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Abstract

In this paper we study the exponential bounds and the asymptotic stability of the zero solution
of a non-linear system of parabolic equations with Neumann boundary conditions. First, we
write the parabolic equation as an abstract ordinary differential equation in a Hilbert space.
Second, we study the linear part of this ODE and find the exponential bounds. Finally, we use
the variational constant formula to prove the asymptotic stability of the zero solution of this
non-linear systermn.
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1 Introduction

In this paper we shall study the asymptotic stability of the zero solution for the following system
of parabolic equations with homogeneous Neumann boundary conditions

uy = DAu+A(t)ju+ f(t,u), t>0, uve R", (1)
du
3 = 0 , on 0N (2)

where f € C'(IR x IR"), A(t) is a continuous n X n matrix, D = diag(d;, dy, ...,d,) is a diagonal
matrix with d; >0, i=1,2,...,n and Q is a bounded domain in RN (N =1,2,3).

In order to do that; we first study the exponential bounds and the asymptotic stability of the
linear system:

uw = DAu+A(t)u, t>0, u€ R, (3)
3}
5% =0 , on 99 (4)
The diffusion coefficients d;, i =1,2,...,n could be of any size (big or small), but we shall assume

that they are closed each other. More precisely, we will suppose that |d; — d;|;¢,7=1,2,...,n are
small enough.
Under this assumption, roughly speaking we prove the following statements:
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S1) If A(t) = A+ B(t), where A is a constant n X n matrix whose eigenvalues have all negative real
parts, lims e [|B(t)|| = 0 and the function f(¢,y) satisfies the condition
i @)

im ———— =0, uniformly on ¢, 5
llvli—o Iyl 8

then for some tg > 0 the solution u = 0 of the system (1)-(2) is uniformly asymptotically stable on
[to, OO) .
S;) If the function f satisfies condition (5), the matrix A(t) is periodic of period 7 and the Floquet
exponents of the system y’ = A(t)y have negative real parts, then the solution u = 0 of the system
(1)-(2) is uniformly asymptotically stable.

Several mathematical models may be written as a system of reaction-diffusion of the form (1},
like a models of vibration of plates(see [2]) and a Lotka-Volterra system with diffusion(sée [4]).

2 Notations and Preliminaries

In this section we shall choose the space where this problem will be set.
Let X = L%(Q) = L?(Q, IR) and consider the linear unbounded operator A : D(A) C X — X
defined by A¢ = —A¢p, where

0¢

D(A)={¢ € H*Q, R): o

=0 on 89Q). (6)

Since this operator is sectorial, then the fractional power space X associated with A can be defined.
That is to say: for @ > 0, X* = D(A{) endowed with the graph norm

lello = 132l =€ X and Ay =A+al, 0

where Rec(A;) > 0. The norm || - ||» does not depend on a (see D. Henry [5] pg 29).
Precisely we have the following situation: Let 0 = Ay < Ay < --- < A, = oo be the eigenvalues
of A each one with finite multiplicity v; equal to the dimension of the corresponding eigenspace.

Therefore
a) there exists a complete orthonormal set {¢; x} of eigenvector of A.

b) for all ¢ € D(A) we have

AIL‘:Z/\J'

7=1 k=

e

<z, 0ik > Gik = ) AEjz, 8
1 7=1
where < -,- > is the inner product in X and
Y5
Eiz = Z <z, Pk > Djk- 9)
k=1

So, {E;} is a family of complete orthogonal projections in X and z =322, Fz, z € X.
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c¢) —A generates an analytic semigroup {e~4'} given by

e Az = Ez+ Z e ME. (10)
i=2
d) fora >0
X*=D(AY) ={z € X : ) (A\j + )*||Ejz||* < oo},
i=1
and -
A?:E = Z(z\]’ + G,)anQJ. (11)
j:l *

Also, we shall use the following notation:
Z=L*QR)Y=X"=Xx-xX, and C, =C(Q,R") = [C(Q)",

with the usual norms.
Now, we define the following operator

Ap : D(Ap) C Z— Z, Apy = —DAwp = DAY, (12)

where 5
D(Ap) = {¢ € H*(Q, R") : a—fj =0 on 09Q).
Therefore, Ap is a sectorial operator and the fractional power space Z% associated with Ap is
given by
2% = D(AB)) = X% x - x X* = [X°T". (13)

endowed with the graph norm

lzlla = 4%, 2]l, z€ Z% and Ap; = Ap + al, (14)

where o~
a>0, A% z=) D*(\j+a)*P;z, D*=diag(d$,ds,--,d2), (15)

j=1

and P; = diag(E;, E;, -+, E;) is an n X n matrix.
The C,—semigroup {e‘ADt}tZO generated by —Ap is given as follow

e APt = Pz 4 Ze"\JDtsz, z€Z. (16)
j=2

Clearly, {P;} is a family of orthogonal projections in Z which is complete. So,

oo oo oo
2= Pz, 2P =)_|IFz|* and |lz(5 = Y _|IP=ll3 (17)
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From (16) it follows that there exists a constant M > 0 such that for all z € Z¢

e 22| M||z|la, t>0, (18)

