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ABSTRACT

The paper deals with branch & bound (B&B) algorithms appropriated
for control optimization of discrete event processes of some class.
The definition of multistage dgcision process is given as a special
form of knowledge-based model. It is a basis for general classifica-
tion of B&B algorithms and for more detalled classification of lower
bounds. The domination rules for lower bounds are defined. An exam-

ple is given.

1. INTRODUCTION

The paper deals with branch and bound method (B&B) applied to control opti-
mization of some class of discrete processes, namely so-called discrete
determinable event processes (DDEP). The DDEP are formally defined in the
previous paper of the author (Dudek 94) thus the paper is continuation of

the other paper.

As a discrete determinable event process we mean all possible sequences of
events that occurrences are not spontaneous, but depend on sequence of
decisions i.e. depend on control. Both events and decisions can have diffe-
rent interpretation. The examples of control of‘DDEP include control of
discrete manufacturing processes (with no disturbances), determining the
optimal tour of salesman, scheduling programs processed by computers and

many other combinatorial optimization problems.

There are three kinds of papers connected with the branch and bound method

(B&B). The very general ones (Kanal 1988) (artificial intelligence level),



the papers considering the method applied to some class of problems (e.g.
defined by means of the discrete programming) and the papers presenting
algorithms for fixed, single problems. The papers dealing with B&B applied
to optimization of control of discrete events processes, particularly dis=
crete manufacturing processes, are usually of the third kind (Ignal 1965;
Held 1971; Schrange 1972; Grabowski 1977, 1978, 1984). It is caused by the
fact that there was no general, universal model enabling presenting all

these problems.

The particular papers used different models and often used a verbal descri-
ption only. Different algorithms were frequently presented for the same
problems but the lack of uniform formalization makes determination of for-

Al

mal differences between their conceptions impossible.

In contfary to the previous papers this one belongs to the second group and
is aimed at generalization and formal discussion-of the basic construction
of the given there algorithms. A new classification of fundamental concep-
tion of B&B algorithms is presented, different types of lower bounds are
formally defined and domination rules for lower bounds are defined. The
paper is based on the general mathematical model that has been introduced
by the author (Dudek‘1988;1989) and which modified version is presented in

the paper "Discrete determinable processes - Compact knowledge-based model”

2. MULTISTAGE PROCESS AS A SPECIALIZED FORM OF KNOWLEDGE BASED MODEL

The notion of a multistage decision process is widely used in optimization,
but its idea has been introduced by means of examples rather than by a for-
mal description. Let us recall the definition of multistage process given

in the previous author paper.

Definition 1. Multistage decision (constructing) process is a process P
defined as a six-tuple (U,Y.yo,f,YN,YG) where the individual elements are
defined as follows: U is a decision set, Y 1is a set of states, yo,YN,YG
are distinguished initial state and sets of not admissible and goal states,
respectively, f 1is a partial function f : Ux Y » Y defined by means

of the function g : Y ~» 2U in the following way:

(u,y) e Dom f e u € gly).



Function f was defined as a partial function. This is so in order to deal
with all the limitations concerning the decisions in the current state in a
convenient way. This is done by means of the so-called sets of possible

decisions in a state y , denoted as Up(y)_and defined as:
Up(y) = {ueU: (uy) € Dom f}.

Thus function g(y) determines the decision subset Up(y), for which

function f 1is determined in the state y.

G
the complete model constitutes a specialized form of a knowledge-based

The sets Yn’ Y. and Up are defined by means of logical formulae. Therefore,

model.

It is easy to see that the model of DDEP given in the previous paper is a
special ‘kind of the multistage decision (construction) process. (The nume-
rical, monotonously increasing coordinate t is assumed for the DDEP

model).

Let us recall that the task of optimization of control of DDEP lies in fin
ding of such an admissible decisions sequence U that minimizes a certain
criterion Q (thus it is represented by the pair (P,Q)) and a defined
problem of control obtimization is the set of optimization tasks that have

common (parametric) description.

2.1. Types of multistage processes

It should be noticed that there are many problems of which the searched
control sequence u can be generated with use of more than one multistage

process.

In order to illustrate it, let us present two multistage processes for tﬁe
salesman (salesperson) problem. It is one of the oldest problems in network
optimization. The statement of the traveling salesman problem is simple.

