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Existence, Stability and Smoothness of a Bounded Solution for
Nonlinear Time-Varying Thermoelastic Plate Equations

H. LEIVA AND Z. SIVOLI

Abstract

In this paper we study the existence, stability and the smoothness of a bounded solution of the
following nonlinear time-varying thermoelastic plate Equation with homogeneous Dirichlet
boundary conditions

ug + A%u+ a0 = fi(t,u,0) t>0, z€Q,
0y — BAO — aAuy = fo(t,u,0), t>0, z€Q,
0=u=Au=0, t>0, ze€d,

where a # 0, 8 > 0, Q is a sufficiently regular bounded domain in RY (N > 1) and ff, fs :
R x L2(Q)° — L2(Q) define by fe(t,u,0)(z) = f(t,u(z),0(z)), = € Q are continuous and
locally Lipschitz functions. First, we prove that the linear system (f; = fo = 0) generates an
analyitic strongly continuous semigroups which decays exponentially to zero. Second, under
some additional condition we prove that the non-linear system has a bounded solution which
is exponentially stable, and for a large class of functions f;, fo this bounded solution is almost
periodic. Finally, we use the analyticity of the semigroup generated by the linear system to
prove the smoothness of the bounded solution.
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1 Introduction

In this paper we study the existence, stability and the smoothness of a bounded solution of
the following nonlinear time-varying thermoelastic plate Equation with homogeneous Dirichlet

boundary conditions

utt+A2u+aA9:f1(t,u,9) t>0, e,
0, — BAO — aAuy = fa(t,u,0), t>0, e, (1)
f=u=Au=0, t>0, =€,

where a # 0, 8 > 0, Q is a sufficiently regular bounded domain in RY (N > 1)and u, 6 denote

the vertical deflection and the temperature of tlie plate respectively.



We shall assume the following hypothesis:
HI) ff, f§ : Rx LQ(Q)2 — L*(Q) define by f¢(t,u,0)(x) = f(t,u(z),0(z)), = € Q are continuous
and locally Lipschitz functions. i.e., for every ball B, in L2(§2)2 of radius p > 0 there exist

constants L1(p), L2(p) > 0 such that for all (u,0), (v,n) € B,
1/t w, 0) = £ (8 v,m) |2 < Li(p){llu = vllg2 + 116 = nll2}, ¢ € R (2)
H2) there exists Ly > 0 such that
| fi(t,0,0)|| < Ly, VEER, i=1,2. (3)

Observation 1.1 The hypothesis H1) can be satisfied in the case that fi, fo : R x R? — R are

continuous and globally Lipschitz functions with Lipschitz constants L1, Ls > 0. i.e.,

|fl(t7u79) - fl(tvvan” < Ll{|u - U|2 + |0 - 77|2}’ tvuav’97n € sz = 172 (4)

The derivation of the unperturbed (f; = 0,7 = 1,2) thermoelastic plate equation

wy + A2w+ a0 =0, t>0, ze9,
Gt—ﬂAG—aAwt:(), tZO, LL‘EQ, (5)
f=w=Aw=0, t>0, xz¢€d,
can be found in J. Lagnese [13|, where the author discussed stability of various plate models.
J.U. Kim [11](1992) studied the system (5) with the following homogeneous Dirichlet boundary

condition

f=—=w=0, on 01,

and he proved the exponential decay of the energy. Also, linear thermoelastic plate equations

has been studied in [22], [3], [4], [5], [15], [16] and [23] which conform a good reference.

One point that makes this work different from others authors works, is that here we study the
existence and stability of a bounded solution for the non-linear thermoelastic plate equation (1).
First, we prove that the linear system (f; = fo = 0) generates an analyitic strongly continuous

semigroups which decays exponentially to zero. Second, under some additional condition we prove



that the non-linear system has a bounded solution which is exponentially stable, and for a large
class of functions f1, fo this bounded solution is almost periodic. Finally, we use the analyticity
of the semigroup generated by the linear system to prove the smoothness of the bounded solution.

Some notation for this work can be found in [17], [18], [19], [20] and [1].

2 Abstract Formulation of the Problem

In this section we choose the space in which this problem will be set as an abstract ordinary

differential equation.
Let X = L?(Q) = L*(Q,R) and consider the linear unbounded operator
A:D(A) C X — X defined by Ap = —A¢, where

D(A) = H*(Q,R) N H(Q,R). (6)

The operator A has the following very well known properties: the spectrum of A consists of only
eigenvalues

D<M << <A = 0,

each one with finite multiplicity -, equal to the dimension of the corresponding eigenspace.