<
R Mt™||z||, t>o0. (19)
From Theorem 1.6.1 in D. Henry [5] it follows that for $ < & < 1 the following inclusions
Z*CcCH,R") and Z* C LP(Q, R™), p> 2, (20)
are continuous.
2.1 Setting the Problem
Now, the systems (1)-(2) and (3)-(4) can be written in an abstract way on Z as follow:

2 = —Apz+ A{t)z+ f°(t,2), z(to) =20 t>to > 0. (21)
7 = —Apz+ A(t)z, t>0. (22)

Where A(t)z(z) = A(t)z(z) and the function f¢: R X Z* — Z is given by:
St 2) () = f(t,2(2)), @ e (23)
To show that equation (21) is well posed in Z* we have to prove the following lemma.

Lemma 2.1 The function f¢ given in (23) is locally Holder continuous in t and locally Lipschitz
in z. i.e., given an interval [a,b] and a ball B&(0) in Z* there exists § > 0 and L > 0 such that
[1£°(t 21) = f5(s, 22) | S L(Jt = sI” + |21 = z2]la), Mztlles ll22lla <7, 25 € [a,8].

Proof Since f € C'(R x IR™), then for each interval [a,b] and a ball B,(0) C IR™ there exist
constants k > 0 and M (p) > 0 such that

(1f(t @) = f(s,9)ll < klt = s| + M(p)llz —y|| if |[=|,]ly]l <p, t,s€]a,b]
From the continuous inclusion Z¢ C C, there exists [ > 1 such that

sup|[z(z)|| g~ < |zlla, 2 € Z°.
z€Q

Now, let B¥(0) be a ball in Z%. Then putting p = Ir we get that
17t z1(2)) = f(s, 22(2))|| < k[t = s| + M(r)||z1(2) — za(2)]], = €,

if ||z1]la; [|22]la < 7 and t,s € [a,b].
Therefore, if ||21]|a, || 22]|o € BZ(0) and t, s € [a,b], then

1£(8, 1) = £(s, )| < k() 2]t = s| + M(Ir)|[21 = 2],

where £1(§2) denote the Lebesgue measure of 2.
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Now, from the continuous inclusion Z¢ C L%(Q, IR™) there exists a constant R > 0 such that
I2llze < Rl|zllay 2 € 2%
Hence, if ||21]|a; ||22]l« € BZ(0) and t, s € [a, b], then
175t 21) = £* (s, 22)|| < k() 2]t = 5| + RM (Ir)]| 21 = 22|

We complete the proof by putting # = 1 and L = max{ku(Q)'/?, RM}. a
The following proposition can be proved in the same way as the foregoing lemma.

Proposition 2.1 If the function f(t,y) satisfies the condition (5), then for all € > 0 there ezists
é > 0 such that )
17°@, 2)] < ellzlla; of [l2]la < 4. (24)

From now on, we will suppose that % <o<l.

3 Main Theorems

Now, we are ready to formulate the main results of this paper, which are statements S;) and S,)
of the Introduction.

Theorem 3.1 Suppose the function f(t,y) satisfies the condition (5) and A(t) = A + B(t) with
a = maz{Rep:p € 0(A)} <0 and tl_i’rn I|B(t}|| = 0. (25)

Then the following holds:

A) if D = diag(d,d,---,d) = dI, then for some to > 0 the solution z = 0 of the equation (21) is
uniformly asymptotically stable.

B) if D = dI + diag(e1, €2, -, €,) with €; small enough, then for some ty > 0 the solution z = 0 of
the equation (21) is uniformly asymptotically stable.

Theorem 3.2 Suppose the function f(t,y) satisfies the condition (5), the matriz A(t) is periodic
of period T and the Floquet ezponents of the system y' = A(t)y have negative real parts. Then the
following holds:

A) if D = diag(d,d,---,d) = dI, then the solution z = 0 of the equation (21) is uniformly asymp-
totically stable.