A salesman must visit every city in his territory exactly once and then
return to his starting point. Given the cost of travel between the pairs of
cities, how should he plan his itinerary so that he visits each city exac-
tly once and so that the total coast of his entire tour is minimum? In net-
work theory terms, the problem is to find a minimum-weight cycle of lenght
n in a given weighted graph of n nodes (minimum-weight Hamiltonian

cycle).



The problem, presented by.means of production terms, is as follows.

The}set of jobs Z = {1,2,..n} is to be performed by means of one machine
but retooling is required whenever a job is changed.

Relatiﬁn R ¢ ZxZ determines the poosible direct sequence of two jobs. The
function T determines for each pair (i,J) ¢ R the sum of retooling time and
time of performing the job ' j . Time of retooling depends on the both jobs.
One should find the admissible sequence (permutation) of the jobs so that
the total time is minimal. This permutation corresponds to the searched

~

control sequence u.

The very same permutation can be specified in different ways e.g. by giving
its succeeding elements or by giving the set of pairs of neighbouring ele-
ments. Thus we can propose at least two multistage processes for construc-
ting the permutations. In the first process, a value of a decision is the
succeeding element of the generated permutation (name of the succeeding
job). A value of decision of the second process is a pair (k,1) € R, and
each goal state of the process defines any admissible permutation.

Let us give the processes for the selesman problem

Process I (natural process)

Let us assume the additional job, denoted as O-th job, and enlarge the

relation R and the function <t 1in the following way:
vjeZ (0,j)eR , VjeZ =(0,j) =0

(for the sake of simplicity the performing time of the first job is taken

into account at the last step)

The decision consists in determinimg the next job to be performed. Thus,
the decision value is the.name {(number) of the chosen job.

The proper state x 1is defined by the set of completed jobs, the job per-
formed as the last one, and the job performed as the first one.

Formally:

the decision set U =27 v {0}

the state set X = X°x Xlx X2 X = (xo,xl,xz) where

a value of x1 is the number of the last job, a value of x® is the set of
all completed jobs apart from the last one, and a value of x2 is the number
of the first job,

the initial state: xo=(z,0.0) to=0



the set of possible decisions Up(x) ={jez\ (x% (xl)) : (xl,J) € R},

the algorithm of transition function is as follows:

o _ _ 1 _ 2 . _
xi+1— o , xi+1 = ui , xi+1- ui if i=0
fx(ui,xi) i X =x°v { xl) x1 =u x2 = x2 if i=0
i+1 Ti [ A T e TS TS B |

_ 1
At(ui,xi) = T(xiﬂui)

the definition of the set of goal states does not depend of time, thus

Sg = {(x,t) : x € X.) where X.= {(xo,xl,xz) : %% = |z|

and (xl.xz) € R},
the definition of the not admissible states SN also does not depend on
time thus it is enough to define the set of not admissible proper states

1

X, = (xp,x ,xz) : lxol = |Z| and (xl,xz) ¢ R}

N

Proces II (loose process)

Let us define the elements of another miltistage process P =(U,Y,y°,YN,YG).
Let us assume that the value of a decision u 1is a pair of jobs (i, j)
such that j-th job is performed just after the i-th one. Thus U = 7Zx Z .
A state y 1is defined by a subset of the fixed (by earlier decisions)
pairs of jobs. Thus the initial state y, = @

The next state is defined Yiep= ViV (ui) .

A goal state corresponds to the set of n-1 palrs such that define one
cycle.

A not admissible state corresponds to a set of pairs that constitue any
subcycles, or the pairs such that the first elements or the last elements

of some pairs are the very same.

Now, Let us distinguish two basic ways of constructing the searched control
sequence. The first one lies in recurrence generation of control sequence
according to the model of DDEP, (see the first process) the second one - in

the construction of the sequence by the determination of its elements in



any order different than the order of occurrence in the sequence u (see the
second process). The multistage process of control sequence generatioh

(following fﬁeiDDEP model) will be called a natural process, whereas other

multistage construction processes will be called multistage loose

processes.

2.2. Properties of multistage processes

Now we define some properties that are vital for synthesis of B&B algo-
rithms. The properties refer both to loose and natural process. Let us
denote: ; - a trajectory of cohsidered multistage process, n - a number of
the last state of a trajectory, U - set of all decision sequences (admis-

sible or not admissible ones) of process P.