Therefore,

a) there exists a complete orthonormal set {¢y, 1} of eigenvectors of A.
b) for all x € D(A) we have

o0 Tn o0
Az = "M <200k > bnp = D AnEnz, (7)
n=1 k=1 n=1

where < -,- > is the inner product in X and

Tn
Ehx = Z <z, d)n,k > ¢n,k~ (8)
k=1

So, {Ey,} is a family of complete orthogonal projections in X and

z=> 2 Ex, ze€X.



¢) —A generates an analytic semigroup {e~4*} given by

o
e Ay = Z e M BT, 9)
n=1

d) The fractional powered spaces X" are given by:
X"=DA") ={x € X:> (A)”|Enz|* < oo}, r>0,
n=1

with the norm

oo 1/2
]l = | A"]| = {Z A72{"||1‘3n‘76|!2} , Te X,

n=1

and
ATz = Z A En. (10)
n=1

Also, for r > 0 we define Z, = X" x X, which is a Hilbert Space with norm and inner product

]

Hence, the equation (1) can be written as an abstract system of ordinary differential equation in

given by:

2
= HUH?“ + HUH27 <wW,v >p=< ArwyATU >+ <w,v>.
Zy

Z1 = X! x X x X as follows

u =0
v = —A%u+ oAl + fi(t,u,0) (11)
0 = —BAO — aAv + fo(t, u,6).

Finally, the system can be written as first order system of ordinary differential equations in the

Hilbert space Z; = X! x X x X as follows:
Z=Az+F(t,2) 2€ Zy, t>0, (12)

where F': R x Z7 — Z7,



and
0 Ix 0

A=| -A2 0 a4 |, (13)
0 —aA —pA

is an unbounded linear operator with domain
D(A) = {u € HY(Q) : u= Au =0} x D(A) x D(A).

>From the hypothesis H1) we get that F' is locally Lipschitz functions. i.e., for every ball B, in

Z1 of radius p > 0 there exists constant L, such that
|F(t,z) = F(t,y)|| < Lollz —yll, teR,z,y€ Z, (14)
and from the hypothesis H2) we obtain the following estimate

|F(t,0)]| < Lr =+2u(2)Lys, teR, (15)

wher () is the lebesgue measure of .
3 The Linear Thermoelastic Plate Equation

In this section we shall prove that the linear unbounded operator A given by the linear ther-
moelastic plate equation (5) generates an analytic strongly continuous semigroup which decays

exponentially to zero. To this end, we will use the following Lemma from [21].

Lemma 3.1 Let Z be a separable Hilbert space and {Ap}n>1, {Pnln>1 two families of bounded

linear operators in Z with { Py }n>1 being a complete family of orthogonal projections such that
AP, =PA,, n=1,23,... (16)
Define the following family of linear operators
oo
T(t)z =) e''Pz, t>0. (17)
n=1

Then:



(a) T(t) is a linear bounded operator if
[ < g(t), n=1,23,... (18)

for some continuous real-valued function g(t).

(b) under the condition (18) {T'(t)}+>0 is a Co-semigroup in the Hilbert space Z whose infinitesimal

generator A is given by

Az =) AnPnz, z€D(A) (19)
n=1
with
D(A)={z€Z:) [|AnPnz|* < 00} (20)
n=1

(c) the spectrum o(A) of A is given by

o(A) = | | o(4), (21)

n=1

where A,, = A, P,.
THEOREM 3.1

The operator A given by (13), is the infinitesimal generator of an analytic semigroup {T'(t)},~¢
given by

o0
T(t)z = Z eAjtsz, z€Zy, t>0 (22)
j=1

where {Pj}j>0 s a complete family of orthogonal projections in the Hilbert space Z1 given by

Ej 0 0
Pi=| 0 E 0|, ,j=12,...,00, (23)
0 0 E,
and
0 1 0
Aj = Bij, Bj = —)\3 0 a)\j s ] >1 (24)

0 —a)\j —ﬂ)\j.