B) if D = dI + diag(e1, €2, -, €,) with €; small enough, then the solution z = 0 of the equation
(21) is uniformly asymptotically stable.
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3.1 Proof of Theorem 3.1

In this section we shall assume that A(¢) = A+ B(t), so the operator .A(¢) can be written as follows
Aty = A+ B(t), Az(z) = Az(z), B(t)z(z) = B(t)z(z).
Before we prove Theorem 3.1, we shall give some lemmas.

Lemma 3.1 Let a = maz{Rep : p € 0(A)} and T(t,s) the evolution operator generated by the
equation (22). Then for all b > a there exist constants R > 0 and k > 0 depending on A and b
such that

17 5)ella < R lzllacap (b =)+ & [ 1BOdr) o> e
7692l <R Y2l =9 eap (b= )+ & [ 1B@lar) ¢ (27)

Proof Since the operators A(t) and —A; commute, then the evolution operator corresponding to
the equation (22) is given by:

T(t,s) = e A=y )U~"(s) € L(Z2, Z), (28)

where e~#0? is the strongly continuous semigroup generated by —Ap and U(t) is the fundamental
matrix of the linear system of ODEs &(t) = A(t)z(t). i.e.,

Uty= A@QU({),
{ U)= 1 (29)

Therefore, from (18) and (19) we obtain that

1Tt s)2lle < MllalUGOUT G, t 2> s,
IT(t s)zlla < M=) [UGUT G, > s
To complete the proof, it is enough to show that
¢
U@ U (5)|| < keap (b(t _ s+ k/ ||B(T)Hdr> L t>s. (30)

In fact; if we put ¥(¢,s) = U(t)U~!(s), then
t
Ut s)y = eAl=%)y 4 / A7) B(r)U(r, s)yds.
From the Jordan form of A we get that for b > a there exists k£ > 0 such that
[eAC=2)) < kebt=2), ¢ > .

Then ,
(¢, s)yll < ke?=Ily) + k/ SB[ (r, 5)|lylldr.
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Therefore

t
19, 91| < ke Ok [ D BEI1E(T $)d

Applying the Gronwall’s Lemma we get that

i

9, s)yl < keap (bt = s) + & [ 1B@ar), o

Corolary 3.1 Ifa= maz{Rep:p € d(A)} <0 and
t
bt 4+ k/ ||B(s)||ds = —o0, as t — +oo,
0

then the zero solution of the equation (22) is Asymptotically stable.

Corolary 3.2 The operator — Ay + A generates a strongly continuous semi-group {e(_Ad"'A)t}tzo
which satisfies the following estimates:
e AFAE= 1 < R |zflaet) t>s (31)
e AHEDz ]l <R ]|t = )70, e > (32)

Proof of Theorem 3.1 part A).
Now, we are ready to prove part A} of Theorem 3.1. From proposition 2.1 and the assumption on

B(t), for € > 0 small enough there exist § > 0 such that

£ 2 < ellzllar if lzlla <6, 820,

eRL/ s %ebtF)sgs « 1,
0 4

and
IBOI = I1B(E)|| <€, t>to.

Where max{Rep:p € 0(A)} <b<0,0< " < —b, L >11is aconstant given by the continuous
inclusion Z* C Z and t; is big enough.
The initial value problem 21 can be written as follow

2= (—Ag+ Az + B(t)z + f°(t,2), 2(to) =20 t>to > 0. (33)

Then, from Theorem 7.1.4 in [5], for all T > t; we have the following:
A continuous function z(-) : (¢, T) — Z% is solution of the integral equation

z(t) = e(mAatA)(t=to) 4 te(_Ad"'A)(t_s)[B(s)z(s) + f(s,z(s))]ds, t € (to,T] (34)

to

if and only if 2(-) is a solution of (33).
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Now, let z(t, g, z0) be the solution of (33) starting in zy at t = to with
lz0]la < 21!%' Then ||z(t)||o < d on some interval [ty,t;). As long as ||z(t)||o remains less than ¢
we get the following:

t
l2@)lla = [leAHAER)z 4 [l AFAEN(B(5)2(s) + £(s, 2(5))) ]l

to

t
< Re Pt=t)| 5|4 + R/ (t = 8) 7%= fo(s, 2(s)) || ds
to

t
+ R [ (t—9)7B()lll=(s)l|ds

to

i
< RLe P z||la + 26RL/ (t - s)_"eb(t_s)Hz(S)HadS
to

t
< g +62eRL [ (t—s)"%(ds < 6.
to

If ||2(¢)]]a < & on [to,t1) with ¢; been maximal, then either ¢t} = 0o or [|z(t1)]|¢ = 6. But the second
case contradicts this computation. Therefore, the solution remains in the ball B*(0,4) of center
zero and radio ¢ in Z¢ for t > {g.

