 0 is a number to be determine. It is clear that G endowed with the norm of

L2([−τ, α];Z) is a complete metric space.

Now, we consider the application S : G→ Z given by

(Sz)(t) = Sz(t) =





φ(t), −τ ≤ t < 0

TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, α]

∀z ∈ G.

Claim 1. There exists α > 0 such that:

(i) Sz ∈ G, ∀z ∈ G.

(ii) S is a contraction mapping.

In fact, we prove (i) in the following way:

| Sz(t) − ϕ(t) | ≤

∫ t

0
| TA(t− s)Lzs | ds

≤

∫ α

0
M | Lzs | ds

≤ MM0(α) | z |L2([−τ,α),Z) .
Integrating we have:

| Sz − ϕ |L2 ≤ Kα
1

2 | z |L2

where K = max{MM0(α)/ α ∈ [0, I]}.
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From here we get :

| Sz − ϕ |L2 ≤ Kα
1

2 (| ϕ |L2 +ρ), z ∈ G.

Taking

α <

(
ρ

K(| ϕ |L2 +ρ)

)
2

we obtain that Sz ∈ G, ∀z ∈ G.

In order to prove (ii), we use the linearity of L to obtain:

| Sz − Sw |L2 ≤ Kα
1

2 | z − w |L2 , ∀z,w ∈ G.

Next, in order to prove that S it is a contraction and S(G) ⊂ G it is enough to choose α as

follows :

α < min

{(
1

K

)2

,

(
ρ

K(| ϕ |L2 +ρ)

)2
}

Therefore, S is a contraction mapping.

So, if we apply the contraction mapping Theorem, there exists a unique point z ∈ G such that

Sz = z. i.e.,

z(t) = Sz(t) =





φ(t); −τ ≤ t < 0

TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, α],

which proves the existence and the uniqueness of the mild solution of the initial value problem

(3.7) on [−τ, α].

Claim 2. α could be equal to ∞. In fact, let z be the unique mild solution define in a maximal

interval [−τ, δ)(δ ≥ α).

By contradiction, let us suppose that δ <∞. Since z is a mild solution of (3.7), we have that

z(t) = TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, δ).

Consider the sequence {tn} such that tn −→ δ− . Let us prove that {z(tn)} is a Cauchy sequence.

In fact,

| z(tn) − z(tm) | = | TA(tn)z0 − TA(tm)z0 +

∫ tn

0
TA(tn − s)Lzsds−

∫ tm

0
TA(tm − s)Lzsds |

≤ | (TA(tn) − TA(tm))z0 | + |

∫ tn

0
TA(tn − s)Lzsds−

∫ tm

0
TA(tm − s)Lzsds |
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But,

|

∫ tn

0
TA(tn − s)Lzsds−

∫ tm

0
TA(tm − s)Lzsds | ≤ |

∫ tm

0
(TA(tn − s) − TA(tm − s))Lzsds |

+ |

∫ tm

tn

TA(tn − s)Lzsds |

Now, for z ∈ L2([−τ, δ]) we obtain that

∫ tm

0
| (TA(tn − s) − TA(tm − s))Lzs | ds ≤

∫ δ

0
| (TA(tn − s) − TA(tm − s))Lzs | ds

We know that:

ĺım
n,m−→∞

| (TA(tn − s) − TA(tm − s))Lzs | = 0

and

| (TA(tn − s) − TA(tm − s))Lzs | ≤ 2M | Lzs |

But, from the hypothesis H1), we obtain that:

∫ δ

0
2M | Lzs | ds ≤ 2MM0(δ) | z |L2([−τ,δ);Z)

Therefore, applying the Lebesgue Dominated Convergence Theorem we obtain

ĺım
n,m−→∞

∫ δ

0
| (TA(tn − s) − TA(tm − s))Lzs | ds = 0

Then, since the family {TA(t)}t≥0 is strongly continuous and tn, tm −→ δ− when n,m −→ ∞,

the sequence {z(tn)} is a Cauchy sequence and therefore there exists B ∈ Z such that:

ĺım
n−→∞

z(tn) = B.