Moreover, the eigenvalues o1(j), 02(j), 03(j) of the matriz B; are simple and given by:

o1(4) = =Xjp1, 02(4) = =Njp2, 03(4) = —Ajp3



where p; > 0,1 =1,2,3 are the roots of the characteristic equation
p° = Bp*+ (1+a*)p—p3=0,
and this semigroup decays exponentially to zero
IT@)]| < Me™*, t >0, (25)

where

p=Mmin{Re(p) : p*—Bp°+ (1+a)p— B =0}

Proof. Let us compute Az:

Az = —-A2 0 aA
0 —aA —pA

v
= —A%w + oA
| —aAv — BA0
[ Z;il Ejv
= — Z;.il )\?E]w +« Z;.ozl )\jEjG
—a )ity AEj = B35 AE6
[ EjU
= Z —A?ij + a)\jEjH

i=1 | —aAjEjv — ﬁ)\jEjG

o [ 0 1 0 E;

= > | -2 0 ay

0
7=1 | 0 —Oé)\j —ﬁ>\j 0
= ZAijZ'
7j=1

It is clear that A;P; = PjA;. Now, we need to check condition (18) from Lemma 3.1. To

> e 8

<

oMo
> e 8

Soo

this end, we have to compute the spectrum of the matrix B;. The characteristic equation of B;
is given by

A3+ BAAZ + X (L4 a®)A + BA% = 0.

A\° A\, o [ A B
(%) +2(5) +sarar(5) -0

Then,



Letting /\—); = —p we obtain the equation
P’ =B’ +(1+a*)p—-5=0. (26)

>From Routh Hurwitz Theorem we obtain that the real part of the roots p1, p2, ps of equation

(26) are positive. Therefore, the eigenvalues o1(j), 02(j) , 03(j) of B; are given by

o1(4) = =Xjp1, 02(5) = —Ajp2, 03(4) = —Ajp3, (27)

Since the eigenvalues of Bj are simple, there exists a complete family of complementaries projec-

tions {g;(4)}?_; in R3 such that

{Bj =o1(f)q1(j) + o1(5)q2(4) + o1(5)gs(4)
ePit = et (§) + e MiPlgy(5) 4+ e HiPstgs(j),

where ¢;(j), i=1,2,3 are given by:

) p2p3 — 1 et by _
a(j) = — - Ailps = p2)  paps—1—a®  alpr+ps—f)
(p1 = p2)(p1 — p3) L Na —a(pz+p3 —B) (p3—B)* —a?,
. [ p1ps—1 e 5 -
() = — - Ailps —p1)  prps—1—0o®  alpr+ps—P)
(P2 = p1)(p2 = p3) | Mo —alpr+ps—B) (p3—B)?—a?, |
. [ p1ip2—1 e 5 |
@) = —— — | Nl2—p1)  ppz—1-0®  alpi+p2-P)
(s =p1)los =p2) | 703 7 it pa— B) (ps— B)? — . |
Therefore,
Aj :gl(j)f)]1+01(j)F)]2+0'1(])F)]
At — e—A]—pltle + e—/\jpztpj2 + e—AjpatPjg,
and

o0
Az = {01(j)Pjz + 02(j) Poz + 03(j) Pjaz} (28)
j=1
where, Pj; = ¢;(j)P; is a complete family of orthogonal projections in Z;.

To prove that eAntp . Z, — Z satisfies condition (18) from Lemma 3.1, it will be enough

to prove for example that e *P?tgy(n)P,,n = 1,2,3,... satisfies the condition. In fact, consider



z = (21, 29,23)7 € Z such that ||z|| = 1. Then,
o oo oo
ol =Y NlE=? <1, Jlz2lk = Y 1Ejz2)? <1 and =)k =) 1Bz < 1.
j=1 j=1 j=1

Therefore, \;||E;jz1|| <1, ||Ejze| <1, |[Ejz3l| <1 j=1,2,.... Then,

e NP2gy(n) Poz))3, =

e 2Ap2t (p1p3 - 1)Enzl + p1>-\‘,;p3 Enz + %Enz?)

An(p3 = p1)Enzi + (p1p3 — 1 — @®) Epze + alpy + p3 — ) Enzs
MaEnz1 + —a(p1 + p3 — B)Enze + [(p3 — B)* — o?|Eyzs 7

(p2 — p1)*(p2 — p3)?

o
- + «a
Pt SN (oo~ DB+ PP By + LB )
j=1 J J

o0
+ e 2N | B (Anlps — p1)Enz1 + (p1ps — 1 — 0®)Ezy + a(py + ps — B) Enazs) ||
j=1

[ee]
+ e 2Anp2t Z ||EJ ()‘naEnzl + —a(p1 + p3 — B)Enza + [(p3 — 5)2 - a2]EnZ3) ||2
j=1

p1+ p3 o
Enzo + —
P An

+ e 2N\ (ps — p1)Enzi + (p1ps — 1 — o®)Epzaa(pr + p3 — B) Enzs|)?

