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Ordering explanations and the structural rules for 
abduct ion 

Ram6n Pino-Pkrez and Carlos Uzcategui 

Abstract 

We study the relationship between some structural rules for abduc- 
tive reasoning and preference relations for selection preferred explana- 
tions. We prove that explanatory relations having good structural 
properties can always be defined by orders over formulas. 

1 Introduction 

Abduction is usually defined as the process of inferring the best explanation 
of an observation. In the logic-based approach to  abduction, the background 
theory is given by a consistent set of formulas C. The notion of a possible 
explanation is defined by saying that  a formula y is an explanation of cr if 
C U {y) I- a. An explanatory relation is a binary relation D where the 
intended meaning of cr D y is "y is a preferred explanation of a". 

Structural properties for abduction has been studied by Flach [3], Cialdea- 
Mayer and Pirri [lGI], Aliseda [I]. The search for these properties is moti- 
vated by questions of the following type: (i) Suppose that  y is a preferred 
explanation of cr A b. Should y be considered also a preferred explanation 
of a? (ii) If y is a preferred explanation of cr and also of p, is y a preferred 
explanation of cr v P? (iii) If y is a preferred explanation of cr and y' entails 
y ,  should y' be considered a preferred explanation of a? Answers to these 
questions will tell how much a change of an observation affects its preferred 
explanations and more important will contribute to  truly make abduction 
a form of logical inference. We have presented in [13, 141 a fairly complete 
list of rationality postulates for abduction in the Kraus-Lehmann-Magidor 
tradition. 

A second natural question is whether changes in the background theory 
should be allowed during the explanatory process. We will not consider this 
interesting aspect in this paper (some remarks about it can be found in the 
introduction of [14]). 
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In this paper we will consider a third aspect of abduction: preference 
criteria for selecting explanations. Most formalism have treated them as 
external devices which work on top of the logical part of abduction. How- 
ever, the exact relationship between the preference criteria and the logical 
or structural properties of the explanatory mechanism has not been so far 
clearly delineated. The main goal of this paper is to  clarify this problem. 

Perhaps the most natural way of defining an explanatory relation D 
is through a preference relation < over formulas. The relation < will tell 
which formulas in Expla(a) (the set of possible explanations of a)  are the ' 
preferred ones. Let us define O D  y iffy is a <-minimal element of Expla(a) .  
We will show the exact correspondence between general structural proper- 
ties for D and the properties of the preference relation < (i.e, properties 
like being modular, filtered, smooth, etc). In particular, we will show that  
the preference criteria is, in fact, implicit in the structural rules satisfied by 
a given explanatory mechanism. Moreover, we will show that  this is neces- 
sarily the case: the logical properties satisfied by an explanatory relation D 
already encode a selection mechanism. These are the main results of this 
paper. 

This paper is organized as follows: In Section 2 we recall the main 
structural rules introduced in [14] and the basic hierarchy of explanatory 
relations. Section 3 deals with explanatory relations defined by "orders" 
(selection mechanisms) over formulas. We define the essential relation and 
prove some basic representation theorems. Section 4 is devoted to  study the 
role of the particular rule Right And. In Section 5 we present some exam- 
ples. In Section 6 we compare briefly our work with other related works. 
We conclude with some remarks and open problems in Section 7. 

2 Structural rules 

The background theory will be a consistent set of formulas in a classical 
propositional language and will be denoted by C. Also, we will write cr I-, ,!? 
when C U { a }  I- ,B. We could have avoided the use of C and I-, and instead 
use a semantic entailment relations + satisfying the standard requirements 
(like compactness and the properties of V and A).  This way the background 
theory would be taken for granted and the notion of explanation would be 
somewhat elliptical. But we have chosen to keep C for several reasons. First 
of all, because it is customary in most presentation of abduction to have 
a background theory. Secondly, because many examples are naturally pre- 
sented with a background theory that  constrains the notion of explanation. 
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And third, because by keeping C we leave open the question regarding the 
properties of abduction when the background theory is also considered as a 
parameter. 

We now introduce the notion of an explanation of a formula with respect 
to C. 

Definition 2.1. For every formula cr, the collection of explanations of cr 
w.r.t. C is denoted by Ezpla(cr) and is defined as follows: 

Ezpla(cr) = { y :  y Y , I  & cr )  

Notice that we have ruled out trivial explanations by asking that y has 
to be consistent with C. We are interested in studying the relation " y  is a 
preferred explanation of a" ,  which will be denoted by (I. D y .  In explanatory 
reasoning the input is an observation and the output is an explanation, that 
is the reason to write cr D y with cw as input and y as output. Our next 
definition capture the ideas mentioned in the introduction. 

Definition 2.2. Let C be a background theory. An  explanatory relation 
for C will be any binary relation D such that for every cr and y ,  

c r D y  + y y z l  and y k,cr 

We read cr D y as saying that y is a preferred explanation (with respect to 
C) of 0. 