Now, for t ∈ [0, δ) we obtain that

| z(t) −B | ≤ | z(t) − z(tn) | + | z(tn) −B |

≤ | (TA(t) − TA(tn))z0 | + | z(tn) −B |

+ |

∫ tn

0
TA(tn − s)Lzsds−

∫ t

0
TA(t− s)Lzsds |

But,

|

∫ tn

0
TA(tn − s)Lzsds−

∫ t

0
TA(t− s)Lzsds | ≤

∫ tn

0
| (TA(t− s) − TA(tn − s))Lzs | ds

+

∫ tn

t
| TA(t− s)Lzs | ds.
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On the other hand, for z ∈ L2([−τ, δ]) we get the following estimate:

∫ tn

0
| (TA(t− s) − TA(tn − s))Lzs | ds ≤

∫ δ

0
| (TA(t− s) − TA(tn − s))Lzs | ds

Therefore, applying the Lebesgue Dominated Convergence Theorem, we obtain

ĺım
n−→∞

∫ δ

0
| (TA(t− s) − TA(tn − s))Lzs | = 0

Then, since the family {TA(t)}t≥0 is strongly continuous and tn −→ δ− when n −→ ∞, it follows

that z(t) −→ B as t −→ δ−.

The function

ϕ(s) =





z(s); δ − τ ≤ s < δ

TA(s)B, s ≥ δ

belong to L2
loc([δ − τ,∞), Z). So, if we apply again the contraction mapping Theorem to the

Cauchy problem




dy(t)

dt
= −Ay(t) + Lyt, t > δ

y(δ) = B

y(s) = z(s), s ∈ [δ − τ, δ)

(3.8)

where z(·) is the unique solution of the system (3.7), then we get that (3.8) admits only one

solution y(·) on the interval [δ − τ, δ + ǫ] with ǫ > 0. Therefore, the function

z̃(s) =





z(s); −τ ≤ s < δ

y(s), δ ≤ s < δ + ǫ

is also mild solution of (3.7) which is a contradiction. So, δ = ∞.

4 The Variation Constant Formula

Now we are ready to find the formula announced in the title of this paper for the system (2.4), but

first we need to write this system as an abstract ordinary differential equation in an appropriate

Hilbert space. In fact, we consider the Hilbert space M2([−τ, 0];Z) = Z ⊕L2([−τ, 0];Z) with the

usual inerproduct given by:
〈(

φ01

φ1

)
,

(
φ02

φ2

)〉
= 〈φ01, φ02〉Z + 〈φ1, φ2〉L2

.
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Define the following operator in the space M2 for t ≥ 0 by

T (t)

(
φ0

φ(.)

)
=

(
z(t)
zt

)
(4.1)

where z(·) is the only mild solution of the system (3.7).

Theorem 4.1 The family of operators {T (t)}t≥0 defined by (4.1) is an strongly continuous semi-

group on M2 such that

T (t)W =

∞∑

n=1

Tn(t)QnW, W ∈ M2, t ≥ 0, (4.2)

where,

Qn =

(
Pn 0

0 P̃n

)
,

with (P̃nφ)(s) = Pnφ(s), φ ∈ L2([−τ, 0];Z), s ∈ [−τ, 0], and {{Tn(t)}t≥0, n = 1, 2,3, ..} is a family

of strongly continuous semigroups on M
n
2 = QnM2 given in the same way as in Theorem 2.4.4

from [5] and defined as follows

Tn(t)

(
w0

n

wn

)
=

(
W n(t)

W n(t+ ·)

)
,

(
w0

n

wn

)
∈ M

n
2 ,

where W n(·) is the unique solution of the initial value problem





dw(t)

dt
= −λnDw(t) + Lnwt, t > 0

w(0) = w0
n

w(s) = wn(s), s ∈ [−τ, 0)

(4.3)

and Ln = LP̃n = PnL, as it is in most the case practical problems.

Proof of Theorem 4.1 First, we shall prove that

T (t)W =

∞∑

n=1

Tn(t)QnW, W ∈ M2, t ≥ 0.

In fact, let W =

(
w1

w2

)
∈ M2.
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∞∑

n=1

Tn(t)QnW =
∞∑

n=1

Tn(t)

(
Pn 0

0 P̃n

)(
w1

w2

)

=
∞∑

n=1

Tn(t)

(
Pnw1

P̃nw2

)

=

∞∑

n=1

(
zn(t)

zn(t+ ·)

)
; zn(·) the only mild solution of (??)