If we put u(t) = sup{||z(s)||e® =) : to < s < t}, then

|| 2(¢) || e 10

IA

t !
RL||z||o + 2¢RL / (t = 5)*eC+80=5) gsy 1)
to

IA

1
RL|[zola + Fu(t).

So )
u(t) < RLljzols + 2u(t).

Then u(t) < 2RL| #||o. Therefore
I2(t)lla < 2RLjz0llae™ ), & > 1o,

This complete the proof of Theorem 3.1 part A).
Proof of Theorem 3.1 part B).
In this case D = dI + E with E = diag(e1, €2, -, €,) and ¢; been small enough. The problem (21)
can be written as follows
Z=(-Ap+A)z+ B(t)z+ f(t,2), z(tg) =20 t >ty > 0. (35)

Here —Ap = — Ay — Ag, with —A;¢ = dA¢ and Ag¢p = EA.
Then the proof of part B) of this Theorem follows from the following lemma, in the same way
as part A).
Lemma 3.2 If ||E|| = € is small enough, then there erist constants R > 0 such that the strongly
continuous Semigroup {e(‘AD"'A)”}tZO generated by —Ap + A satisfies the following estimates:
el APl <R lellae ), 2 s (36)
el A2+, <R Jall( — 5) 773, 0>, (37)

where maz{Re) : A € 0(A)} < b <O0.
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Proof In this case the operators A(t) and —Ap do not commute, then we can look the equation
Z=(-Ap+ A)z=(-Ag+ A)z — Agz, t >0, (38)
as an unbounded perturbation(—.Ag is an unbounded operator) of the equation
Z=(-Ag+ Az, t>0. (39)
Let us define:
U(t,s) = e (~ADHAN=) and T(t,5) = e~ (FAsTANE=9) 4 >

Then using the orthogonal projections {P;};>1 given by (16) we get that

8

U(t, s)z = ‘ U,(t,s)P;z, (40)
T(t,s)z = iTj(t,S)sz. (41)

1

o,
I

Therefore, ¥;(t, s) and Tj(t, s) are the evolution operators for the following systems of ODEs:

y = (=Xdl+A)y—A;Ey, ye€Ran(P), j=1,2,..., (42)
y = (=Ajdl+ Ay, yeRan(F;), j=12,.... (43)

On the other hand, using the formula (16) and e‘Adtsz = e"\Jdtsz we get the following estimates

le= 44 Pzl
le= 44" Pzl

M||Pizllae™ 47, 1 > s, (44)

<
< M(t—s)7Y||Pizlle™4 ) ¢ > s, (45)

From (43) we get that
T;(t, s)y = e Mdli=s)gAlt=5)y 4 ¢ Ran(F;), j=1,2,....
Therefore

IT5(t )ylla < Rllyllaet M=) 1 >, (46)
IT5(t s)ylla < R(E = 8)7|lyllemHHHE=) >, (47)

Now, the operator ¥;(t, s) is given by the variational constant formula:
t
U (t, s)y = Tyt 8)y +/ T;(t, 7) (= \E)Us(r, s)ydr, t> . (48)
This implies that

t
1Y (2, s)ylla < R||y|(ae(_’\1d+b)(t_s) -+-/ Rex\je(—’\ld"'b)(t_")||\Ilj(r, 8)y|ladT.
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Now, putting u(t) = (M40 || W, (¢, s)y|, We get
¢
u(t) < R||y|l« +/ ReXju(r)dr.
Hence, applying Gronwall’s Lemma we get that
u(t) < Rlyllae™ M), ¢ > s,

So
U.(t, s o <R ae(( ¢ d)/\J b)(t S) t>s.
” J(’ )y” = HyH 1 -

If we take € < £, then (Re — d)A; < 0. Using (48) again we get
195 (2, 9)ylla < R(t = 5)7*[|yllel N +00)
+ / CRes(t — 1) eI (7, )y adr
Now, putting u(t) = (t — 5)%eX4=b/D(=3) ||, (8, s)y||o we get
) < Rlyll+ Re, [

Applying Gronwall’s Lemma we get

t—s

) e%(t_T)u(T)d‘r.

