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A b s t r a c t  

In this paper we study the exponential bounds and the asymptotic stability of the zero solution 
of a non-linear system of parabolic equations with Neumann boundary conditions. First, we 
write the parabolic equation as an abstract ordinary differential equation in a Hilbert space. 
Second, wk study the linear part of this ODE and find the exponential bounds. Finally, we use 
the variational constant formula to  prove the asymptotic stability of the zero solution of this 
non-linear system. 

Key words .  system of parabolic equations, exponential bounds, asymptotic stability. 

AMS(M0S) s u b j e c t  classifications. primary: 34G10; secondary: 35B40. 

1 Introduction 

In this paper we shall study the asymptotic stability of the zero solution for the following system 
of parabolic equations with homogeneous Neumann boundary conditions 

ut = D A u  + A(t)u + f ( t ,  u) ,  t 2 0, u E Rn, 

where f E C1 (R x Rn), A(t) is a continuous n x n matrix, D = diag(dl, d2, . . . , d,) is a diagonal 
matrix with d; > 0, i = 1,2 ,  . . . , n and 0 is a bounded domain in R N ( ~  = 1,2 ,3) .  

In order to  do that ;  we first study the exponential bounds and the asymptotic stability of the 
linear system: 

ut = D A u  + A(t)u, t 2 0, u E Rn, (3) 

The diffusion coefficients d;, i = 1 , 2 ,  . . . , n could be of any size (b ig  or smal l ) ,  but we shall assume 
that they are closed each other. More precisely, we will suppose that  Id; - d j  1 ;  i, j = 1 , 2 ,  . . . , n are 
small enough. 

Under this assumption, roughly speaking we prove the following statements: 



2 Bounds and Stability for Parabolic Equations 

S1) If A(t) = A + B ( t ) ,  where A is a constant n x n matrix whose eigenvalues have all negative real 
parts, limt,, IIB(t;ll( = 0 and the function f ( t ,  y) satisfies the condition 

lim Ilf ( 4  y)lI = 0, uniformly on t, 
IIyll+O I I Y I I  

then for some to > 0 the solution u = 0 of the system (1)-(2) is uniformly asymptotically stable on 

[to, 4. 
S2) If the function f satisfies condition ( 5 ) ,  the matrix A(t) is periodic of period T and the Floquet 
exponents of the system y' = A(t)y have negative real parts, then the solution u = 0 of the system 
(1)-(2) is uniformly asymptotically stable. 

Several mathematical models may be written as a system of reaction-diffusion of the form (I) ,  
like a models of vibration of plates(see [2]) and a Lotka-Volterra system with diffusion(s6e [4]). 

2 ~ o t a t i b n s  and Preliminaries 

In this section we shall choose the space where this problem will be set. 
Let X = L2(R) = L2(R,  R )  and consider the linear unbounded operator A : D(A) c X --+ X 

defined by A4  = -A4,  where 

Since this operator is sectorial, then the fractional power space X" associated with A can be defined. 
That  is t o  say: for cu 2 0, X "  = D(AY) endowed with the graph norm 

l l~ l la  = IIAyxll, x E X "  and A1 = A + a I ,  (7) 

where Rea(Al)  > 0. The norm 1 )  . 11, does not depend on a (see D. Henry [5] pg 29). 
Precisely we have the following situation: Let 0 = XI < X 2  < - .  . < A, --+ cm be the eigenvalues 

of A each one with finite multiplicity y j  equal t o  the dimension of the corresponding eigenspace. 
Therefore 
a )  there exists a complete orthonormal set {4j,k) of eigenvector of A. 

b) for all x E D(A)  we have 

where < ., . > is the inner product in X and 

So, {Ej) is a family of complete orthogonal projections in X and x = CZ1 E j x ,  x E X.  



c) - A  generates an analytic semigroup {e-At) given by 

d) for a > 0 

and 

Also, we shall use the following notation: 

Z := L ~ ( R ,  Rn) = Xn = X x . . .  x X, and Cn = C ( R ,  Rn) = [C(R)ln, 

with the usual norms. 
Now, we define the  following operator 

where 
84 D(AD)  = (4 E H ~ ( R , R " )  : - = 0 on 8R) .  
87 

Therefore, AD is a sectorial operator and the fractional power space Za associated with AD is 
given by 

Z" = D(AEl)  = X" x - - .  x X" = [X"]" 

endowed with the graph norm 

Il.t.lla = IlAs1.tll, z E Z" and dol = AD + a I ,  (14) 

where 

and Pj = diag(Ej, Ej, . . . , Ej) is an n x n matrix. 
The C,-semigroup { e - ' ~ ~ ) ~ > ~  - generated by -AD is given as follow 

Clearly, {Pi) is a family of orthogonal projections in Z which is complete. So, 



4 Bounds and Stability for Parabolic Equations 

From (16) it follows that  there exists a constant M > 0 such that  for all z E Z" 

From Theorem 1.6.1 in D. Henry [5] it follows that  for 2 < a 5 1 the following inclusions 

Z" C C ( O , R n )  and Z" C L P ( O , R n ) ,  p 2 2, (20) 

are continuous. 