= e 2202 (p1ps — 1) Ep2r + Epzs|?

+ 6_2)\np2t‘|)\aEnz1 + _Oé(pl + p3 — ﬁ)EnzZ + [(93 - 5)2 - a2]EnZ3H2

< e Pt p1ps — 1]+ p1 + ps + o]

B 2

_ 2
+ e P2t o+ alpy + p3 — B + |(p3 — B)? — @]

MPe2Anp2t,

IN

where M = M (a, 3) > 1 depending on a and 8. Then we have,

||e_)\np2tq2(n)Pn||Zl < M(aaﬁ)e_Anpﬁ? t>0 n= 1’ 2’ e



In the same way e obtain that

le™ " q1(n)Pallz, < M(a,B)e ™™, >0 n=1,2,...,
le™ ¥ q3(n) Pallz, < (e, B)e™, t20 n=12,
Therefore,
le" Pl < Ml B)e ™, £>0 n=1,2,...,
were

p=Amin{Re(p) : p* = Bp* + (1+a”)p— B =0}
Hene, applying Lemma 3.1 we obtain that A generates a strongly contnuous semigroup given by

(22). Next, we prove this semigroup decays exponentially to zero. In fact,

IT@)=> = Yl Pz
j=1

o0
< Dl P2
j=1
[e.o]
< Mo, )y ||Piz)?

j=1
= M?*(a,B)e” ||

Therefore,
T ()| < M(a, B)e ", t>0.

To prove the analyticity of {T'(¢)}+>0, we shall use Theorem 1.3.4 from [10]. To this end, it will
be enough to prove that the operator —A is sectorial. In order to construct the sector we shall

consider the following 3 x 3 matrices

1 1 1
K, = Anp1 Anp2 Anp3 ) (29)
ap ap ap.
p1 —lﬁ An P2 —2ﬂ An p3 —35 An
. 1 ail  —ai2  a13
K =—"—_| = — 30
n a(a, ), az1  G22 a3 |, (30)

asi —as2  a33



where

oy - apsp2(p2 — p3) a1y — apsp1(p1 — p3) ags = apzp1(p1 — p2)
(ps = B)(p2 — B)’ (p3 — B)(p1 — B)’ (p2 = B)(p1 —B)’
P aB(p2 — p3) 1y = aB(p1 — p3) - aB(p1 — p2)
(ps = B)(p2 — B)’ (p3 — B)(p1 — B)’ (p2 = B)(p1—B)’
asi = (p3—p2), as2=(p3—p1), ass = (p2—p1),

ala, ) = ap3p2 i ap1p3 n apap1  apip2  ap3pr P03

(p3—=B8) (=B (p2=0) (pr—=PB) (p3—B) (p2—0)

Then,
By=K, J,Kn, n=1,203,..., (31)
with
_ —Anp1 0
Jn = 0 _)\np2
0 0 —Anp3

Next, we define the following two linear bounded operators
Kp: XxXxX->X'xXxX, K;':: X! xXxX 5 XxXxX, (32)

as follows K,, = F:Pn and K, = K, P,. Now we will obtain bounds for |[K;1|| and [|]|.

Consider z = (21,22, 23)7 € Z; = X! x X x X, such that ||z||z, = 1. Then,

o oo oo
217 =D NNEzll? <1, fzll% =) 1Ezl* <1 and |23k =) [Ejzs)® < 1.
j=1 j=1 j=1
Therefore, \j||Ejzi|| <1, ||Ejz| <1, |Ejz| <1, j=1,2,.... Then,
2
1 a11bEnz1 — a12Ep 2o + a13bp 23
1K 2 kwxxx = —g —ag1 Bz + aeEypzo — agzEpzs

a(a, B)A7 az1Epz1 — aseEpzo + assEnzs Xx X
= a(Tlﬁ))\%HanEnZl —a19En 29 + a13EnZ3H2
+ CL(Tlﬁ))\%” —ag1FEnz1 +axnFEnzs — Cl23]57n23||2
+ m llag1Enz1 — asaEpnzo + a33En23H2