T—S

u(t) < Rlyllexp{eRAi(t — ) [ (v~ 9)=eH=dr).
Since % < a < 1, then there exists a constant H > 0 such that
/t(r — s)_"e%(T_s)dT <H, t>s>0.
Therefore S

u(t) S RHy“eeRHAJ(t—s)'

Hence \
12 (t, s)ylla < Rlly|l(t — s) "M ERH=DF2)(E=3) 4 5

Now, if we take also € < %, then X\;(eRH — d) < 0.
Therefore, we get the following estimates:
(8,9l < Rllyllacz¢™), ¢ >, (49)
¥t s)ylla < Rlyl|(t— s)_aeg(t_s), t>s. (50)

Now, from (40) we get that

1wt s)zlle = D_I1%;( s) Pzl

o

[
Il
—_

R || P2

M

[
Il
Ja

= R Y|P = RRN)5) 2,
J=1
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So .
19(t, 5)z]la < Rljzllae2™), t>s.

In the same way we get that

19 (t, 5)2lla < R(t = )% ||2llae3™), ¢ > s.

4 Proof of Theorem 3.2

Since A(t) is periodic of period 7, it is well known that the fundamental matrix U(t) of the system
z' = A(t)z can be written as follows

Uty = N@t)e't, Nit+7)=N(), te R, (51)
where N(t) is a continuous matrix and L is a constant matrix.

Definition 4.1 The eigenvalues of the matriz L given by (51) are called the Floquet exponentes of
the system ¢’ = A(t)z.

Proof of part A).
Since the operators —Ag and A(t) commute, then the evolution operator T'(t,s) associated to

equation (22) is given by:
T(t,s)z = e~ A=Y YU~ (5)z = N(t)e A2 LU= N =1(4) ;. (52)
If a = max{ReA : A € 0(L)} < b < 0, then there exists a constant / > 0 such that
IU@UT (s)] < 1’79, > .
Hence, using (18) and (19) we get
IT(9)elle > Rllzlae ), ¢ >, (53)
1Tt 9)2le > RIZIE— 9=, ¢ > s (54)
Now, from Theorem 7.14 in [5] we have that the solution z(-) : (tg,00) = Z< of (21) is given by
z(ty = T(t, to)z0 + ttT(t, s)f(s, z(s))ds, t € [tg,+00). (55)
0

From here, the result follows easier than the proof of Theorem 3.1 part A).

Proof of Theorem 3.2 part B).

In this case D = dI + F with F = diag(e1, €2, -, €,) and ¢ been small enough. The problem (21)
can be written as follows

Z = (—.Ad + -A(t))z - AEZ + fe(t7z)’ Z(to) =2z 21 >0. (56)

Then the proof of part B), follows from the following lemma, in the same way as part A).
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Lemma 4.1 If||E|| = € is small enough, then there exists a constants R > 0 such that the evolution
operator ¥(t, s) generated by the equation

2= (—Aa+ A1)z, t>0, (57)

satisfies the following estimates:
1Pt 5)2lla <R |lzllaez®, t>s (58)
1Tt s)zlla <R l2fl(t—5)""e2(=2), t >, (59)

where maz{ReA : A € o(L)} < b < 0.

Proof We can look the equation

2= (~Ap+ A(t))z= (~Aa+ A(t))z — Agz, t>0, © o (60)
as an unbounded perturbation (—Ag is an unbounded operator) of the equation
2= (-Ag+ A(t))z, t>0. (61)

If T(t,s) is the evolution operator generated by the equation (61), then using the orthogonal
projections {P;};>1 given by (16) we get that

Ut s)z = i\I/j(t,s)sz, (62)
T(t,s)z = Y Tj(t,s)P;z. (63)

(%
Il
—

Therefore, ¥;(t, s) and T};(t, s) are the evolution operators for the following systems of ODEs:
y = [-X\dl+A({t)ly- NEy, y€Ran(p), j=12,..., (64)
y = [-NdI+A@®)]y, y€Ran(P)), j=1,2,.... (65)

On the other hand, using the formula (16) and that e~ 44! P;z = e~ %% P,z we get the following
estimates

le™ ¢ Pizlla < MI|Pjzllae™ ), > s, (66)
le™ A4 Pizlla < M(t—s)"||Ppzfle™7%), £ > . (67)
Since A(t) is periodic, we get that
Tj(t,s)y = e MU IN(@)e" "IN (s)y, ye Ran(P)), j=12,....
Therefore
IT5(t s)ylla < Rllyllael= 244000 >,
IT5(t,5)ylla < R(t =) *lyllel"HHH00E=) ¢ > .

From here, the remainder of the proof follows in the same way as Lemma 3.2.
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