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Abstract

Let. X be a quasicomplete locally convex Hausdorff space. Let T be a locally compact Haus-
dorff space and let Co(T)Y = {f : T — €, f is continuous and vanishes at infinity } be endowed
with the supremum norm. Given a continuous linear map u : C,(T) = X, is given an alternative
vector measure proof, based on the theorem of regular Borel extension of X-valued o-additive
Baire measures, to deduce most of the characterizations obtained in [14] for u to be weakly
compact.

1. INTRODUCTION

Let T be a locally compact Hausdorff space and let C,(T') be the Banach space of all complex
valued continuous functions vanishing at infinity in 7', endowed with the supremum norm. Then
its dual M(T) is the Banach space of all bounded complex Radon measures g with norm given by
|||l = var(u, T). Let X be a locally convex Hausdorff sapce (briefly, a IcHs) which is quasicomplete
and let u: C,(T) — X be a continuous linear map. When X is complete, Grothendieck gave in [6]
some necessary and sufficient conditions for u to be weakly compact.

He studied in [6] some topological and range properties of the adjoint u* and the biadjoint u** of
u, characterized weakly compact subsets of M (T') and proved some deep results such as Theorems
1 and 3 and Proposition 11 of [6] to obtain the characterization theorem [6 , Theorem 6] for weakly
compact operators v : C(K) — X, where K is a compact Hausdorff space and X is a complete
IcHs. Most of the results obtained in Sections 1.1, 1.2, 2.1 and 3.1 of [6] play a key role in the
proof of the said theorem. Moreover, the major part of the results proved in [6] are given for com-
pact Hausdorff spaces only and is remarked that they also hold for locally compact Hausdorff spaces.

Later, the results of Grothendieck [6] were proved in detail for the locally compact case in Sec-
tions 4.21, 4.22, and 9.1-9.4 of Edwards [5]. Among the results treated there, Theorem 9.4.10 of [5]
extends Theorem 6 of Grothendieck [6] to locally compact Hausdorff spaces T and quasicomplete
IcHs X. This result for complete lcHs X was mentioned without proof in Remark 2 on p.161 of
[6]. However, the proof of (3) = (2 bis) of the above theorem as given in Edwards [5] is incorrect
(see Remarks 4 of [14]). Thus, as far as we know, Remark 2 on p.161 of [6] remained unestablished
before we presented our work [14].
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In [14] we used the Baire and o-Borel characterizations of weakly compact subsets of M(T') as
given in [13] and obtained 35 characterizations for the continuous linear map u : Co(T) = X to be
weakly compact, where X is a quasicomplete IcHs. These include the characterizations mentioned
in the above remark of Grothendieck [6] and in Theorem 9.4.10 of [5]. Moreover, the theorem on
regular Borel extension of X-valued o-additive Baire measures on T (breiefly, the Borel extension
theorem) is obtained in [14] as a consequence of these characterizations. Further, Theorem 5.3 of
Thomas [16] is also deduced as Theorem 13 in [14], where the proof is direct in the sense that the
technique of reduction to metrizable compact case is dispensed with.

Using the Borel extension theorem, the first part of Theorem 1 of [14] and Lemma 1 and Theo-
rem 2 of [6], recently with Dobrakov we obtained in [4] an elementary proof of the said theorem of
Thomas [16] ( also is given there in [4] a direct simple proof of the Borel extension theorem) and
this proof is also devoid of the technique of reduction to metrizable compact case as in [14]. In the
said proof no other result of [6] or [14] is used. In this context, arises the following question: Is it
possible to give a vector measure proof based on the said results of [6] and [14] and the Borel ex-
tension theorem to obtain all the characterizations of weakly compact operators on C,(T') as given
in [14]? The present paper answers the question in the affirmative upto 32 characterizations. The
remaining 3 characterizations involving strong additivity are also obtained here, but we use Theo-
rem 1 of [12] ( where Lemma 1 of [6] was used for is proof) instead of Theorem 2 of Grothendieck [6].

In [10, 11] the Riesz representation theorem is used to obtain the regular Borel and o-Borel
extensions of a complex Baire measure on T'. The paper [14] can be considered as its analogue for
X-valued Baire measures, the Riesz representation theorem being replaced by the Bartle-Dunford-
Schwartz representation of weakly compact operators. On the other hand, the regular o-Borel
extension of positive Baire measures on 7 is used in Halmos (7] to derive the Riesz representation
theorem for positive linear forms on C,(T'). Now the present proof can be considered as the vector
analogue of the treatment of Halmos [7].

2. PRELIMINARIES

In this section we fix notation and terminology. For the convenience of the reader we also give some
definitions and results from the literature.

In the sequel T' will denote a locally compact Hausdorff space and C,(T") the Banach space of
all complex valued continuous functions vanishing at infinity in 7', endowed with the supremum

norm || fl|7 = SUPser | £(t)]-

Let K (resp. K,) be the family of all compacts (resp. compact Gss) in T. The o-ring B,(T)
(resp. B.(T)) of all Baire (resp. o-Borel) sets in T is the o-ring generated by K, (resp. K). The
o-algebra B(T) of all Borel sets in T is the o-algebra generated by the class of all open sets in 7.
Note that a subset E of T is o-Borel if and only if it is a o-bounded Borel set in T'.

M(T) is the Banach space of all bounded complex Radon measures on T with their domain
restricted to B(T). Thus each p € M(T) is a Borel regular (bounded) complex measure on T and



T. V. Panchapagesan 3

has norm given by [ul| = var (s, B(T))(T). For 4 € M(T), |u|(E) = var(u, B(T))(E), E € B(T).
We recall the following result from [13, Lemma 1].
PROPOSITION 1. For pu € M(T),

[, (1) (-) = var(ul g1y, Bo(T)) (") and|p|s. (T)(-) = var(uls. (1), B(T))(-)-

A vector measure is an additive set function defined on a ring of sets with values in a IcHs. In
the sequel X will denote a lcHs with topology 7. Let I' be the set of all 7-continuous seminorms
on X. The dual of X is denoted by X*.