I'%(a, B)

<



Therefore,

N

1K I rsoxxx, xxxxx) < 5 (33)

Next, we will find a bound for || Kn||r(xxxxx, x1xxxx)- To thisend we consider z = (z1, 22, z3)T €

Z =X x X x X, with ||z]|z = 1. Then,

(0.)
Izl =D Bzl <1, i=1,2,3.
7j=1

Therefore, ||Ejz| <1, i=1,2,3, j=1,2,..., which implies,

E,z1+ Epzo + By 23

1Kzl 3axy = AnprEnz1 + AnpaEnza + AnpsEnzs
apiAn ap2in apsin
g Enatt EE En2y + 5 Enzs [l o
= AiHEnZl + E,z9 + En23||2
+  [[Anp1Enz1 + Ap2Enza + AnpsEnzs||
apiAp apaAn ap3y 2
+ E,z + E,z + E,z
Lyl S ey B
< Ti(a, B
Hence
[ Kl Lxxxxx,x1xxxx) < T2(a, B)An. (34)
Now, the matrix J,, can be written as follows
—Jn = diag [Anp1, Anp2, Anps] (35)
1 00 0 00 0 00
= A1 | 00 0|+ Xp2| 01 0| +ps| 0 0 0 (36)
0 00 000 0 01
= 11 + Anp2g2 + Auprai- (37)
Now,define the sector Sy as follows:
Se={AeC:0<]arg(\)| <m, A#0}, (38)

where

s
maxi—1,2,3{|arg(pi)|} <0 < 5.



If A € Sy, then A is a value other than A,p;,7 = 1,2,3. Therefore,

T\ 1 2 1 2
IA+Jn) yllF = ——F—=llayl
( ) ()‘_)‘npl)Z
+ eyl
()‘*)‘np2)2
1
+ ——llayl”
()‘_)‘np3)2
Setting
stup{L:)\ESQ n>1, i=1,2 3}
|>\7>\an| ) - 4y ) 4y )
yields
T\ L2 N\? 2 2 2
A+ Tn) yllP < oY laayll® + llg2yll® + [lgsyll®]
Hence,
— N
I ()\+ ) | < — |)\|, AE Sy
Now, if A € Sy, then
RO, —A)z = > (A+A4,) ' Pz
n=1
= Y K. (A +T0) K, Pz
n=1

This implies,

= — — \—1
IR A2 < > IEAPIEL P A+ Tn) ™ 121 Pazl?

n=1
<F1(77;7)>2( ) || ||2
La(n,y) /) \IA
Therefore,
R
IR(A, —A)[ < o A € Sp.

This completes the proof of the Theorem.



4  Existence of the Bounded Solution

In this section we shall prove the existence and stability of unique bounded Mild solutions of

system (12).

DEFINITION 4.1 (Mild Solution) For mild solution z(t) of (12) with initial condition z(tg) = 2o €

Z1, we understand a function given by

z2(t) =T(t —to)zo0 + /t T(t— s)F(s,z(s))ds, teR. (39)

to
Observation 4.1 [t is easy to prove that any solution of (12) is a solution of (39). It may be
thought that a solution of (39) is always a solution of (12) but this is not true in general. However,

we shall prove in Theorem 5.2 that bounded solutions of (39) are solutions of (12).

We shall consider Z, = Cy(R, Z;) the space of bounded and continuous functions defined in R

taking values in Z;. Zj is a Banach space with supremum norm
llzlle = sup{||z(t)]|z, : t € R}, z € Z.
A ball of radio p > 0 and center zero in this space is given by
BZ ={ze€Zy:||z(t)]| < p, te€R]}.
The proof of the following Lemma is similar to Lemma 3.1 of [20].

Lemma 4.1 Let z be in Zy. Then, z is a mild solution of (12) if and only if z is a solution of

the following integral equation

The following Theorem refers to bounded Mild solutions of system (12).



THEOREM 4.1

Suppose that F is Locally Lipschitz and there exists p > 0 such that
0<MLp < (u—ML,)p, (41)

where L, is the Lipschitz constant of F' in the ball ng. Then, the equation (12) has one and only

one bounded mild solution zy(t) which belong BZ'

Moreover, this bounded solution is exponentially stable.