The following rules were introduced in [14] and are the structural rules 
mentioned in the introduction. These rules are desirable since in a sense 
they describe properties of well behaved explanatory relations: 

RLE, : 

E-CM: 

RA: 0 D Y ; ' I -c  ; Y ' Y E  I 
cr D y' 
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LOR: 

E-DR: 

E-RW : 

E-Con, : Y, ya iff there is y such that a D y 

Notice that some of these postulates (like E-C-Cut) are not rules in the 
usual finitary sense, since they have quantifiers in the premises. However, 
for the sake of simplicity, we will keep the standard notation used for rules 
in propositional logic. 

The justification and intuition behind these rules were given in [14]. 
Nevertheless, for the sake of completeness, we will make some brief com- 
ments about these rules. The rules (LLEc)  Left Logical Equivalence and 
(RLE,) Right Logical Equivalence are very natural assumptions. They say 
that explanatory relations are independent of the syntax. The rule (E-CM), 
Explanatory Cautious Monotony, expresses a weak form of a monotonicity 
on the left. 

The rules (E-C-Cut), Explanatory Cautious Cut, and (E-R-Cut), Explana- 
tory Rational Cut are the explanatory cut rules. They play an important 
role in our setting. Actually, there is a duality between monotony rules for 
consequence relations and cut rules. They say that a preferred explanation 
of the more complex observation ( a  A p) might also be, in some cases, a 
preferred explanation of the simpler or incomplete observation (a). In other 
words, Cut rules allow to keep a preferred explanation even when the set 
of observations is not longer complete. As we will see, these rules reflect a 
selection mechanism. In fact, a failure of full cut ( i . e .  a A P D y but a dy) 
says that there is some part (p) of an observation (a A p) which is so rele- 
vant for explaining the whole observation that it can not be ignored. This 
difference between the whole observation and a part of it will be reflected in 
the selection of preferred explanations. 
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The rule RA,  Right And, gives some amount of monotony orr the right. 
A similar postulate has been considered by Flach in [3]. RA says that any 
explanation more "complete"(logically stronger, more specific) than a pre- 
ferred explanation of cr is also a preferred explanation of a. Notice that RA 
and E-RW are the only rules that introduce new explanations. 

Let us remark some controversial aspects of RA. A typical example 
where one might not wish to have RA is something of the following sort: if 
"there is sugar in the coffee" is a preferred explanation of the observation 
"the coffee is good" then RA would declare that "there are sugar and pepper' 
in the coffee" should also be a preferred explanation of the observation. It is 
ii cases like this that the theory C can play an important role by ruling out 
such undesirable explanations. However, it is clear that RA fails when every 
observation has an unique (up to logical equivalence) preferred explanation. 
There are natural examples of such explanatory relations. 111 Section 4 we 
will study more deeply the rule RA. 

The rule (LOR) is Left Or. The intuition behind this rule is the following. 
Suppose that when we observe either cr or ,f3 (no matter which one) we are 
willing to accept that y is a very likely explanation for both of them. Now 
we are told that one of them is observed (but maybe it is not known which 
one) then LOR says that it is rational to conclude that y is still a very likely 
explanation of that observation (i.e. a very likely explanation of crv,f3). The 
rule E-DR Explanatory Disjunctive Rationality is stronger than LOR and has 
a similar interpretation. 

Finally E-Con,, Explanatory Consistency Preservation, is the postulate 
that says when a formula has a preferred explanation: just when the obser- 
vation is consistent with C. 

Definition 2.3. Let C be a background theory and D be an explanatory 
relation. We say that D is E-preferential if it satisfies E-CM, E-C-Cut, 
LLEcand RA. D is E-disjunctive rational if it is E-preferential and in 
addition satisfies E-DR. D is E-rational if it is E-preferential and in 
addition satisfies E-R-Cut . 

The basic motivation is the following. To each explanatory relation D 
we associate a consequence relation kab as follows: 

crkab,f3 if C u {y) t- p for each y such that cr D y (1) 

We read crkab,f3 as "normally, when cr is observed then ,f3 should also be 
present". 

We proved in 1141 that if D is E-preferential then kab is preferential (in 
the KLM sense [ 6 ] ) ;  if D is E-disjunctive rational then kab is disjunctive 
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rational ( i . e .  in addition of the preferential rules the following also holds: if 
a V p t- p then a t- p or p p) and finally if D is E-rational then bab 
is rational ( i . e .  a preferential relation which satisfies also rational monotony 
:if a k p  and a p p  then a ~ p b p ) .  These notions form a hierarchy: 

E-preferential C E-disjunctive rational c E-rational. 
To each consequence relation + we associate an explanatory relation 6 

by putting 

a67 i f f y  y c l  and C ( a )  E C n  (C U { y ) )  ( 2 )  

For an adequate consequence relation + ' we have shown [14] that if + is 
preferential then 6 is E-preferential; if + is disjunctive rational then 6 is 
E-disjunctive rational and if + is rational then D is E-rational. 