2.1 Setting the Problem 

Now, the systems (1 ) - (2 )  and (3)-(4) can be written in an abstract way on Z as follow: 

Where A ( t ) z ( x )  = A ( t ) z ( x )  and the function f e  : R x Z" + Z is given by: 

f " ( t , z ) ( x ) = f ( t , z ( x ) ) ,  X E O .  (23) 

To show that  equation (21) is well posed in 2" we have to  prove the following lemma. 

Lemma 2.1 The function f e  given in  (23) is locally Holder continuous in  t and locally Lipschitz 
in  z .  i.e., given an interval [a,  b] and a ball B," (0 )  i n  Z" there exists 0 > 0 and L > 0 such that 

Proof Since f E C 1  ( R  x Rn), then for each interval [a ,  b] and a ball B,(O) c Rn there exist 
constants k > 0 and M ( p )  > 0 such that  

i ~ f ( t ,  X )  - f ( s ,  Y ) I I  I k ~ t  - S I  + M ( P ) I I X  - Y I I  if 11x11, I I Y I I  L P I  t ,  S E [a ,  bi. 

From the continuous inclusion Z" C Cn there exists 1 > 1 such that  

Now, let B,"(O) be a ball in 2". Then putting p = lr  we get that  

if IIzlJJa, 11z21Ja I 7' and t ,  s E [a,  bl. 
Therefore, if J(zlII,, Ilz211ff E B,"(O) and t ,  s E [a ,  b], then 

where p(O) denote the Lebesgue measure of O.  



Now, from the continuous inclusion 2" C L 2 ( R ,  Rn) there exists a constant R > 0 such that 

Hence, i f  Ilallla, IIa211a E B:(O) and t ,  s E [a,  b], then 

W e  complete the proof by putting 0 = 1 and L = m a ~ { k ~ ( R ) ' / ~ ,  R M ) .  0 
The following proposition can be proved in the same way as the foregoing lemma. 

Proposition 2.1 If the function f ( t ,  y) satisfies the condition (5), then for all E > 0 there exists 
b > 0 such that 

I l fe( t ,  2)II I ~ I I ~ l l a l  if l l ~ l l a  L 6. (24) 

From now' on, we will suppose that < a < 1. 

3 Main Theorems 

Now, we are ready t o  formulate the main results o f  this paper, which are statements S 1 )  and S 2 )  
of  the Introduction. 

Theorem 3.1 Suppose the function f ( t ,  y)  satisfies the condition (5) and A ( t )  = A + B ( t )  with 

a = m a x { R e p : p E a ( A ) ) < O  and lim J J B ( t ) J I = O .  
t--boo (25) 

Then the following holds: 
A )  i f  D = diag(d, d l . .  - ,  d) = d l ,  then for some to > 0 the solution z = 0 of the equation (21) is 
uniformly asymptotically stable. 
B) if D = d l  + diag(el, ~ 2 ,  . . . , E,) with E;  small enough, then for some to > 0 the solution a = 0 of 
the equation (21) is uniformly asymptotically stable. 

Theorem 3.2 Suppose the function f ( t ,  y)  satisfies the condition (5), the matrix A ( t )  is periodic 
of period r and the Floquet exponents of the system y' = A ( t ) y  have negative real parts. Then the 
following holds: 
A )  if D = diag(d, dl . . . , d )  = d l ,  then the solution a = 0 of the equation (21) is uniformly asymp- 
totically stable. 
B) i f  D = d l  + diag(e1, € 2 ,  . . . , e n )  with 6;  small enough, then the solution a = 0 of the equation 
(21) is uniformly asymptotically stable. 
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3.1 Proof of Theorem 3.1 

In this section we shall assume that  A(t)  = A +  B( t ) ,  so the operator A( t )  can be written as follows 

Before we prove Theorem 3.1, we shall give some lemmas. 

Lemma 3.1 Let a = max{Rep : p E o(A))  and T( t ,  s) the evolution operator generated by  the 
equation (22). Then for all b > a there exist constants R > 0 and k > 0 depending on A and b 
such that 

Proof Since the operators A( t )  and -Ad commute, then the evolution operator corresponding t o  
the equation (22) is given by: 

where e - A ~ t  is the strongly continuous semigroup generated by -AD and U(t )  is the fundamental 
matrix of the linear system of ODES x(t)  = A(t)x(t) .  i.e., 

~ ( t )  = A(t)  U ( t ) ,  
U(0) = I. 