REMARK 4.1 . For the existence of such solution, we shall prove that the following operator has

a unique fized point in the ball Bz, T: Bg — Bg

(T2)(t) = / T(t — s)F(s, 2(s))ds, tc€R.

—0o0
In fact, for z € Bz we have

ML,p+MLp

t
IT=(0)] < / Me M09 (L, 2(s)| + L} < =2
The condition (41) implies that

L ML
P + F<p

L,p+MLp < pp < p

Therefore, Tz € B,Z for all z € Bg.

Now, we shall see that T is a contraction mapping. In fact, for all z1, z9 € B/l; we have that

ML,

t
[T21(t) = Tz2(t)]] < / Me 9Ly z1(s) — za(s)llds < 21 — 22[lp, t€R.

Hence,

ML
HTz1 — TZQH[) < P p”TZl — 22”(,, 21,29 € BZ

The condition (41) implies that

ML
0<pu—ML, & ML, < u <+ M”<1.



Therefore, T has a unique fized point zy in Bz

() = (T)(8) = / " T(t— $)F(s, my(s))dsds, 1R,

—00

>From Lemma 3.1, zp is a bounded solution of the equation (39).

Now, we shall prove that zp(-) is exponentially stable. To this end, we consider any other
solution z(-) of the equation (39) such that ||z(0) — 2,(0)|| < 557. Then, ||2(0)|| < 2p. As long as
|z(t)]] remains less than 2p we obtain the following estimate:

t
12(8) = 2@ < [T (#)(2(0) — 2(0)) + /0 T(t —s){F(s,2(s)) = F(s,2(s))} ds
< Me "|(2(0) — 2(0))|| + /Ot Me Ly () — z(s) | ds.
Then,
Dz (t) — 2o(8)I| < M[|(2(0) = z(0))| + /Ot MerLy||2(s) — z(s)]|ds.
Hence, applying the Gronwall’s inequality we obtain

l2(t) = z(t)]| < MMM (2(0) — 2z (0)], ¢ € [0,t1)

>From (41) we get that ML, — p < 0. Therefore ||z(t) — zp(t)]| < p/2.

Hence, if ||z(t)|| < 2p on [0,t1) with t; = inf{t > 0 : |2(¢)|| < 2p}, then either t; = oo
or ||z(t1)|| = 2p. But, the second case contradicts the above computation, then the solution z(t)

remains in the ball ng for allt > 0.

So,

12(2) = 2 ()| < MM (2(0) — 2(0)) |, &> 0.
This concludes the proof of the Theorem.
THEOREM 4.2

Suppose that F' globally Lipschitz with a Lipschitz constant L > 0 and

> ML. (42)



Then, the equation (12) has one and only one bounded mild solution zy(t) on R.
Moreover, this bounded solution is the only bounded solution of the equation (39) and is
exponentially stable in large.
REMARK 4.2 . Condition (42) implies that for p > 0 big enough we have the following estimate:
0<MLp < (u—ML)p, (43)
>From here, in a similar way we can prove that the following operator is a contraction mapping
from Bg mnto Bg
t
(T2)(t) = / T(t—s)F(s,z(s))ds, teR.
—00

Therefore, T has a unique fived point zp in Bg

2p(t) = (T'z)(t) = /t T(t— s)F(s,zp(s))dsds, te€R,

—0o0
>From Lemma 3.1, zp is a bounded solution of the equation (39). Since condition (43) holds for
any p > 0 big enough independent of ML < u, then zy is the unique bounded solution of the

equation (39).

To prove that zy(t) is exponentially stable in the large, we shall consider any other solution

z(t) of (39) and the following estimate
12() = 2@ < [IT(£)(2(0) — 2(0)) + /O T(t —s){F(s,2(s)) = F(s,2(s))} ds|
< Me "[(2(0) — 2(0))l] +/0 Me M9 Ly |2(s) — 2(s)llds.

Then,

t
e|l2(t) — z(t)|| < M|(2(0) — 2(0))[| + / MLe"||z(s) — z(s)||ds.
0
Hence, applying the Gronwall’s inequality we obtain
12(2) = 2(B)[| < Me™E1%) (2(0) — 2(0))|, &> 0.

>From (43) we know that ML — pn < 0 and therefore zy(t) is exponentially stable in the large



COROLLARY 4.1 If F is periodic in t of period 7 (F(t+71,§) = f(t,§) ), then the unique bounded

solution given by Theorems 4.1 and 4.2 is also periodic of period T.