These results show a formal duality between explanatory relations and 
consequence relations. We will give more details later in the paper. 

3 Ordering explanations. 

As we have said in the introduction the most distinct feature of abduction 
is the emphasis it makes on preferred explanations rather than plain ex- 
planations. In this section we will focus on preference criteria for defining 
explanatory relations. We will show that these preference criteria are im- 
plicitly built in the structural properties of explanatory relations introduced 
in Section 2. These results are quite natural on the light of the well known 
facts about non-monotonic reasoning. In  fact, it is well known that inference 
processes based on orders over formulas are one the "faces" of non mono- 
tonic reasoning [ l l ] .  For instance possibilistic orders [2] and expectations 
orders [5] characterize inference rational relations. Preferential orders [4] 
characterize preferential relations. We will comment about their connection 
with our results. 

We will start by making precise some basic notions. If 4 is an irreflexive 
binary relation over a set S and A C S, then a E A is a +-minimal element 
of A if there is no b E A with b 4 a .  The minimal elements of a set A 
will be denoted by m i n ( A ,  +) and when there is no confusion about which 
preference relation 4 is used we will just write m i n ( A ) .  

We formally define the notion of a preference relation. 

'b is said to be adequate with respect to C if for every formula a the following holds: 

w ) =  n{cr3 ( C  u { y ~ )  : c ( ~ )  c c f a ( x  U { y ) ) ~  



Ordering explanations and the  s t ructura l  rules for abduction 7 

Definition 3.1. A preference relation + will be any binary irreflexive 
relation + over C which is invariant under logical equivalence w.r.t. C, i.e. 
if cr + p and t, cr H a' and t, /3 H p', then cr' + P'. 

To each preference relation + we associate an explanatory relation D 

as follows: 

Definition 3.2. Let + be an irreflexive relation on formulas. The explana- 
tory relation D associated to + is defined by 

i.e. cr D y iff I+, -7, y t, cr and S I+, cr for all S such that S + y. 

Definition 3.2 is the same one given in [8, 101 (but notice that they 
worked with reflexive relations). Notice also that + is not supposed to be 
transitive, thus the notion of +-minimal element might not be intuitive. 
We will be interested mainly in the case where + is at least smooth (see 
definition below). The two basic questions that we will address are then the 
following: 

1. To determine the relationship between the structural properties of + 
(like being a partial, filtered, modular order) and the structural rules 
satisfied by D . 

2. To determine under which coilditions a given explanatory relation call 

be represented by a preference relation + as in (3). 

First, we point out a simple fact. 

Proposi t ion 3.3. Let + be a binary relation as in 3.2 and D be the cor- 
responding explanatory relation. Then D satisfies E-Reflexivity and E-CM. 

Proof: To see E-Reflexivity just notice that if cr D y then it is obvious that 
y E min(Expla(y)),  +).Tocheck that E-CM holds, suppose c r ~ y  and y t, P, 
then y E min(Expla(cr)) n Expla(cr A /?) c min(Expla(cr A P)).  I 

To obtain other postulates we will impose some constrains over +. The 
following notion of a smooth relation is inspired by the notion of smoothness 
used in the study of consequence relations ([6]). 

Definition 3.4. Let + be a reflexive binary relation over a set S .  We say 
that a subset A C S is smoo th  if for every a E A either a is minimal in A 
or there is b E A with b + a and b minimal in A. A preference relation + as 
in 3.1 is called smooth ,  if for every formula cr the set Expla(cr) is smooth. 
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To understand better the meaning of smoothness we remark the follow- 
ing: Let A s B C S ,  then it is clear that min(B) n A s min(A). Suppose 
now that m i n ( B )  s A, hence min(B) C min(A). It is reasonable then to  
expect that min(A) = min(B). This is true when B is smooth since, in 
this case, m i n ( A )  s min(B).  Notice that when the language if finite every 
transitive relation 4  is obviously smooth. 

Theorem 3.5. If 4  is a  smooth preference relation and D is defined as i n  
(3.2), then D is an explanatory relation that satisfies LLE,, RLE,, E-CM, , 
E-C-Cut and E-Con,. 

Pioof: That LLE, and RLE, hold follows from the fact that 4  is logically in- 
variant. We already have shown in 3.3 that E-CM holds. To see that E-Con, 
holds, suppose that a is consistent with C then E x p l a ( a )  is not empty. By 
smoothness there is y  such that at> y .  To see that E-C-Cut, suppose that the 
premises in  the rule E-C-Cut hold. Hence m i n ( E x p l a ( a ) )  s E x p l a ( P )  and 
since E x p l a ( a A P )  C E x p l a ( a ) ,  then m i n ( E x p l a ( a ) )  E m i n ( E x p l a ( a A P ) ) .  
Since Exp la  ( a )  is smooth we conclude m i n ( E x p l a ( a ) )  = m i n ( E x p l a ( a A P ) )  
and this finishes the proof. I 

It seems natural to expect that under the conditions in the conclusion 
of 3.5 the relation D is represented by a smooth preference relation as in 
3.2. However, in order to get such representation we will need more than 
just E-CM and E-C-Cut. 