The srong topology S(X*, X) of X* is the locally convex topology induced by the seminorms
{pB : B bounded in X}, where pg(z*) = sup,cg|z*(z})|. X** denotes the dual of (X*, B(X*, X))
and is endowed with the locally convex topology 7. of uniform convergence in equicontinuous sub-
sets of X*. Note that (X*, (X™* X)) and (X*,7.) are IcHs.

It is well known that the canonical injection J : X — X™** given by < Jz,z* >= < z,z* > for
all z € X and z* € X*, is linear. On identifying X with JX C X** one has 7|;x = 7e|x = 7.

DEFINITION 1. A linear map u : C,(T) — X is called a weakly compact operator on C,(T)
if {uf:||f|lT <1} is relatively weakly compact in X.

Let E anf F be IcHs and let u : E — F be a continuous linear map. Then the adjoint u* and
the biadjoint u** of u are well defined linear maps and v* : (F*,0(F*, F)) = (E*, o(E* F)) and
u* . (E*,7.) = (F**,T.) are continuous (see Corollary to Proposition 1, § 12, Chapter 3 of [8]
and Proposition 8.7.2 of [5]).

The following result (Corollary 9.3.2 of [5], which is essentially due to Lemma 1 of [6]) plays a
key role in Section 4.

PROPOSITION 2. Let F and F be IcHs with'F quasicomplete. If u : E — F 1is linear and
continuous, then the following conditions are equivalent.

(1) u maps bounded subsets of E into relatively weakly compact subsets of F.
(ii) u*(A) is relatively o(E*, E**)-compact for each equicontinuous subset A of F*.
(111) v (E**) C F.
The following result is due to Theorem 2 of [6], which is the same as Theorem 4.22.1 of [5].

PROPOSITION 3. Let A be a bounded set in M(T). Then the following assertions are
equivalent.
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(i) A is relatively weakly compact.
(i1) For each disjoint sequence (U,)$° of open sets in T,

lim sup |u|(Un) = 0.
™ oueA

(iii) Let € > 0.

(a) For each compact K in T, there ezxists an open set U in T such that K C U and
sup,e4 l4|(U\K) < € ; and

(b) there ezists a compact C such that S“Puef{ |u|(T\C) < e.

1

For each T-continuous seminorm p on X, let p(z) = ||z||,, z € X, and let X, = (X, ||+||,) be the
associated seminormed space. The completion of the quotient normed space X,/p~!(0) is denoted
by X,. Let IT, : X, = X,/p~*(0) C X, be the canonical quotient map.

Let S be a o-ring of subsets of a non empty set 2. Given a vector measure m : § — X, for
each T-continuous seminorm p on X let m, : S — X, be given by m,(E) = II, om(F) for E € S.
Then m, is a Banach space valued vector measure on S. We define p-semivariation ||m||, of m by

[Im||5(E) = |lm,l|(E) for E € S

and
[Im|]5(€2) = [|my||(2) = sup [[m,|(E)
EeS

where ||m,|| is the semivariation of the vector measure m, and is given by ||m,||(E) = sup{|z* o
m|(F) : z* belongs to the dual of X, ||z*|| < 1}(see p.2 of [1]) .

An X-valued vector measure m on a o-ring S of subsets of 2 is said to be bounded if {m(E):
E € 8} is bounded in X and equivalently, if ||m||,(Q2) < oo for each 7-continuous seminorm p on
X. When m is o-additive, m, is a Banach space valued o-additive vector measure on the o-ring S
and hence by Corollary 1.1.19 of [1], ||m||,(2) = ||mp|[(Q) < 4supges|Im(E)||, < oo.

We follow the theory of integration for bounded S-measurable scalar functions with respect
to a bounded X-valued vector measure on the o-ring S as given in [12]. Note that a bounded
scalar function on €2 is S-measurable if and only if f is the uniform limit of a sequence of S-simple
functions.

PROPOSITION 4 (Lebesgue bounded convergence theorem). Let X be a quasicomplete IcHs
and let m : § — X be o-additive. If (f,) is a bounded sequence of S-measurable scalar functions
with lim,, fo(w) = f(w) for each w € Q, then f is m-integrable and

/E fdm = lim /E frdm
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for each E € S.

Since Sg = SN E is a o-algebra and || [ fadm — [ fdm||, = || [ fadmy — [g fdmy||,, the
above result is immediate from Theorem II.4.1 of [1].

The following result, which is due to the first part of Theorem 1 of [14], is needed in Sections 3
and 4.

PROPOSITION 5. Let X be a IcHs. Let u : Co(T) — X be a continuous linear map. Then
there exists an X**-valued vector measure m on B(T) satisfying the following properties:

(i) z* om € M(T) for each z* € X* and consequently, m : B(T) = X™* is o-additive in
a(X**; X*)- topology.

(1) The mapping z* — z* om of X* into M(T) is weak*-weak* continuous. Moreover, u*z* =
*om, z* € X*.

(iti) z*uf = [; fd(z* om) for each f € Co(T) and z* € X~.
(iv) {m(E): E € B(T)} is T.-bounded in X**.
(v) m(E) = v (xg) for E € B(T).

DEFINITION 2. Let u : C,(T) — X be a continuous linear map. Then the vector measure
m as given in Proposition 5 is called the representing measure of u.

DEFINITION 3. A o-additive vector measure m : B,(T) — X (resp. B(T) — X, B.(T) —
X) is called an X-valued Baire (resp. Borel, o-Borel) measure on T'.