REMARK 4.3 . Let z, be the unique solution of (39) in the ball Bg. Then, z(t) = z(t +7) is also
a solution of the equation (39) lying in the ball Bg. In fact, consider zg = z,(0) and
t+7
t+71) = T(t+7)20+ / T(t+ 71— s)F(s.zp(s))ds
0
= Tt)T(r)z0 + / T(t+7—8)F(s.z(s))ds
0
t+1
+ / T(t+7—8)F(s.z(s))ds
= T(t) {T(T)Zo + / T(r — s)F(s.zb(s))ds}
0
t
+ / T(t— s)F(s.zp(s+7))ds
0
t
— T+ / T(t — 8)F(s.5(s + 7))ds.
0
Therefore,
¢
z(t) =T (t)z(T) + / T(t — s)F(s.z(s))ds,
0

and by the uniqueness of the fized point of the contraction mapping T in this ball, we conclude

that zp(t) = zp(t +7), te€R.

Observation 4.2 Under some condition, the bounded solution given by Theorems 4.1 and 4.2 is

almost periodic; for example we can study the case when the function F has the following form:
F(t,z) = g(z) + P(t), t,£ R, (44)
where P € Cy(R, Z1) and g : Z1 — Z1 is a locally Lipschitz function.

COROLLARY 4.2 Suppose F has the form (44) and g is a globally Lipschitz function with a Lip-
schitz constant L > 0 . Then the bounded solution zy(-, P) given by Theorem 4.2 depends contin-

uously on P € Cy(R, Z7).



REMARK 4.4 . Let P, P, € Cy(R, Z1) and z(-, P1), z(-, P2) be the bounded functions given by

Theorem 4.2. Then

zp(t, -, Pr) — 2t ) = / T(t — s)[g(26(s, P2)) — g(2(s, P2))]ds

+ / T(t — s)[Pi(s) — Pa(s)]ds.

Hence,
ML
[26(-, P1) — 26(+s Po)[p < Tsz(',Pl) — 2(-s P2)lo
M
+ —||P1 — Pfls.
1
Therefore,

M
P — 2( Py < — | Py — Py
l[26(:, P1) — 2p(- Q)Hb—u—ML” 1= Pallo

Lemma 4.2 Suppose F is as in (44). Then, if P(t) is almost periodic, then the unique bounded

solution of system (39) given by Theorems 4.1 and 4.2 is also almost periodic.

REMARK 4.5 . To prove this lemma, we shall use the following well known fact, due to S. Bohr
(see J. Hale [9] in the Appendiz). A function h € C(R; Zy) is almost periodic (a.p) if and only if

the hull H(h) of h is compact in the topology of uniform convergence.

Here H(h) is the closure of the set of translates of h under the topology of uniform convergence
H(h)={h,:7 €R}, h(t)=h(t+7),t R

Since the limit of a uniformly convergent sequence of a.p. functions is a.p., then the set A, of

a.p. functions in the ball Bg 1s closed, where p is given by Theorem 4.2.

Claim. The contraction mapping T given in Theorems 4.1 and 4.2 leaves A, inva-

riant. In fact; if z € A,, then h(t) = g(2(t)) + P(t) is also an a.p. function. Now, consider the



function

Ft) = (T2)(t) = / T(t —s){g(2(s)) + P(s)} ds

—0o0

= /t T(t— s)h(s)ds, teR.

—o00
Then, it is enough to establish that H(F) is compact in the topology of uniform convergence. Let
{Fr.} be any sequence in H(F). Since h is a.p. we can select from {h; } a Cauchy subsequence
{thj }, and we have that

t-i-Tk].

Fr, (t)=F(t+m) = T(t+ 1i; — s)h(s)ds

t
T(t — s)h(s + 7x;)ds.

/.
/

—00

Hence,

t
P, (0= Fa (O < [ eI s+ ) — s + ) ds

IN

t
u(i—s 1
ln, =l [ s = Sy = [

—00
Therefore, {kaj} is a Cauchy sequence. So, H(F) is compact in the topology of uniform conver-

gence, F is a.p. and TA, C A,.