First, we introduce some necessary notions. 

Definition 3.6. Let D be an  explanatory relation. W e  will say that a  
formula y  is admissible for D if a D y for some formula a. 

The following definition, motivated by the results in [12], is the key point 
in order to get our basic representation theorem. 

Definition 3.7. Let D be an  explanatory relation that satisfies RLE,. The  
essential preference relation associated to  D is denoted by 4 ,  and defined 
by: 

(a)  For 6  not admissible: y  4 ,  6  for every admissible y .  
(b)  For y  and 6  admissible: y  4 ,  6  i f  C n ( C  U { y ) )  n { P  : /3 D 6 )  = 0. 

The only relevant formulas for the definition of 4,  are admissible formu- 
las. Since D satisfies RLE, then 4,  is invariant under logically equivalence 
and thus it is indeed a preference relation. Notice that admissible formu- 
las are consistent with C .  Admissible formulas play in our paper the same 
role as normal models in [6, 91. A concept similar to  that of an admissible 
formula was defined in [3]. 
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Remark 3.8. Suppose < is a preference relation and D is the associated 
explanatory relation (3.2). It is easy to verify that if y < 6 ,  then y +, 6. In 
other words, +, is larger than +. 

The proof that +, represents D will work when the language is finite 
and more generally for explanatory relations which are logically finite either 
on the right or on the left (see definition below). First, we introduce an 
auxiliary notion. 

Definition 3.9. A set of formulas A is said to have an upper bound (in A 
w.r.t C )  if there are finitely many formulas a l ,  . . . ,a ,  E A such that for all 
a 'E A ,  a k, (al V . . V a,) (i.e, a1 V . - V a, is an upper bound of A in  the 
lattice of formulas nzodulo C) .  

Definition 3.10. A n  explanatory relation D is said to be logically finite 
on the right (RLF) if for every formula a the set { y  : cr D y )  has an upper 
bound. 

Definition 3.11. A n  explanatory relation D is said to be logically finite 
on the left (LLF) if for every adnzissible formula y the set { a  : a D y )  has 
an upper bound. 

Definition 3.12. An explanatory relation D is said to be logically finite 
i f  it satisfies RLF or L L F .  

Notice that if the language is finite then every explanatory relation is 
logically finite. We will give two examples of logically finite relations: 

Example 3.13. Let k be an adequate consequence relation and 6 be the 
explanatory relation associated to k ,  defined by (2). If 6 is logically finite 
on the right, then there is a nzap F from formulas into formulas such that 
C ( a )  = C n ( C  U {F(cr ) ) ) .  In fact, for every a let F ( a )  be yl V . . .  V y, the 
upper bound for { y  : a D y )  given by 3.10 (if a is inconsistent with C ,  then 
we let F ( a )  be I ) .  Conversely, it is clear that if such function F exists then 
6 satisfies RLF. 

Example 3.14. We will present an example of a L L F  explanatory relation 
6 .  We define first an adequate rational relation k as follows: Consider 
an infinite language C = {p l  , p2, . . .). Let C ,  = { p l ,  p2, . . . , p,) and fix 
m models M l ,  . . . , Mm for the language C,. Let Li . . . , Lh be a partition of 
{ M  l l . . . l M m )  i n k  levelsandlet L: = {M: , . . .  , M r z )  f o r i =  1 , . . . ,  k .  Now 
consider the ranked model in the language C given by k levels L 1 , .  . . , L k ,  
where M E L,  iff the restriction of M to C ,  is in L:. Let y? be formulas in 
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the language Cn such that mod($) = MJ. For r = 1 , .  . . , k we let a. be the 
following formula: 

k n, 

a. = V(V $1 
i=r j=l 

Let C = {a1). It is not hard to see that the rational relation generated by 
this model is adequate (with respect to C). Moreover, this ranked model is 
standard, i.e. for every formula a, mod(C(cr)) = mod(cr) n L;, where i is the 
first integer j such that mod(o) n L j  # 0. It is easy to check that a formula ' 

y is admissible iff C(y)  = Cn(C U {y)). Let y be an admissible formula, 
then there is r such that mod(C U {y)) C_ L,. We claim that a, is an upper 
bound for {a : crby). In fact, it is easy to see that mod(&) = (J;k_, Li 
and mod(C(P,)) = L,. Hence P.6-y. Now, if a b y ,  then mod(C U { a } )  C_ 
u:=, L;. Thus cr a, . 

The next theorem gives a characterization of those logically finite ex- 
planatory relations representable by preference relations. 

Theorem 3.15. Let D be a logically finite explanatory relation. The fol- 
lowing are equivalent: 

( i)  The relation D satisfies E-CM, LLE, ,  RLE,,  E-C-Cut, E-Con, and 
LOR. 