DEFINITION 4. Let § be a o-ring of sets in 7' with § D K or K,. Let m : § — X be a
vector measure. Then m is said to be S-regular (resp. S-outer regular, S-inner regular ) in E € S
if, given a 7-continuous seminorm p on X and € > 0, there exists a compact K € § and an open set
U e S with K C ECU (resp. an open set U € § with E C U, a compact set K € § with K C F)
such that |[|m||,(U\K) < € (resp. ||m|[,(U\E) < ¢, ||m||p,(E\K) < €). Even though T does not
belong to & one can define S-inner regularity of m in T as follows. Given p € T and ¢ > 0, there
exists a compact K € § such that ||m||,(B) < € for all B € § with B C T\K. The vector measure
m is said to be S-regular (resp. S-outer regular, S-inner regular) if it is so in each £ € S. When
S = B(T) (resp. B,(T), B:(T)), we use the terminology Borel (resp. Baire, o-Borel) regularity or
outer regularity or inner regularity. '

Remark 1. In the above definition one can replace I' by any other family of continuous semi-
norms on X which induces the topology .

The following proposition on regular Borel and o-Borel extensions of an X-valued Baire mea-
sure is well known and it plays a key role in Section 4. It was first proved in [3,9] and extended to
group valued measures in [15]. For a simple and direct proof of the proposition see [4]. Note that
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a highly technical operator theoretic proof is given in [14] as mentioned in the introduction.

PROPOSITION 6 Let m be an X-valued Baire measure on T and let X be a quasicomplete
IcHs. Then m is Baire regular in T'. Moreover, there exists a unique X-valued Borel (resp. o-Borel)
regular o-additive extension 7 (resp. mi.) of m on B(T) (resp. B.(T)). Moreover, 1m|g (T) = mi,.

3. SOME LEMMAS

Throughout this section m will denote the representing measure (on B(T)) of a continuous linear
map v : Co(T) = X, where X is a quasicomplete IcHs. Let m, = m|g,7) and m; = m|g (). Let
& ={A C X*: A equicontinuous}, and let p,(z) = supg.c4 |2*()|, for A € £ and z € X. Then
the family of seminorms {p4 : A € £} induces the topology 7 of X.

Let Y = X, ,. For E € B(T),

Imp,ll(E) = sup{ly” om|(E):y" € Y7, |jy"|| < 1}
= sup{|z*om|(F):z* € A, z* € X"}

since {y* € Y* : ||ly*|| < 1} can be identified with {z* € X*:z* € A}.

The semivariation ||m,||,, (E) = sup{|z* o m,|(E) : ¢* € A} for A € £ and E € B,(T), where
[z*om,|(E) = var(z*om,, Bo(T))(E) = |z*om|g,1)(E), the last equality being due to Proposition
1. Thus we have

1mllp 4 (B) = sup{Jz" o m|(E) : 2 € A)

for A€ £ and F € B,(T). Moreover,

Imollpa(E) <4sup  sup  [(z"om)(B)|=4  sup [Imo(B]llp, (1)
Z*€A BCE,B€eBo(T) BCE,B€eB,(T)

for E € B,(T) and A € €.

LEMMA 1. u*A s bounded in M(T) for each A € €.

-

Proof. By Proposition 5(ii), u*A = {z*om : z* € A}. As m has r.-bounded range by
Proposition 5(v), we have

sup [e"om|(T) <4 sup  |(zom)(E)| =4 sup |Im(E)|l,, < co.

T*€A EeB(T)z*cA EeB(T)

Thus u*A is bounded in M(T).
Notation 1. U, denotes the family of all open Baire sets in T.

LEMMA 2. Suppose m,(U,) C X. Then the following hold.
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(i) m, is o-additive inU, in 7. That is, given a disjoint sequence (U,)° inl,, then m,(UPU,) =
Y°m,(Ur) (in topology 7).

(11) If (Un){° is a disjoint sequence in U,, then, for each A € £, limy, ||m,||p,(Un) = 0.
Proof

(i) By Proposition 5(i), z* om € M(T) and hence
(z* 0 mo) (UPUR) = E7° (2" 0o mo)(Un)

for each z* € X*. By hypthesis, m, has range in X and hence by the Orlicz-Pettis ‘theorem we
conclude that m,(U$U,) = £5°m,(Un) in topology 7. Thus (i) holds.

(ii) If possible, let inf, ||mo||p, (Un) > 48 > 0 for some equicontinuous subset A of X*. Thus
SUPgec 4 |T* 0 Mo|(Un) > 46 for all n. Then there exists an z;, € A such that [z} o m|(Un) > 44.
Consequently, supgeg,(1),BcU, |(z5 © Mo)(B)| > & and hence there exists B, C Uy, in B,(T) such
that |(z} o m,)(Bn)| > 8. Since z}, 0o m, is a (0-additive) scalar Baire measure, it is Baire regular
and hence there exists an open Baire set G, with B, C G, C U, such that |(z} o m,)(G,)| > 4.
Consequently, inf, |(2}, 0 m,)(G,)| > 6. This is absurd, since |(z} 0o m)(G,)| < ||mo(Gr)l||p, = 0
by (i) as (Gn) is a disjoint sequence in U,.

The proofs of (iii) = (iv) and (iv) = (v) of Theorem 1 of [13] are suitably modified to obtain
- Lemmas 3 and 4 below. For the sake of completeness we give their proofs.

LEMMA 3. Let m, satisfy the hypothesis of Lemma 2. Then the following hold.
(i) m, is Baire inner regular (in 1.) in each U € U,.

(i1) For each € > 0 and for each equicontinuous subset A of X*, there ezists a K € K, such that
[lm|lp, (T\K) = sup,eca{lz*om|(B) : BC T\K,B € B(T)} < e.