Now, the unique fized point of T in the ball Bg lies in A,. Hence, the unique bounded solution

zp(t) of the equation (39) given in Theorem 4.2 is also almost periodic.
5 Smoothness of the Bounded Solution

In this section we shall prove that the bounded solution of the equation (39) given by Theorems
4.1 and 4.2 is also solution of the original equation (12). That is to say, this bounded solution is

a classic solution of the equation (12). To this end, we will use the following Theorem from [12].

THEOREM 5.1



Let A on D(A) be a closed operator in the Banach space X and x € C([a,b); X) with b < oo.

Suppose that x(t) € D(A), Ax(t) is continuous on [a,b) and that the improper integrals

/a  o(s)ds and / " An(s)ds

exist. Then
b b b
/m(s)dsED(A) and A/ x(s)ds:/ Az(s)ds.
THEOREM 5.2

The bounded Mild solution zy(t) of the equation (12) given by Theorems 4.1 and 4.2 is a classic

solution of this equation on R. i.e.,
2 (t) = Azp(t) + F(t, 2(t)), teR.

REMARK 5.1 . Let zp(t) be the only bounded mild solution of (12) given by Theorems 4.1 and

4.2. Then

z(t) = / T(t—s)g(s)ds = /000 T(s)g(t —s)ds, teR

—0o0
where g(s) = F(s,zp(s)). Therefore, g € Cp(R, Z1) and ||g(s)]| < ||glls, s € (—o0,t).

Let us put x(s) = T(t — s)g(s), s € (—oo,t). Then x(s) is a continuous function, and since
{T'(t)}t>0 is analytic, then

z(s) € D(A), for s<t.

Claim. Az(s) is continuous on (—oo,t) and the improper integral

t
/ Azx(s)ds, teR,

exists.

>From Theorem 3.1, there exists a complete family of orthogonal projections {q;(j)}i_, in R?

such that

{ Aj =o1()a(§) + o1()ad) + 01(i)as(5)
et = e NiPlgy () + e NPlga(j) + e NP lgs(j),



Hence,

oo
Az = 3" {01(j) Pz + 02(j) Paz + 03(j) Pjaz} (45)
j=1
and
o0
T(t)z = Z {e_AJ'pltlez + 6_>\jp2t.Pj22 + e_AjPBtPjgz} ,
j=1

where, Pj; = q;(j)P; is a complete family of orthogonal projections in Z;.

Therefore,
Az(s) = {—Ajple_Ajpl(t_s)leg(s) — Ajpae ) piag(s) — >\j/03€_’\jp3(t_s)pj3g(s)} :
=1
So,

[Aa(@)]] < max {x;]pfe 2RI < i =1,2.3.} g

Then, using the dominate convergence theorem, we get that Ax(s) is a continuous function on

(—00,t). Now, consider the following improper integrals:
t o]
/ Azx(s)ds = / AT (s)g(t — s)ds
—00 0
oo ©©
N / > A-Aipre NP Pig(t — s) — Ajpae NP2 Piag(t — s)
0 “
7j=1
— Ajpae NP Piag(t — s)}ds
& o0 00
= Z{/ —)\jple_)‘jplspjlg(t —s)ds — / /\ije_/\jP%f)ng(t — s)ds
= Jo 0
o0
[ N Pt - s)ds).
0

On the other hand, we have that

H/O —Ajpie NP Pyg(t — s)ds|| < /0 Mjlpile ™ RAP3 | Pisg(t — 5) | ds
i
< 9llb-
Refor) !

Therefore, the improper integral

t
/ Azx(s)ds, exists.



Now, from Theorem 5.1 we obtain that

/t x(s)ds € D(A), and A/_tooa:(s)ds = /_too Ax(s)ds.

—00

1.e.,

/ T(t — s)g(s)ds € D(A), and .A/ T(t—s)g(s)ds = / AT(t — s)g(s)ds.

—00

Now, we are ready to prove that zy(t) is a solution of (12). In fact, consider

LB — o (t 1 [tth 1 [
W=l L[ rsn - gonas 1 [T gt
h hJ_ o hJ_ s
T(h) — I t 1 t+h
_ (l%f_)/ Tﬁ—sﬁ@ﬂ&+ﬁ/‘ T(t+h—s)g(s)ds.
—oo t
Using the definition of infinitesimal generator of a semigroup and passing to the limit as h — 0T
we get that
t
() = A / T(t — 5)g(s)ds + T(0)g(t).
So,

2 (t) = Azp(t) + F(t, z(t)), teR.
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