(ii) There is a smooth preference relation 4  such that 

and for every formula a the following holds 

cr D y i f f  y E min(Expla(cr), 4 )  (5) 

Proof: (ii) j (i) .  By 3.5 we only need to show that D satisfies LOR. But 
this follows immediately from (4). 

( i )  j (ii). We will show that 4 ,  works. We already have observed that 
since D satisfies R L E ,  then 4 ,  is a preference relation. First, notice that 
(4) follows immediately from (5) and LOR. 

We will show that (5) holds. Let us suppose that cr D y and let b E 
Expla(cr), then cr E Cn(C U (6)) n {a : D y). Therefore b + e  -y and 
y E min(Expla(cr)). This shows that the only if i n  ( 5 )  holds. 
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Fix a formula a' consistent with C and let 6' be any formula in Expla(a'). 
We will show that if a' Cp(6', then there is y such that a' D y and y +, 6'. In 
particular, this will prove that +, is smooth and also that the other direction 
in (5) holds. Suppose a' #6'. If 6' is not admissible, then there is nothing 
to show because of the definition of +, and E-ConE. Hence we will assume 
that 6' is admissible. By E-Con, there is y such that a' D y ,  so let 

and 
S = C,I u { i P  : p D 6'). 

We claim that S is consistent. In fact, suppose towards a contradiction, that 
S is inconsistent. By compactness there are Pi's for i = 1,. . . , n such that 
pi D 6' and (PI V .  ..v@,) E CL. Let /3 = pl v .  .Vp,. By LOR we know that 
,B D 6'. By E-CM we have that (a' A P) D 6'. Since ,B E Cat, then by E-C-Cut 
we conclude a' D 6', which is a contradiction. Therefore S is consistent. 

Since D is logically finite there are two cases to be considered: 
(a) D satisfies RLF, i.e. for every formula a the set A = {y : a D y)  has 

an upper bound. Let y; E A, i 5 n be an upper bound for A. It is easy to 
check that 

Let N be a model of S, then there is i such that N C U (7;). As N is 
also a model of { i P  : ,B D 6'1, then it is clear that y; +, 6'. 

(b) D satisfies LLF, i.e. for every admissible formula y the set {P : P D  y )  
h a s  a upper bound. Since 6' is admissible, let P I , .  . . , P, be such that Pi D 6' 
and /3 I-, P1 v . . - v  Pn for every /3 such that /3 D 6'. Let p' = pl v v p,, 
then by LOR 1,B' E S .  Since S is consistent then P' @ C,I, hence there is y 
such that a' D y and y y, p'. Therefore y Y, P, for all ,B such that /3 D 6', 
i.e. y +, 6'. I 

We will continue now analyzing the properties that +, has when D 
satisfies extra axioms. We postpone to Section 4 the analysis of the effect 
that RA has on +,. 

When D satisfies E-DR, then +, can be described in a different way (a  
similar idea was used in [9, 121). Recall that from Section 2 we know that 
E-DR implies LOR. We introduce the following definition 
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Definition 3.16. Let D be an explanatory relation that satisfies RLE,.  
Define a binary relation 4, by: 

(a) For b not admissible: y 4, b for every admissible y. 
(b) For y and b admissible: 

Proposition 3.17. Let D be an explanatory relation that satisfies L L E , ,  
RLE,,  E-CM, E-C-Cut, and E-DR.  Then +,=+,. Moreover, +, (and there- 
fore +,) is transitive. 

Proof: (+,C+,): This follows quite straightforward from the hypotheses. 
(+,C<,): Let y ,  S be admissible formulas with y 4, 6. Suppose, towards 

a contradiction, that there is p such that p D S and y I-, p. Let a be any 
formula such that a D y. Since y I-, p ,  then by E-CM we have (a  A P )  D y. 
Since I- ( ( a  A p )  v p )  +, p and y +, 6, then (by LLE,)  we conclude that 
p @S, which is a contradiction. 

To see that +, is transitive, let y; be formulas such that yl +, 72 
and y2 +, 7 3 .  Without lost of generality we can assume that each y; is 
admissible. Let a; be formulas such that a; D y;. By E-DR it suffices to  show 
that (al  V 0 3 )  473. Suppose, towards a contradiction, that (al V a3) D 

7 3 .  Since 72 4% 73, then by definition of +, we have (al V a2 V 0 3 )  D 

7 2  and (a1 V a2 V a3) By3. Since yl 4, 72, then analogously we have 
(al V a2 V as) D y1 and (al  V a2 V 0 3 )  @y2, which is a contradiction. I 

In [4] it was used a notion of filtered relation. We can adapt this notion 
to our context as follows: 

Definition 3.18. A preference relation + is said to be filtered if for ev- 
ery a and every y,y '  E Expla(a)  such that y e m i n ( E z p l a ( a ) )  and y' e 
m i n ( E x p l a ( a ) ) ,  there is b E m i n ( E x p l a ( a ) ) ,  such that b + y and b + y'. 