Therefore, from (18) and (19) we obtain tha t  

To complete the proof, it is enough t o  show that  

In fact; if we put Q( t ,  s )  = U(t)UP1 (s) ,  then 

t 
Q ( t ,  s )  y = eA(t-s) y  + 1 eA(t-r) ~ ( r ) ~ ( r ,  s) yds. 

From the Jordan forrn of A we get tha t  for b > a there exists k > 0 such tha t  

Then 

J I P ( ~ ,  ~ ) Y I I  5 k e b ( t - s ) ~ ~ ~ ~ ~  + k J t  eb( ' - ' ) l l~(r)  I I I I I ( ~ ,  S ) I I I I Y I I ~ ~ .  



Therefore 

Applying the Gronwall's Lemma we get that  

Corolary 3.1 If a = max{Rep : p E a ( A ) )  < 0 and 

then the zero solution of the equation (22) is Asymptotically stable. 

Corolary 3.2 The operator -Ad + A generates a strongly continuous semi-group {e(-dd+d)t)t>o - 

,which satisfies the following estimates: 

Proof of Theorem 3.1 part A) .  
Now, we are ready t o  prove part A) of Theorem 3.1. From proposition 2.1 and the assumption on 
B ( t ) ,  for E > 0 small enough there exist 6 > 0 such that  

and 

IlB(t)ll = IIB(t)ll < E ,  t 2 to. 

Where max{Rep : p E a ( A ) )  < b < 0 ,  0 < P' < -b, L 2 1 is a constant given by the continuous 
inclusion Za c Z and to is big enough. 

The initial value problem 21 can be written as follow 

z' = (-Ad + A ) z  + B ( t ) z  + f e ( t ,  z ) ,  z ( t o )  = zo t 2 to > 0.  

Then, from Theorem 7.1.4 in [5] ,  for all T > to we have the following: 
A continuous function z ( . )  : ( t o ,  T )  i Z" is solution of the  integral equation 

t 
z ( t )  = e(-dd+d)(t-to) zo + lo e(-dd+d)('-') [B ( s ) z ( s )  + feh z ( s ) ) ] ~ s ,  t E (to, T ]  (34) 

if and only if a( . )  is a solution of (33) .  



8 Bounds and Stab~lity for Parabolic Equations 

Now, let t ( t ,  t o ,  to) be the solution of (33) starting in t o  a t  t = to with 
l l tolla < A. Then IIz(t)lla 5 6 on some interval [ t o , t l ) .  As long as IIt(t)lla remains less than 6 
we get the following: 

If ( I z ( t ) J J ,  < 6 on [ t o , t l )  with t l  been maximal, then either t l  = m or Ilz(tl)lla = 6. But the second 
case contradicts this computation. Therefore, the solution remains in the ball Ba(O, 6 )  of center 
zero and radio 6 in Z a  for t > to. 

If we put u ( t )  = s ~ ~ { l l t ( s ) J l , e ~ ' ( ~ - ~ )  : to 5 s 5 t ) ,  then 

So 
1 

u ( t )  5 RLllrOa + ,u(t). 

Then ~ ( t )  5 2RLllzoJIa. Therefore 

This complete the proof of Theorem 3.1 part A ) .  
Proof of Theorem 3.1 part B).  
In this case D = d l  + E with E = diag(el, € 2 ,  . . . , c,) and c; been small enough. The problem (21) 
can be written as follows 

Here -AD = -Ad - AE, with -Ad4 = d A 4  and A E ~  = E A 4 .  
Then the proof of part B) of this Theorem follows from the following lemma, in the same way 

as part A ) .  

Lemma 3.2 If IlEll = E is small enough, then there exist constants R > 0 such that the strongly 
continuous semigroup { e ( - A ~ + A ) t ) t > o  - generated by -AD + A satisfies the following estimates: 

e A A  < R ~ ~ z l l ~ e ; ( ' - ~ ) ,  t > s (36) 

~le(-"~+")(~- ') ,z l l ,  5 R ~ I ~ l l ( t  - S ) - a e $ ( " s )  7 t > s ,  (37) 

where max{ ReX : X E o ( A )  ) < b < 0 .  



- 

P r o o f  In this case the operators A(t )  and -AD do not commute, then we can look the equation 

as an u n b o u n d e d  pe r tu rba t ion( -AE is an unbounded operator) of the equation 

Let us define: 

Then using the orthogonal projections {Pj)jZ1 given by (16) we get that  

Therefore, QJj(t, s )  and Tj(t,  s )  are the evolution operators for the following systems of ODES: 

On the other hand, using the formula (16) and ePAdtpjz = e-'ldtpjz we get the following estimates 

From (43) we get that  

Therefore 

Now, the operator Qj( t ,  s) is given by the variational constant formula: 

This implies that  
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Now, putting u( t )  = ~ ( ' J ~ - ~ ) ( ~ - " ) J J Q ~ ( ~ ,  s)yll, we get 

Hence, applying Gronwall's Lemma we get t ha t  

u( t )  < R ~ ~ I ~ ~ ~ ~ ' J ( ~ - ~ ) ,  t > S .  