=
∞∑

n=1




eAntPnw1 +

∫ t

0
eAn(t−s)Ln(P̃nz

n(s + ·))ds

(P̃nz(t+ ·))




=




∞∑

n=1

eAntPnw1 +

∫ t

0

∞∑

n=1

eAn(t−s)Pn

(
L

∞∑

m=1

(P̃mz(s + ·))

)
ds

∞∑

n=1

(P̃nz(t+ ·))




=




TA(t)w1 +

∫ t

0
TA(t− s)Lz(s + ·)ds

z(t+ ·)




=

(
z(t)
zt(·)

)
; z(·) the only mild solution of (3.7)

= T (t)W.

In the same way as in Theorem 2.4.4 of [5] we can prove that the infinitesimal generator of

{Tn(t)}t≥0 is given by:

Λn

(
w0

n

wn(·)

)
=




−ΛnDw
0
n + Lnwn(·)

∂wn(·)

∂s




with

D(Λn) =

{(
w0

n

wn(·)

)
∈ M

n
2 : wn is a.c.,

∂wn(·)

∂s
∈ L2([−τ, 0];QnZ) and wn(0) = w0

n

}
.



56 Hugo Leiva and Alexander Carrasco

Furthermore, the spectrum of Λn is discrete and given by

σ(Λn) = σp(Λn) = {λ ∈ C : det(An(λ)) = 0}, (4.4)

where An(λ) is given by

Λn(λ)z = λz + λnDz − Lne
λ(·)z, z ∈ Zn = PnZ,

which can be considered as a matrix since dim(Zn) <∞.

On the other hand, {Qn}n≥1 is a family of complete orthogonal projection on M2 and

ΛnQn = QnΛn, n = 1, 2, 3, ........

In fact,

ΛnQn

(
w0

n

wn(·)

)
= Λn

(
Pnw0

n

P̃nwn(·)

)
=




−ΛnDPnw
0
n + LnP̃nwn(·)

∂P̃nwn(·)

∂s




=




−ΛnDPnw
0
n + LP̃nP̃nwn(·)

P̃n
∂wn(·)

∂s


 =




−ΛnDPnw
0
n + PnLnwn(·)

P̃n
∂wn(·)

∂s




=

(
Pn 0

0 P̃n

)



−ΛnDw
0
n + Lnwn(·)

∂wn(·)

∂s


 = QnΛn

(
w0

n

wn(·)

)

Now, we shall check condition (a) of Lemma 3.1, to this end we need to prove the following claim:

Claim. If W n(t) is the solution of (4.3), then the following inequalities hold:

‖W n(t) ‖Z ≤ c2e
c1t‖w0

n‖, t ≥ 0, (4.5)
∫ t

0
‖W n(u) ‖Z du ≤ kec2t‖w0

n‖, t ≥ 0. (4.6)

In fact, if we put M1 = máx{M, ‖ L ‖}, then we get:

‖W n(t+ θ) ‖Z ≤ M1‖w
0
n‖ +M2

1

∫ t

0
‖W n

s ‖L2 ds; θ ∈ [−τ, 0],

this implies that

‖W n(t+ θ) ‖2
Z ≤

(
M1‖w

0
n‖ +M2

1

∫ t

0
‖W n

s ‖L2 ds

)2

.
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Next,

∫ 0

−τ
‖W n(t+ θ) ‖2

Z dθ ≤

∫ 0

−τ

(
M1‖w

0
n‖ +M2

1

∫ t

0
‖W n

s ‖L2 ds

)2

dθ

≤

∫ 0

−τ
22

(
M2

1 ‖w
0
n‖

2 +M4
1

(∫ t

0
‖W n

s ‖L2 ds

)2
)
dθ

= 22τM2
1 ‖w

0
n‖

2 +M4
1

(∫ t

0
‖W n

s ‖L2 ds

)2 ∫ 0

−τ
dθ

= c22‖w
0
n‖

2 + c21

(∫ t

0
‖W n

s ‖L2 ds

)2

≤

(
c2‖w

0
n‖ + c1

(∫ t

0
‖W n

s ‖L2 ds

))2

So,

‖W n
t ‖L2 ≤ c2‖w

0
n‖ + c1

(∫ t

0
‖W n

s ‖L2 ds

)

Therefore, applying Gronwall’s lemma we obtain that

‖W n
t ‖L2 ≤ c2e

c1t‖w0
n‖, t ≥ 0.