Using an argument similar to that in the proof of 3.15 the following 
theorem can be proved: 

Theorem 3.19. If D is a logically finite explanatory relation that satisfies 
RLE, ,  E-CM, E-C-Cut, E-Con,, E-RW and E-DR then 4 ,  (therefore 4,) is 
filtered. 

4 The role of RA 

In general, the information contained in an explanatory relation D could be 
lost when we move to its associate consequence relation bab (defined in ( 1 ) ) .  
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However, as it was shown in [14], this is not the case for causal explanatory 
relations which are those satisfying the following condition: 

Where Cab(o) = {p : ababP). In other words, D is causal if D = D where 
6 is the explanatory relation associated to bab which justifies our claim that 
for causal explanatory relations bab and D contains the same information. 
For a finite language, we have shown that an explanatory relation is causal iff 1 

it satisfies RA and E-RW. It is then clear that RA must have a very distinct 
effect on 4,. Causal explanations relations are nonmonotonic reasoning in 
reverse [14] 

The following proposition says that if RA holds, then +, satisfies almost 
all the properties of a preferential pre-ordering as defined by Freund in [4]. 
In Section 6 we will compare in more detail the properties of preferential 
orders and the essential relation <,. 

Proposition 4.1. Let D be an explanatory relation that satisfies RLE, 
Then the following holds: 

( i)  Let y, y' and S be admissible formulas such that y I- y'. If y +, 6, 
then y' +, 6. 

(ii) Let y and S be admissible formulas. If (6 V y)  +, y,  then S +, y.  

(iii) Suppose that D also satisfies RA.  Let y,  y' and S be fornzulas such 
that y YE I and y I- y'. If S +, y,  then S +, y'. 

Proof: To see (ii) ,  suppose S +e y and let p be such that S I-, p and /? D y. 
Then clearly y V S I-, ,B and thus (y V 6) +, y. The proof of (i) is similar. 
For (iii) ,  suppose that S +, y. Thus by definition S is admissible. If y' is 
not admissible then by definition S +, y'. Now suppose that y' is admissible 
and also, towards a contradiction, that S +, y'. Let p be such that p D y' 
and S k, p. Since y I-, y'and y y, I, we have by RA that P D  y and 
therefore S +, y. I 

Remark: A way of understanding part (iii) of the previous proposition is 
as follows: Assume that D satisfies RLE, and RA.  Let yl and y;! be two 
admissible formulas such that yl V yz is also admissible. Let y' = yl v y2. It 
is easy to check using 4.1 that yi +, y' and y' he yi, i.e. for each i ,  y; and 
y' are +,-incomparable. But in fact, 4.1 (i) (resp. (iii)) says more, namely 
that every formula above (resp. below) y; is also above (resp. below) yl V 7,. 
So in some sense yl V y2 contains the information "coded" by yl and y2. 
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Since explanatory relations are defined using +-minimal explanations it is 
clear the relevance of (iii). 

Property (iii) corresponds to RA and we will denote this property by C-U 
(Continuing Up). To define it formally, we say that a binary relation < over 
formulas satisfies C-U if the following holds: 

C-U y y , I  & y k y '  & 6 < y  + 6 < y '  

Proposition 4.2. If + is a preference relation satisfying C-U then the ex- 
planatory relation associated to  + (defined in  3.2) satisfies RA. 

Proof: Suppose that a D y ,  y' k ,  y and y' Y ,  I .  We want to show 
that a D y', i.e. y' E m i n ( E x p l a ( a ) ,  4). Since y' Y ,  I then it is clear that 
y' E E x p l a ( a ) .  For reductio, assume there is 6 E E x p l a ( a )  such that 6 + y'. 
By C-U and since y' k ,  y we have 6 + y contradicting the minimality of y 
in E x p l a ( a ) .  I 

In the result that follows, it is interesting to notice that the hypothesis 
of logically finiteness is not needed. We will use this result in the sequel. 

Proposition 4.3. Let D be an  E-rational explanatory relation satisfying 
E-Con,. Then  the following holds: for all admissible formulas y and 6 ,  

Moreover, +, (and therefore <,) is smooth and represents D . 

Proof: The + direction comes directly from the definition of 4,. For the 
other direction, let a and ,B be as in the right hand side of (7) and a' and P' 
be formulas such that a' D y and p' D 6. We need to show that (a' v p') D y 
and (a' v p') @6. Since D is E-rational, D satisfies E-DR (see [14]), hence 
it suffices to show that (a' V p') d 6 .  Suppose, towards a contradiction, that 
(a' V p') D 6. By E-CM we have (a' V P') A (a  V P )  D 6.  And by hypothesis 
(a  V p )  D y and clearly y k ,  (a' V P') ,  hence by E-R-Cut (a  V P )  D 6 ,  which 
contradicts the choice of a and p. 