Proof. We shall prove both the assertions simultaneously. The proof of (iii) = (iv) of Theorem
1 of [13] is suitably modified here. Let U € U, (resp. U = T). Let € > 0. If neither (i) nor (ii)
is true, then without loss of generality we can suppose that there exists an equicontinuous subset
A of X* such that for no compact K € Ko, ||mo|lp, (U\K) < € and |[m||, (T\K) < € hold. Then
there exists ] € A such that |z} o m,|(U) > € (resp. |z} o m|(U) > ¢), for otherwise K = @ will
provide a contradiction. Then by the Baire regularity of [z} o m,| (resp. by the Borel regularity
of |z} o m|) due to Proposition 5(i), there exists K, € K, with Ky C U (resp. K € K) such that
|z7 0o m,|(K1) > € (resp. |z} o m|(K) > € and consequently, by Theorem 50.D of Halmos [7] there
exists Ky € K, with K C K, so that [z} o m,|(K,) > |z} o m[(K) > €). Since K, is a compact
subset of U, by Theorem 50.D of Halmos [7] there exists U; € U, and F} € K, such that

U D Fl D U1 D I(l.

Moreover, |z} o mo|(U;) > |z} o mo|(Ky) > €. Since F; € K,, by our assumption there exists
z% € A such that |z5 o m,|(U\F}) > € (resp. |z} o m|(U\F1) > €). Then by the Baire regularity
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of |24 o m,|(resp. Borel regularity of |z} o m|) we can choose C; € K, with C, C U\F} such that
|23 0 m,|(C1) > € (resp. C € K with C C U\F; such that |z3 o m|(C) > € and then, by Theorem
50.D of Halmos [7], we can choose C; € K, with C C Cy C U\F} so that |z} o m|(Cy) > €). Let
K;=FiUC,. Then K; € K,, U D K3 D F; and |z} 0 m,|(K2\F1) = |25 0 m,|(C}) > €. Again by
Theorem 50.D of Halmos [7] there exists Uz € U, and F; € K, such that

U>F,>U;>DKy;D>F, DU DK,

Accordingly, |z50m,|(U\F1) > |z2xom,|(K2\F1) > €. Next by our assumption there exists z3 € A
such that |25 om,|(U\F,) > € (resp. |z30m|(U\F3) > €). Then by the Baire regularity of |z5om,|
(resp. by the Borel regularity of |z} o m| and then applying Theorem 50.D of Halmos:[7]), we can
choose C; € K, such that C; C U\F; and |25 0 m,|(C2) > €. Let K3 = Fo UC,. Then K3 € K,,
U D K3 D F; and |25 0o m,|(K3\F2) = [z} 0 m,|(C2) > €. Again by Theorem 50.D of Halmos [7]
there exists Us € U, and F3 € K, such that

UDEF3D>U3D> Kz D F;, DU,

and hence, |25 0 m,|(Us\F2) > |23 0o m,|(K3\F3) > e.

Thus proceeding step by step we produce an increasing sequence (U,) in U,, another two
increasing sequences (K,) and (F,) in K, and a sequence (z;) in A such that

UD..O0F 1 DUpy1 DKnyy DF, DU, D>..DK, DF DU, DK,

and
|2741 © Mo|(Un1\Fr) > €

foralln > 1. Let Gpy1 = Ung1\Fy, for n > 1. Then {G,41}{° is a disjoint sequence in U, and satis-
fies ||mo|lp, (Grt1) 2 |25 410m6|(Gri1) > €. This contradicts Lemma 2 and hence (i) and (ii) hold.

LEMMA 4. Suppose m, is Baire inner regular in each U € U, with respect to the topology T,
of X** and for each ¢ > 0 and for each equicontinuous subset A of X* suppose there exists K € K,
such that [|m,||p,(T\K) = sup scq{lz*om|(B): BC T\K,B € B,(T)} < € (note that the range
of m, is contained in X**). Then m, is Baire inner regular in B,(T) with respect to .

Proof. As remarked earlier, we suitably modify the proof of (iv)=>(v) of Theorem 1 of [13].
Let A be an equiconinuous subset of X* and let ¢ > 0. By hypothesis there exists Q € X,
such that ||mo|l,,(T\Q) < 5. Let K,(R2) be the family of all compact Gss in Q. Clearly,
Ko()=K,NQ={K CQ:Ke€K,}. Let S4 = {E € B,(R) : for each ¢ > 0 there exists K €
Ko.(Q) with K N E compact and ||m,l|,, (Q\K) < €}. Clearly, K,(Q) C S4. Also we note by
Theorem 5.E of Halmos [7] that B,(Q) = B,(T) N Q.

Affirmation 1. Foreach U € U,, UNN € Sy4.
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In fact, given € > 0, by the Baire inner regularity of m, in U (in 7.), there exists K € K, with
K C U such that |[m,||p, (U\K) < €. Then K, = KNQ € K,(Q), KNQCUNQUNANK, =K,
is compact and (U NQ)\K, C U\K. Therefore,

[Imollpa (UN\K,) < €.
Let Ky = K, U (Q\U). Then K, € K,(R2), K; N (UNKQ) = K, is compact and
[1mollpa (K1) = [Imollpa (UNQ\K,) < €.
Thus UNQ € S4.
Affirmation 2. For each K € K,(R), Q\K € S4.

In fact, by Proposition 14, §14, Chapter III of Dinculeanu [2], there exist (V,,)$° C U, such that
K = n$V,. Then Q\K = U(Q\V,)). Then by Theorem 50.D of Halmos [7], for each n there
exists an open Baire set W, D Q\V,. Let W = U°W,,. Then W € U,, and Q\K = (A\K)NW =
QN (W\K) € S4 by Affirmation 1.

To show that S4 is closed under countable intersections, let (E,) be a sequence in §4 with
E=n¥E,. Let € > 0. Then as E, € S4, there exists K, € K,(Q2) such that K,, N E, is compact
and ||mo||p, (En\Ky) < ;—,’, foreach n > 1. Then K = NP K, € K,(Q), KNE =NP(K,NE,) is
compact and

10| lp.4 (BNK) < EF°||mo|[p 0 (E\Kn) < €

since ||m,||p, is countably subadditive as |z* o m,| is so for each z* € A. Thus E € S4.