On the other hand, we obtain the following estimate

‖W n(t) ‖Z ≤ ‖ TAn
(t)w0

n ‖ + ‖

∫ t

0
TAn

(t− s)LnW
n(s+ ·)ds ‖

≤ M1‖w
0
n‖ +M2

1

∫ t

0
‖W n(s+ ·)ds ‖

≤ M1‖w
0
n‖ +M2

1

∫ t

0
c1e

c2t‖w0
n‖ds

=

(
M1 +

M2
1 c1
c2

ec2t

)
‖w0

n‖

≤ cec2t‖w0
n‖, c = M1 +

M2
1 c1
c2

, t ≥ 0.

Finally, we get ∫ t

0
‖W n(u) ‖Z du ≤ kec2t‖w0

n‖, k =
c

c2
, t ≥ 0.

This completes the proof of the claim.
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Now, we will use the above inequalities:

‖ Tn(t)

(
w0

n

wn

)
‖2 = ‖W n(t) ‖2

Z +

∫ 0

−τ
‖W n(t+ τ) ‖2

Z dτ

= ‖W n(t) ‖2
Z +

∫ t

t−τ
‖W n(u) ‖2

Z du

≤ ‖W n(t) ‖2
Z +

∫ t

0
‖W n(u) ‖2

Z du+ ‖ wn ‖2
L2

≤
(
c22e

2c2t + k2e2c2t
)
‖w0

n‖
2+ ‖ wn ‖2

L2

≤ g(t)2
(
‖w0

n‖
2+ ‖ wn ‖2

L2

)
, n ≥ 1, 2, . . . .

Hence,

‖ Tn(t) ‖≤ g(t), n ≥ 1, 2, . . . .

Therefore, applying Lemma 3.1, we obtain that T (t) is bounded and {T (t)}t≥0 is a strongly

continuous semigroup on the Hilbert space M2, whose generator Λ is given by

ΛW =

∞∑

n=1

ΛnQnW, W ∈ D(Λ),

with

D(Λ) =

{
W ∈ M2/

∞∑

n=1

‖ ΛnQnW ‖2<∞

}

and the spectrum σ(Λ) of Λ is given by

σ(Λ) =

∞⋃

n=1

σ(Λ̄n), (4.7)

where Λ̄n = ΛnQn : R(Qn) → R(Qn).

Lemma 4.2 Let Λ be the infinitesimal generator of the semi-group {T (t)}t≥0. Then

Λϕ̃(s) =




−Aϕ(0) + Lφ(s)

∂φ(s)

∂s


 ; −τ ≤ s ≤ 0,

D(Λ) = {

(
φ0

φ(·)

)
∈ M2 : φ0 ∈ D(A), φ is a.c.,

∂φ(s)

∂s
∈ L2([−τ, 0];Z) and φ(0) = φ0},

and

σ(Λ) =
∞⋃

n=1

{λ ∈ C : det(Λn(λ)) = 0}
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Proof Consider

(
φ0

φ(·)

)
in M2. Then

ΛW = Λ

(
φ0

φ(·)

)
=

∞∑

n=1

ΛnQnW

=
∞∑

n=1

Λn

(
Pn 0

0 P̃n

)(
φ0

φ(·)

)
=

∞∑

n=1

Λn

(
Pnφ0

P̃nφ(·)

)

=

∞∑

n=1




−ΛnDP̃nφ(0) + LnP̃nφ

∂P̃nφ(·)

∂(s)




=




−

∞∑

n=1

ΛnDPnφ(0) + L

∞∑

n=1

P̃nφ

∂

∂s

(
∞∑

n=1

P̃nφ(·)

)




=




−Aφ(0) + Lφ(·)

∂φ(·)

∂s


 .

The other part of the lemma follows from (4.7)

Therefore, the systems (3.7) and (2.4) are equivalent to the following two systems of ordinary

di-fferential equations in M2 respectively:





dW (t)

dt
= ΛW (t), t > 0

W (0) = W0 = (φ0, φ(·))

(4.8)





dW (t)

dt
= ΛW (t) + Φ(t), t > 0

W (0) = W0 = (φ0, φ(·))

(4.9)

where Λ is the infinitesimal generator of the semigroup {T (t)}t≥0 and Φ(t) = (f e(t), 0).