To see that +, is smooth, we first recall that D satisfies E-DR and 
therefore, by 3.17, +,=+,. As in the proof of 3.15 we have that if a D y 
then y E m i n ( E x p l a ( a ) ,  4,). For the other direction, let 6 E E z p l a ( a )  such 
that a 6 6 .  We will find y such that a D y and y +, 6 .  This will show that 
+, is smooth and also that it represents D . We can assume without lost of 
generality that 6 is admissible and thus let ,B be such that ,B D 6.  Hence by 
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E-CM ( a  A P) D 6. By E-Con, there is y such that a D y. Since a is logically 
equivalent to  ( C Y A P )  V a, then ((a A p) v a) +6 and ((a A p) v a)  t> y. From 
(7) we conclude that y +, 6. This finishes the proof. I 

We will show next that when D satisfies E-R-Cut then +, is modular. 
We recall the definition of a modular relation (see [7]): 

Definition 4.4. A relation < on a set E is said to be modular iff there 
exists a linear order < on some set 0 and a function r : E + 0 such that 
a + b iff r ( a )  < r (b ) .  If + is transitive, modularity is equivalent to the 
following property: for all a ,  b and c in E if a and b are +-incomparable 
and a + c then b + c. 

Theorem 4.5. Let D be an explanatory relation, the following are equiva- 
lent: 

(i) The relation D is E-rational and satisfies E-Con,. 

(ii) There is a smooth and modular preference relation + satisfying C-U 
such that for every a we have 

o D y iff y E min(Expla(cr),  +) 

Proof: (i  + ii) From 3.15 we know that 4, represent D . From 4.1 we know 
that C-U holds. Thus, it remains to see that +, (alias 4,) is modular. Let 
y ,  6 and p be formulas such that y +, 6, 6 +, y and y +, p. We want to 
show that 6 +, p. Without lost of generality we can assume that y ,  6 and 
p are admissible. Let a, P, w formulas such that cr D y,  P D 6 and w D p. 
Since y and 6 are +,-incomparable then from 4.3 it follows that (a  V P) D y 
and ( a  V p) D 6. Again by 4.3 it suffices to show that (a V P V w) D 6 and 
(a V p v W) +p. By E-DR, which is true because D is E-rational, it is enough 
to show that (a  V p v w) +p. Since y +, p, then by definition of +, we have 
( Q V ~ V W )  D y and ( a ~ p ~ w ) # p .  

(ii + i) From 3.5 we know that D satisfies LLE,, RLE,, E-CM, E-C-Cut 
and E-Con,. From 4.2 we obtain RA. It remains to be shown that E-R-Cut 
holds. Let a, P, y and 6 formulas such that (a A P) D y,  cr D 6 and 6 k, P. 
We need to  show that cr D y. Suppose, towards a contradiction, that cr +y. 
Since y F, a, then by smoothness and the definition of D , there is 6' such 
that a D 6' and 6' + y. Since a D 6 then 6 + 6' and 6' + 6. By E-CM 
(a A /3) D 6 and by modularity, 6 + y,  which contradicts the hypothesis that 
(a A P) D 7. I 
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5 Examples 

Preferential models are perhaps the easiest way of defining structures for 
modelling various knowledge representation problems. We can also use them 
here to construct explanatory relations illustrating the properties of 4,. 

We will work with a finite language. A preferential model consists of 
a collection S of valuations and a partial order 4 on S .  In our case S will 
be the collection mod(C) of models of C. Given a formula a we define its 
minimal models as usual: 

min(a) = {N : N + C U {a)&M a for all M 4 N )  

The relation 4 over valuations is meant to capture the preferences of the 
agent and thus min(a) contains the most preferred or normal worlds where 
the observation a holds. Therefore we can use min(a) to capture also our 
preference over explanations. There are several ways of doing so. We will 
present three of them. 

In order to get a more clear picture of the examples that follow it is 
also convenient to have in mind the consequence relation associated to the 
preferential model which is defined by 

a tu B iff min(a) c mod(B) (8) 

The following definition is also useful 

C(a) contains the nonmonotonic consequences of a .  

(1) Causal explanatory relations: Define an explanatory relation D, as 
follows: 

for any pair of consistent (with C) formulas a and y. In other words, an 
explanation of a is a preferred one if all its models are normal for a. Notice 
that a D, y iff C(a) C_ Cn(C U y) and bab =k. Hence we have that D, is 
equal to 6 for the consequence relation tu given in (8) and therefore D, is 
a causal relation (as defined in (6)). 

It is not difficult to show that this method always yields E-preferential 
explanatory relations that moreover satisfies LOR and E-RW. Since the 

2For the more general definition of a preferential model see [6] 
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hypothesis of theorem 3.15 holds then D, is represented by its associated 
essential relation which will be denoted by <:. We will make some remarks 
about this particular 4:. 