To verify that S4 is closed under complements, let E € S4. Given ¢ > 0, there exists K; €
Ko(S2) such that EN K is compact and ||m,||,, (R\K1) < ‘2—’ Now by Theorem 51.D of Halmos
[7], EN K, € K,(R2) and hence by Affirmation 2, Q\(E'N K1) € S4. Thus there exists K; € K,(Q)
such that (Q\(F N K,;)) N K; is compact and

o€
Imellpa (V) < 5.

Then (K1 N K2) N(Q\E) = K; N K, N (Q\(EN K,)) is compact and
[Imollp 4 (A\(K1 N K2)) < BflImoflp, (AK:) < €

Thus Q\E € Sa4. Therefore, S4 is a o-algebra in Q. Since K,(2) C S4, we conclude that
Sa = B,(Q). Thus, for E € B,(2) and € > 0, there exists K € K,(R2) such that EN K is compact
and [lmllp, (R\K) < €.

Now let F € B,(T). Then ENQ € B,(2) = S4 and hence there exists a compact L C ENQ
such that [[molly, (\L) < § and [Imollp, (E\Q) < [[mollyo(T\Q) < §. Thus [fmoll,,(E\L) < e.
Consequently, as A is an arbitrry equicontinuous subset of X* and E' is an arbitrary Baire set in
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T, we conclude that m, is Baire inner regular in 7.

LEMMA 5. Suppose m (resp. m., m,) is Borel (resp. o-Borel, Baire) inner regular (in 7.) in
B(T) (resp. B:(T), B,(T)). Then m (resp. m., mq) is o-additive in 7.

Proof. Let A be an equicontinuous subset of X* and let € > 0. Let S = B(T) and v = m
(tesp. S = Bo(T) and 7 = mg; S = Bo(T) and 7 = m,). Since [[7(E)llpa < [1llp(E) for
E € S, it suffices to show that lim,, ||v||,,(E,) = 0 whenever (E,) is a decreasing sequence in S
with N$°F,, = @. By hypothesis, for each n, there exists a compact K, € § with K, C E, such
that ||v|[p,(En\Kn) < 3. Then adapting the proof at the end of p. 158 and in the top of p.159
of [1], we can show that there exists n, such that ||y||,,(En) < € for n > n,. Hence the lemma. holds.

4. CHARACTERIZATIONS OF WEAKLY COMPACT OPERATORS ON
Co(T)

Let X be a quasicomplete IcHs. Using Propositions 1-6 and Lemmas 1-5 of the earlier sections
and Theorem 1 of [12] we shall obtain below all the 35 characterizations given in [14] for a con-
tinuous linear map u : C,(T) — X to be weakly compact. As mentioned in the outset, the Borel
extension theorem (Proposition 6) for o-additive X-valued Baire measures on T plays a key role in
the present proof in contrast to the proofs of the characterization theorems of [14].

THEOREM 1. Let u: C,(T) — X be a continuous linear map, where X is a quasicomplete
lcHs. Let m be the representing measure of u and let m. = m|g . (T) and m, = m|g,(T). Then the
following assertions are equivalent.

(1) u is weakly compact.

(i) The range of m is contained in X.
(11i) The range of m. is contained in X.
(iv) The range of m, is contained in X.
(v) m(U) € X for all open sets U in T.
(vi) m(F) € X for all closed sets F in T.

(vii) m(U) € X for all o-Borel open sets U in T.

(iz) m(U) € X for all open sets U in T which are o-compact.

(z) m(F) € X for all closed sets F' in T which are.Gs.

V)
(F)
)
(viii) m(U) € X for all open Baire sets U in T.
)
(F)
(zi) m(U) € X for all open sets U in T which are a countable union of closed sets in T
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(zii) For each increasing sequence (f,)$° C Co(T), with 0 < f, <1, (uf,) converges weakly in X.

(ziii) m is o-additive in the topology . of X**.

(ziv) m.

(zv) m,

is g-additive in the topology 1. of X**.

is o-additive in the topology 1. of X™**.

(zvi) m is strongly additive in the topology 1. of X™*.

(zvii) m,

(zviii) m,

is strongly additive in the topology T, of X**.

is stongly additive in the topology . of X™**.

(ziz) m is Borel regular in 1. of X**.

(zz) m is Borel inner regular in 1, of X**.

(zzi) m is Borel inner regular (in 7.) in each open set U in T.

(zzii) m is Borel outer regular (in 7.) in each compact set K in T and Borel inner regular (in )
in the set T.

(zziii) m.
(zziv) m,
(zzv) m,

(zzvi) m,

Te)

(zzvii) m,
(zzviii) m,
(zziz) m,

(zzz) m,
the

is 0-Borel regular in 1. of X**.
is a-Borel inner regular in 7, of X**.
is o-Borel inner regular (in 1.) in each o-Borel open set U in T and in the set T.

is 0-Borel outer regular (in 1.) in each compact set K in T and o-Borel inner regular (in
in the set T.

is Baire regular in 7. of X**.
ts Baire inner regular in 7. of X™**.
is Baire inner regular (in 7.) in each open Baire set U in T and in the set T.

is Baire outer regular (in 7,) in each compact G5 in T and Baire inner regulat (in 7.) in
set T

(zzzi) All bounded Borel measurable scalar functions f on T are m-integrable and [, fdm € X.

(zzzii) All
(zzzivi) All

bounded B.(T')-measurable scalar functions .f on T are m.-integrable and [, fdm. € X.

bounded Baire measurable scalar functions f on T are m,-integrable and [ fdm, € X.

(zzziv) All bounded scalar functions f belonging to the first Baire class in T are m,-integrable and
fr fdm, € X.

(zzzv) w** f € X for all bounded scalar functions f belonging to the first Baire class in T.
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Proof.