The steps we have to arrive here allow us to conclude the proof of the main result of this work: The

Variation Constant Formula for Functional Partial Parabolic Equations. This result is presented

in the final Theorem of the this work.
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Theorem 4.3 The abstract Cauchy problem in the Hilbert space M2





dW (t)

dt
= ΛW (t) + Φ(t), t > 0

W (0) = W0

where Λ is the infinitesimal generator of the semigroup {T (t)}t≥0 and Φ(t) = (f e(t), 0) is a

function taking values in M2, admits one and only one mild solution given by:

W (t) = T (t)W0 +

∫ t

0
T (t− s)Φ(s)ds (4.10)

Corollary 4.4 If z(t) is a solution of (2.4), then the function W (t) := (z(t), zt) is solution of

the equation (4.9)

5 Conclusion

As one can see, this work can be generalized to a broad class of functional reaction diffusion

equation in a Hilbert space Z of the form:





dz(t)

dt
= Az(t) + Lzt + F (t), t > 0

z(0) = φ0

z(s) = φ(s), s ∈ [−τ, 0),

(5.1)

where A is given by

Az =
∞∑

n=1

AnPnz, z ∈ D(A), (5.2)

where L : L2([−τ, 0];Z) −→ Z is linear and bounded F : [−τ,∞) −→ Z is a suitable function.

Some examples of this class are the following well known systems of partial differential equations

with delay:
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Example 5.1 The equation modeling the damped flexible beam:




∂2z

∂2t
= −

∂3z

∂3x
+ 2α

∂3z

∂t∂2x
+ z(t− τ, x) + f(t, x) t ≥ 0, 0 ≤ x ≤ 1

z(t, 1) = z(t, 0) =
∂2z

∂2x
(0, t) =

∂2z

∂2x
(1, t) = 0,

z(0, x) = φ0(x),
∂z

∂t
(0, x) = ψ0(x), 0 ≤ x ≤ 1

z(s, x) = φ(s, x),
∂z

∂t
(s, x) = ψ(s, x), s ∈ [−τ, 0), 0 ≤ x ≤ 1

(5.3)

where α > 0, f : IR×[0, 1] → IR is a smooth function, φ0, ψ0 ∈ L2[0, 1] and φ,ψ ∈ L2([−τ, 0];L2[0, 1]).

Example 5.2 The strongly damped wave equation with Dirichlet boundary conditions





∂2w

∂2t
+ η(−∆)1/2 ∂w

∂t
+ γ(−∆)w = Lwt + f(t, x), t ≥ 0, x ∈ Ω,

w(t, x) = 0, t ≥ 0, x ∈ ∂Ω.

w(0, x) = φ0(x),
∂z

∂t
(0, x) = ψ0(x), x ∈ Ω,

w(s, x) = φ(s, x),
∂z

∂t
(s, x) = ψ(s, x), s ∈ [−τ, 0), x ∈ Ω,

(5.4)

where Ω is a sufficiently smooth bounded domain in IRN , f : IR × Ω → IR is a smooth function,

φ0, ψ0 ∈ L2(Ω) and φ,ψ ∈ L2([−τ, 0];L2(Ω)) and τ ≥ 0 is the maximum delay, which is supposed

to be finite. We assume that the operators L : L2([−τ, 0];Z) −→ Z is linear and bounded and

Z = L2(Ω).

Example 5.3 The thermoelastic plate equation with Dirichlet boundary conditions




∂2w

∂2t
+ ∆2w + α∆θ = L1wt + f1(t, x) t ≥ 0, x ∈ Ω,

∂θ

∂t
− β∆θ − α∆

∂w

∂t
= L2θt + f2(t, x) t ≥ 0, x ∈ Ω,

θ = w = ∆w = 0, t ≥ 0, x ∈ ∂Ω.

w(0, x) = φ0(x),
∂w

∂t
(0, x) = ψ0(x), θ(0, x) = ξ0(x) x ∈ Ω,

w(s, x) = φ(s, x),
∂w

∂t
(s, x) = ψ(s, x), θ(0, x) = ξ(s, x), s ∈ [−τ, 0), x ∈ Ω,

(5.5)
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where Ω is a sufficiently smooth bounded domain in IRN , f1, f2 : IR×Ω → IR are smooth functions,

φ0, ψ0, ξ0 ∈ L2(Ω) and φ,ψ, ξ ∈ L2([−τ, 0];L2(Ω)) and τ ≥ 0 is the maximum delay, which is

supposed to be finite. We assume that the operators L1, L2 : L2([−τ, 0];Z) −→ Z are linear and

bounded and Z = L2(Ω).
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