Admissible formulas are given by the antichains of the preferential model 
(i.e. sets of mutually <-incompatible valuations). In other word, y is D, - 
admissible iff mod(C~{y) )  is an antichain. And conversely, given a collection 
A c mod(C) of mutually incompatible valuations, then any formula y such 
that A = mod(y) is D, -admissible. For D, -admissible formulas y and S 
the following holds: 

y 4," S iff 3N + S 3M /= y such that M < N 

Notice that, in general, the relation 4: is clearly not transitive. In fact 
it is quite easy to find an example such that y 4: S and conversely S 4: y. 
However, the representation theorem 3.15 guarantees that <C, is smooth. In 
the case that the preferential model is filtered (for the definition see [4]) then 
42 is transitive (this follows from 3.17 and the fact that in this case E-DR 
holds). 

(2) Strong epistemic explanatory relations: Consider now the following ex- 
planatory relation 

In words, an explanation of a is a preferred one if all its minimal models 
are also minimal for a Notice that a DsE y iff C(a) C C(y)  and y i-, a. 
More details and motivations about this notion are given i n  $4 of [14]. For 
instance, DsE satisfies LLE,  RLE,  E-CM, E-RW, E-C-Cut but RA does not 
hold. Notice that DsE is full reflexive, so every formula consistent with C 
is DSE -admissible. 

The relation 4: is characterized in a way quite similar to that of 42. 

y <: S iff 3N E min(S) 3M + y such that M < N 

So the crucial difference is the notion of an admissible formula. In general 
LOR might not hold for DSE (SO theorem 3.15 does not apply) however DSE 

is represented by its associated essential relation <,S i.e. a DsE y iff y is a 
<:-minimal explanation of a. 

(3) NMC explanatory relations: Consider the following: 
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for any pair of consistent (with C) formulas a and y. In words, an expla- 
nation of a is a preferred one if a t  least one of its models is minimal for a. 

Notice that this is equivalent to saying that y kc a and a F l y ,  so we called 
D,, nonmonotonically consistent explanatory relation. It is not difficult to 

show that D,, satisfies LLE,  RLE,E-CM, E-RW, E-C-Cut but RA does not 
hold. Notice that D,, is full reflexive, so every formula consistent with C 
is D,, -admissible. 

The essential relation 4:" is characterized as follows. 

y 4;' 6 iff V N  E min(6) 3M E min(y) with M < N 

Notice that +gC is transitive. Similar to what happens with the strong 
epistemic relation, D,, might not satisfies LOR (and hence theorem 3.15 
does not apply) however it is representable by 4:'. Moreover, +:" is a well 
known order among formulas as we will see in the following section. 

6 Related works 

We will comment briefly in this section about the connection of our results 
and the works of Freund [4], Gardenfors and Makinson [5] and Dubois and 
Prade [2]. 

Freund characterize preferential consequence relations in terms of 'pre- 
ferential orders'. He called preferential order any relation < on formulae 
satisfying the following four properties: 

Po: cr < I 
PI: If cri- p,  then (a) a < y + p < y 

(b) 6 < p  + 6 < a  
Pz: If a < y and a < 6, then a < y V 6 
P3: If crvp < p, then cr < p 

The connection of preferential orders with preferential consequence re- 
lations is as follows: Given a preferential consequence relation t- define < b  
by letting cr <b /3 if a V P t- +. And conversely, given a preferential 
order < on formulae define a consequence relation k, by letting cr k, p if 
a < crA+. Freund showed that < b  is a preferential order and is a pre- 
ferential consequence relation. The connection of Freund's order with our 
work is the following: for the NMC explanatory relation defined in Section 
5 we have that <gC is exactly Freund's relation. 

In general, the essential relation <, associated to a given explanatory 
relation D satisfies Po when the formulas a and p are admissible and, 
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except for PI (b), the others properties are also satisfied by <, (this follows 
from 4.1). However, it is important to remark that in general <, is not 
transitive but Freund's relation is. The conditions C-U and Pl(b)  seem to 
play dual roles, however a complete classification of preference relations is 
still to be done. 

Finally, the expectation orders of Gardenfors and Makinson are mod- 
ular and can be defined in terms of Freund's relation as follows: < is an 
expectation order iff the dual relation <* is a modular preferential order, 
where cr <* p if -.P < -a. A similar result holds for the possibilistic order ' 

of Dubois and Prade. 

7 Final remarks 

Selection mechanisms are a fundamental part of abduction. However, most 
formalism have treated them as external devices which work on top of the 
logical part of abduction. We have shown that preference criteria are built 
in the structural properties of explanatory relations. Moreover, our results 
show that the preference criteria has to be somewhat uniform in order that 
an explanatory relation satisfies structural rules. 

There are some natural questions suggested by our results. First of all, 
our representation theorem 3.15 is not optimal, since we have presented ex- 
amples of explanatory relations which are representable by its associated 
essential relation but they do not satisfy LOR. Secondly, all examples we 
have examined so far are based on preferential models. It would be inter- 
esting, for a future work, to study preference relations defined in terms of 
a simplicity criteria, for instance, syntactic simplicity. Finally, it would be 
also interesting to find representation theorems capturing exactly the type 
of explanatory relations defined by (10) and (11). 
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