(i)=(ii) By (i) and Proposition 2, v**C3*(T) C X and by Proposition 5(v), m(E) = uv**(xg)
for E € B(T). As B(T) C C3*(T), (ii) holds.

Obviously, (i) = (iii) = (iv) = (viii).

(viii) = (iv) . In fact, by hypothesis (viii) and by Lemmas 3 and 4, m, is Baire inner regu-
lar in 7. of X**. Given K € K,, by Theorem 50.D of Halmos [7] there exists U € U, such that
K C U and hence m,(K) = m,(U) — m,(U\K) € X. Thus mo(K,) C X. Let E € By(T). Let
D(E) ={K € K, : K C E} and let K, > Kj for K,,K, € D(F) if K; D K. Then by the
Baire inner regularity of m, in E, limp(g) m,(K) = m,(E) so that the net {m,(K) : K € D(E)}
is Te-Cauchy with limit m,(FE). Since by Proposition 5(iv), m has r.-bounded range in X**,
mo(KC,) has T-bounded range in X. Thus there exists a 7-bounded closed set H in X such that
mo(Ko(T)) C H. Since X is quasicomplete, we conclude that m,(E) € X. Thus m, has rangein X.

(iv) = (i) In fact, by hypothesis, Proposition 5(i) and the Orlicz-Pettis theorem m, is o-additive
in 7. Then by Proposition 6 there exists a unique X-valued Borel regular o-additive extension 7
of m, on B(T). As each f € Co(T) is a bounded Baire measurable function by Theorem 51.B of
Halmos [7], by Proposition 5(iii) we have

x*uf:/de(x*om):/de(x*omo) :/de(x*oﬁz), feC,(T).

Since z* om € M(T) by Proposition 5(i) and since z* o 7h € M(T) as n is Borel regular and o-
additive, it follows by the uniqueness part of the Riesz representation theorem that z*om = z*om
for each z* € X™. Since m has range in X** and / has range in X we conclude that m = / and
hence m not only has range in X but also is o-additive in B(T") in 7. Then, given a disjoint se-
quence (U,) of open sets in T', m(U*Uy,) = L{°m(U,) and in particular, lim, m(U,) = 0. Thus, for
each equicontinuous subset A of X*, we have lim,, |[|m(Uy,)||p, = limpsupgegy|(2* o m)(U,)| = 0.
Moreover, by Lemma 1, u*A is bounded in M(T). Therefore, by Proposition 5(ii) and Proposition
3, u*A is relatively weakly compact in M (7). Consequently, by Proposition 2, u is weakly compact.
Thus (i) holds. '

Clearly, (v) and (vi) are equivalent. Moreover, (ii) = (v) = (vii) = (viii). Thus the assertions
(i)-(viii) are equivalent.

Clearly, (vi) = (x).

(x) = (xi) Let U be an open set in T such that it is a countable union of closed sets. Then T\U
is a closed set which is a G5 and hence by hypothesis (x) we have m(U) = m(T) — m(T\U) € X.
Hence (xi) holds.

Obviously (xi) = (ix) and (ix) = (viii) by § 14, Chapter III of Dinculeanu [2]. Thus (i)-(xi)
are equivalent.
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(ii) = (xii) Let (fn) be as in (xii). Then lim, f,(t) = f(t) exists in [0,1] for each ¢t € T and f is
Borel measurable. Then the hypothesis (ii) combined with Proposition 5(i) and the Orlicz- Pettis
theorem implies that m is o-additive in B(T'). Consequently, by Proposition 4

lim/ fodm = / fdm € X.

nJT T

Then by Proposition 5(iii) we have
limz*uf, = lim/ frd(z* om) = x*.(lim/ fodm) = :c*(/ fdm)
n nJT nJT T

for all z* € X*. Thus (xii) holds.

(xii) = (viii) Let U € U,. Then by § 14, Chapter III of Dinculeanu [2], there exists a sequence
(K,) C K, such that K, / U. By Urysohn’s lemma we can choose an increasing sequence g, of
non negative continuous functions with compact support such that g, ,/* xv. Then by hypothesis
there exists a vector £, € X such that lim, 2*ug, = z*z, for all 2* € X*. Therefore, by Proposi-
tions 4 and 5 we have z*z, = lim, [} g,d(z* om) = 2*m(U) for all z* € X*. Since m(U) € X**, it
follows that m(U) = z, € X. Hence (viii) holds.

(i) = (xiii) By (ii), Proposition 5(i) and the Orlicz-Pettis theorem m is o-additive and has
range in X . Since T¢|x = 7, (xiii) holds.

Clearly (xiii)) = (xiv) = (xv).

(xv) = (i) Let Y be the completion of (X**,7.). Then by hypothesis m, : B,(T) —» Y is
o-additive in T, and hence by Proposition 6 there exists a unique Y-valued Borel regular o-additive
(in 7.) extension ™ of m, on B(T). Each f € Co(T) ig a bounded Baire measurable function by
Theorem 51.B of Halmos [7] and consequently, by Proposition 5(iii) we have

x*uf:/de(:c*om)=/de(x*omo):/de(x*orh)

for each f € C,(T). By Proposition 5(i), z*m € M(T). Since each z* € X* is T.-continuous in X**,
it follows that 2* o7 is a o-additive regular Borel complex measure on T" and hence z*om € M(T).
Thus the continuous linear functional 2*u on Co(T') is represented by both z* o m,2*om € M(T)
and hence z* om = z* o . Since z* is arbitrary in X*, m takes values in X** and  takes values
in Y, it follows that m = ™ so that 7 has values in X™**. Moreover, m (= ™) is o-additive in 7.
Consequently, given a disjoint sequence (U,) of open sets in T, we have ||m(U,)||,, = 0asn — oo
for each equicontinuous subset A of X*. Moreover, for such A, by Lemma 1, u*A is bounded in
M(T). Then by an argument similar to that in the end of the proof of (iv)=(i) we conclude that
u is weakly compact. Hence (i) holds.