So 
IIQj(t, s)ylla < R I J ~ J ~ , ~ ( ( " ~ - ~ ) ' J + ~ ) ( ~ - ~ ) ,  t > S. 

If we take E < $, then (RE - d)Xj < 0. Using (48) again we get 

Now, putting u( t )  = ( t  - s)yll, we get 

t - S  a b 
u( t )  j RIIyII + RcAj St (--) e l ( t -T )u ( r )d r .  

s T - S  

Applying Gronwall's Lemma we get 

Since $ < cr < 1, then there exists a constant H > 0 such tha t  

/:t(r - ~ ) - ~ e g ( ~ - ' ) d r  5 H, t > s > - 0. 

Therefore 
u( t )  5 ~ l l ~ l l e ' ~ ~ ' ~ ( ~ - " ) .  

Hence 

IlQ(t, s)ylla 5 RllYll(t - S) 
-ae(X,(cRH-d)+ $)(t-s) , t > s .  

Now, if we take also E < &, then Xj(tRH - d) < 0. 
Therefore, we get  t he  following estimates: 

Now, from (40) we get t ha t  



So 
11lP(t, s ) z u  5 ~ 1 1 z l l ~ e $ ( ~ - " ) ,  t 2 S. 

In the same way we get tha t  

4 Proof of Theorem 3.2 

Since A(t) is periodic of period r ,  it is well known that  the fundamental matrix U(t)  of the system 
x' = A(t)x can be written as follows 

U(t)  = N (t)etL, N ( t  + r )  = N (t ) ,  t E R, (51) 

where N( t )  is a continuous matrix and L is a constant matrix. 

Definition 4.1 The eigenva1,ues of the matrix L given by (51) are called the Floquet exponentes of 
the system x' = A (t)  x . 

Proof of part A) .  
Since the operators -Ad and A( t )  commute, then the evolution operator T ( t ,  s )  associated t o  
equation (22) is given by: 

If a = max{ReX : X E a ( L ) )  < b < 0, then there exists a constant 1 > 0 such tha t  

Hence, using (18) and (19) we get 

Now, from Theorem 7.14 in [5] we have tha t  the solution z(.) : (to, m) + ZQ of (21) is given by 

~ ( t )  = T ( t ,  to)zo + Ito T ( t ,  s ) f e ( s ,  z (s ) )ds ,  t E [to, + m ) .  

From here, the result follows easier than the proof of Theorem 3.1 part A). 
Proof of Theorem 3.2 part B) .  
In this case D = d l  + E with E = diag(tl , € 2 ,  . . . , 6,) and t; been small enough. The problem (21) 
can be written as follows 

Z' = (-Ad + A(t ) )z  - AEZ + f e ( t ,  z) ,  z ( tO)  = z0 t 2 to > 0. (56) 

Then the proof of part B),  follows from the following lemma, in the same way as part A).  
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Lemma 4.1 If IlEll = E is small enough, then there exists a constants R > 0 such that the evolution 
operator Q(t, s) generated by the equation 

satisfies the following estimates: 
b 

11\Sl(t, s)zlla < R ~ ~ z l l , e ? ( ~ - ~ ) ,  t 2 s 

( t  s )  5 R llzll(t - s)-"ek(t-s), t > s, 

where max{ReX : X E a ( L ) )  < b < 0. 

Proof We can look the equation 

as an unbounded perturbation (-AE is an unbounded operator) of the equation 

If T ( t ,  s) is the evolution operator generated by the equation (61), then using the orthogonal 
projections {Pj)j21 given by (16) we get that  

Therefore, Qj(t ,  s) and Tj(t,  s) are the evolution operators for the following systems of ODES: 

Y' = [-XjdI + A(t)]y - XjEy, y E Ran(Pj) ,  j = 1 , 2 , .  . . , (64) 

y' = [-XjdI + A(t)]y, y E Ran(Pj) ,  j = 1 , 2 , .  . .. (65) 

On the other hand, using the formula (16) and that  e-'dtpjz = e - ' ~ ~ ~ P j z  we get the following 
estimates 

Since A(t) is periodic, we get that  

Therefore 

IITj(t, s)ylla I Rllyllae (-'3d+b)(t-s), t 2 S, 

I(Tj(t,s)ylI, < R ( t - ~ ) - ~ l l y ( ( e ( - ' ~ ~ + ~ ) ( ~ - ~ ) ,  t > s. 

From here, the remainder of the proof follows in the same way as Lemma 3.2. 
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