Clearly, (xiil) = (xvi) = (xvii) = (xviii).
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(xviii) = (i) Let X(B,(T)) be the Banach space of all bounded complex functions which are
uniform limits of sequences of B,(T)-simple functions, with pointwise addition and scalar multipli-
cation and with norm the supremum norm || - ||7. Let

V= /T fdm,, f € S(B(T)).

By Proposition 5(iv) m, is a T.-bounded vector measure and hence, by Lemma 6 of [12], V is a
well defined X**-valued continuous linear map. Then as the representing measure m, of V (see
Definition 2 of [12]) is strongly additive by hypothesis (xviii), by Theorem 1 of [12] V is a weakly
compact operator. By Theorem 51.B of Halmos [7] each f € C,(T) is Baire measurable and bounded
and hence is the uniform limit of a sequence of Baire simple functions. Hence C,(T") C 2(B,(T)).
In particular, V|, (1) is weakly compact. Besides, by Lemma 6(iii) of [12] and by Proposition 5(iii),
we have

z*Vf:/de(z*omo):/de(z*om):z*uf, feCy(T)

for each z* € X*. Since Vf € X** and uf € X, we conclude that V f = uf for each f € C,(T).
Consequently, u = V|c,(7) and hence {uf : ||f||7 < 1} is relatively o(X™*, X***)- compact. Since
u(Co(T)) C X, it follows that {uf : || f||T < 1} is relatively weakly compact in X. Thus u is weakly
compact. Hence (i) holds.

(i) = (xix) By (ii), Proposition 4(i) and the Orlicz-Pettis theorem, m is o-additive in B(T) in
the topology 7 of X. Then m, is o-additive in B,(T") and has range in X. Therefore, by Proposition
6 there exists a unique Borel regular X-valued o-additive (in 7) extension 7 of m, on B(T). Then
by Proposition 5(iii) and by the fact that each f € C,(T') is bounded and Baire measurable (by
Theorem 51.B of [7]), we have

ruf = /de(z* om) = /de(z* om,) = /de(z*om)

for each z* € X* and f € C,(T). Since z*om € M(T) by Proposition 5(i) and since z*omm € M(T)
as 1 is Borel regular and o-additive with values in X, we conclude that z* o m = z* o 7 for each
z* € X*. Since m has range in X** and m in X, it follows that m = ™m. Thus m is Borel regular
in 7 and hence m is Borel regular in 7 as 7¢|x = r. Thus (xix) holds.

Clearly, (xix) = (xx) = (xxi).

(xxi)(resp. (xxv), (xxix))=>(xxviii) Let U € U, or let U = T. Let A be an equicontinuous set in
X* and € > 0. Then by hypothesis and by Theorem 50.D of Halmos [7] there exists a compact G;
K such that K C U and ||m||,, (U\K) < € (resp. ||m||,,(U\K) < €, ||mo||p,(U\K) < €). Thus,
in particular, ||m,l||,,(F) < € for all E € B,(T) with E C U\K. Since this holds for all U € U,
and for U = T, conditions (i) and (ii) of Lemma 4 are satisfied by m,. Therefore, m, is Baire inner
regular in B,(T'). Hence (xxviii) holds.

(xxviii)=(xv) by Lemma 5.
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(xix)=(xxii) Obvious.

(xxii)=(i) Let K € K and let A be an equicontinuous subset of X*. Given € > 0, by hypothesis
there exists an open set U in T such that ||m||,, (U\K) < €. Since u*z* = z* o m by Proposition
5(ii) and since u*A is bounded in M(T) by Lemma 1, condition (iii)(a) of Proposition 3 is satisfied
by u*A. Since m is inner regular in T, there exists a compact set C such that ||m/||,,(T\C) < € and
hence condition (iii)(b) of the said proposition also holds for u*A. Hence by Proposition 3, u*A
is relatively weakly compact in M(T) and consequently, by Proposition 2, u is weakly compact.
Hence (i) holds.

()= (xxiii) Proceeding as in the proof of (ii) = (xix), we have m = m on B(T). Since ™|g.(T)
is o-Borel regular by Proposition 6, we conclude that m. is o-Borel regular in 7 and hence in 7.
Thus (xxiii) holds.

(xxiii)=(xxiv) Obvious.
(xxiv)=(xiv) by Lemma 5.

(xxiii)implies the first part of (xxv) and (xix) implies the second part of (xxv). As (xxv)=(xxviii),
it follows that (i)« (xxv).

(xix)=(xxvi) Given K € K, A € £ and € > 0, then by hypothesis there exists an open set U
with U D K such that ||m||,,(U\K) < e. By Theorem 50.D of Halmos [7] we can choose a V € Uy
such that K C V C U so that ||m.||,,(V\K) < €. Thus m, is o-Borel outer regular in K. Clearly,
m is o-Borel inner regular in T as m is Borel regular in 7. Hence (xxvi) holds.

(xxvi)=(i) Let K € K. Proceeding as in the proof of (xxii)= (i), we have ||m||,,(U\K) < ¢,
where U is a o-Borel open set containing K. Thus sup_.c 4 |[z*om |(U\K) < €. Now by Proposition
1 it follows that sup «c 4 |[z*om|(U\K) < €, where the [z*om is the variation of z*om with respect
to B(T). Since u*A is bounded in M (T) by Lemma 1, condition (iii)(a) of Proposition 3 is satisfied
by u*A. Again by hypothesis, there exists a compact C such that ||m||,, (T\C) < €. Thus for each
compact K C T\C, by Proposition 1 we have sup,.c4 |z*om|(K) < €. As |z* om| is Borel regular
by Proposition 5(i) for each z* € A. it follows that sup .c 4 |z* o m|(T\C) < €. Thus condition
(iii) (b) of Proposition 3 is also satisfied by u*A. Therefore, u*A is relatively weakly compact in
M(T). Now by Proposition 2 we conclude that u is weakly compact. Hence (i) holds.

(xv)=(xxvii) Since m, is o-additive in 7., by the first part of Proposition 6, m, is Baire regular
in 7. Thus (xxvii) holds.

Clearly, (xxvii)=(xxviii).

(xxviil)= (xv) by Lemma 5.
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(xxix)=>(xxviii) by Lemma 4.

(xix)=(xxix) Let U € U,, A € £ and € > 0. By hypothesis, there exists a compact K C U such
that ||m||,,(U\K) < €. By Theorem 50.D of Halmos [7] there exists a compact C' € K, such that
K C C cU. Then ||m,||p,(U\C) < €. Hence m, is Baire inner regular in U. As m is Borel inner
regular in T, there exists K € K such that ||m||p,(T\K) < €. By Theorem 50.D of Halmos[7] there
exists C € K, such that K C C and hence ||m,||,,(B) < € for all B € B,(T) with B C T\C. Thus
m, is Baire inner regular in T'. Hence (xxix) holds.

(xix)=(xxx) Let K € K,, A € £ and € > 0. By ‘hypothesis, and by Theorem 50.D of Halmos
[7] there exists U € U, with K C U such that ||m||,, (U\K) < €. En particular, ||m,||,(U\K) < €.
Similarly, we can show that m, is Baire inner regular in 7. Hence (xxx) holds.

(xxx)=>(xxix) Given A € £ and € > 0, by the hypothesis of Baire inner regularity in T and
by Theorem 50.D of Halmos [7] there exists a compact € K, such that ||m,||,,(T\R) < §. Let
U € U, such that U is relatively compact.

Affirmation 1. m, is Baire inner regular in U.

In fact, by Theorem 50.D of Halmos [7] we can choose a compact C € K, such that U C C.
Then U = C\(C\U) and C\U € K,. Therefore, by hypothesis there exists W € U, with W > C\U
such that ||m,||p,(W\(C\U)) < €. Now U = C\(C\U) > C\W and C\W € K,. Moreover,
U\(C\W) =Un((T\C)uW) = UnNW. On the other hand, W\(C\U) > W N U. Therefore,
[|mollp. (UN(C\W)) < €. Thus the affirmation holds.

Now let U € U,. Choose by Theorem 50.D of -Halmos [7] a relatively compact open Baire
set V such that @ C V. Then U NV is relatively compact and belongs to U,. Therefore, by
Affirmation 1, m, is Baire inner regular in U NV and hence there exists a compact K € K,
with K C U NV such that |[m,||,,(UNV)\K) < 5. Then K C U and ||m,||,,(U\K) <
[|molp . ((UNVIK) +||mol|p, (U\Q) < €. Therefore, m, is Baire inner regular in each open Baire

set and hence (xxix) holds.

(i)=(xxxi), (xxxii) and (xxxiii). By (ii), Proposition 5(i) and the Orlicz-Pettis theorem m is
X-valued and o-additive in 7. Since every bounded Borel (resp. o-Borel, Baire) measurable scalar
function is the uniform limit of a sequence of Borel (o-Borel, Baire) simple functions and m is a
T-bounded X-valued vector measure, f is m-integrable (see Definition 1 of [12]) and [ fdm € X
(resp. [ fdm. € X, [p fdm, € X).

Clearly, (xxxiii)= (xxxiv).
(xxxi) (resp. (xxxii), (xxxiii)) =(ii) (resp. (iii), (iv)) Let E € B(T) (resp. E € B.(T),

)
E € B,(T)). Then by hypothesis, m(E) (resp. m.(E), m,(E)) belongs to X. Thus (ii) (resp. (iii),
(iv)) holds.
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(xxxiv) =(viii) Let U be an open Baire set. Then by § 14, Chapter III of Dinculeanu [2], there
exists an increasing sequence K, of compact Gss such that U = U{°K,,. Then by Urysohn’s lemma
we can choose continuous functions g, with compact support such that g, / xu. Thus xg belongs
to the first Baire class and is bounded. Then by hypothesis, m,(U) € X. Thus (viii) holds.

(i)=>(xxxv) If u is weakly compact, then by Proposition 2, u** has range in X. Since the
bounded scalar functions of the first Baire class belong to C**(T), (xxxv) holds.

(xxxv)=>(viii) By Proposition 5(v), u**(xy) = m(U) for U € U,. As observed in the proof
of (xxxiv) = (viii), xv is bounded and belongs to the first Baire class. Hence, by hypothesis,
m(U) € X. Thus (viii) holds.

This completes the proof of the theorem.

Remark 2. As in [14], the strict Dunford-Pettis property of C,(7T’) is an immediate consequence
of the above theorem and the proof of the latter is not based on this property unlike the proof
of Theorem 6 of Grothendieck [6]. Theorem 5.3 of Thomas [16] is also deducible from the above
theorem by the same argument used in the proof of Theorem 13 in [14], where our proof is direct
and does not use the technique of reduction to metrizable compact case.

Remark 3. All these 35 characterizations are given in [14] in Theorems 2-9. Some of the proofs
given here are the same as those in [14], but for the sake of completenss we have given the proof
of the equivalence of all the assertions. The proof of Theorems 2 and 9 of [14] is the same as that
given here for the corresponding assertions. Also the proof of the equivalence of (ii), (vii) and (xi)
of Theorem 3 of [14] is the same as that of the equivalence of (ii), (viii) and (xii) of the above
theorem. But the proof of the equivalence of (i) and (viii) in the above theorem is different from
that given in the proof of Theorem 3 of [14]. The present proof is also different from the proof of
Theorems 4 and 5 and that of the equivalence among the first three assertions of Theorem 6 of [14].
Also the proof of Theorems 7 and 8 of [14] is different from the present one (except for the proof
of (xxx)= (xxix) and the details of this implication are suppressed in [14]).
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