Definition 2. The criterion Q is separable for process P if for each

control sequence uelU it can be computed in the following way:

Qo = constant, in particular Qo =0

Qi+1 = fQ(Qi’ui’yi) for 1i=0,1,..n-1, and Qn = Q, where Qi’ for i >0
denotes the partial criterion value computed for i-th state of considered
trajectory and defined as follows:

Q1 = Q(u’) where u = (uo....ui_l) is the first part of sequence u, fQ
is some partial function fQ tRxUxY» > R»determined for the same
pairs (u,y) as the transition function, that is:

Dom fQ = {(a,u,y) e RxUxY:ye YP , UE€ Up(y) , a € R}, where YP is

a set of states of all trajectories of process P.

Let AQi denotes the increase of criterion value in i-th state of a fixed

trajectory of process P : AQi = fQ(Qi’ui’yi) - Qi

Definition 3. The separable criterion Q 1is additive if AQi depends

only on u, and yi (does not depend on Qi ) for each 1i=0,1, i.e.. Qi+1

i
=0Q; + 8Q;(uy,y,)

Definition 4. The separable criterion Q 1is multiplicative if it can be

recurrently calculated for consecutive states of trajectory ; by means of
i = 601- 602'...- 6Qi where 601 = 60(ui

function for i =1,2,.n and Qo = 1.

formula Q ) 1is given

-1"Yi-1



Definition 5. The separable criterion Q 'is monotonically increasing

along each trajectory of process P if Qi+1 z Qi for each control

sequence u € U .

In case of strong inequality, we say>about-exact monotonicity.

It results from the above that an additive criterion is exact monotonically
increasing iff AQ > 0 and a multiplicative criterion is exact monotoni-
cally increasing iff 8Q > 1 (if AQ<0 and 0<8Q<1 then the criterion is

monotonically decreasing).

Each of the definitions refers to whole problem (P, @) 1if the property
occurs for all the tasks (P,Q) € (P,Q).

Definition 6. Process [P 1is static with respect to optimal solut&on if

for each individual process P € P the following condition occurs: if u
is an admissible decision sequence then the sequence u' , obtained as a
result of transposition of any two decisions in the sequence u , is also
the admissible sequence for the process P , and the criterion value for u

is equal to the criterion value for u.

The loose process for salesman problem, which is presented former, is an

example of a static process.

3. CLASSIFICATION OF ALGORITHMS

Generally speaking, B&B method lies in the construction of a decision tree,
the nodes of which correspond to the sets of objects of the same type as

the searched solution of the problem. By way of eliminating the nodes, the
successors of which do noF contain admissible or better than the best solu-

tion, the number of calculations is reduced.

The necessity of introducing algorithms classification within the branch
and bound method has been observed by several authors (Mitten 1970; Kanal
1988). Usually the classification is based on the following elements: sele-
ction rule applied to the choice of a next node for branching, branching
rule, lower bdund, upper bound, elimination rules of nodes and computatio-
nal parameters determining maximal error, maximal computing time, maximal

size of the set of active nodes etc.



According to the author, to compare and analyse the ldea of algorithms, the
definition of the set of objects assigned to the nodes (and the connected
with it branching rules) is most important. Distinguishing among these sets

makes the algorithms classification ﬁoré legible.

Let us introduce the general classification of B&B algorithms optimizing
control of DDEP. The classification is presented in Fig.1. It utilizes

the former division of multistage processes.

B&B ALGORITHMS OPTIMIZING
CONTROL OF DMP .

IMPROVING ALGORITHMS CONSTRUCTING ALGORITHMS

/

ALGORITHMS USING
DECOMPOSITION

ALGORITHMS USING NATURAL
MULTISTAGE PROCESSES

ALGORITHMS USING LOOSE
MULTISTAGE PROCESSES

Fig. 1 Division of B&B algorithms appriopriated for optimization of DMP

control.



The improving algorithms start from a certain admissible solution (or a
certain object of the same type as the admissible solution), the elements
of which are changed in the succeeding iterations. Algorithms adding some
solution elements, without iqitiél séttings, are called constructing

4

algorithms.

Let us denote A(w) - a set af objects (solutions) connected with the node
w of a decision tree of a B&B algorithm. It should be noted that there is
often more than one way of défining the set of objects A(w). On one hand,
this definition may be conné@ﬁed with the way in which we try to reach the
searched object, and so depgﬁds on whether the algorithm belongs to the
group improving or construcf?ng the solution; in the latter case also on
the definition of the used typevof multistage process and its properties.
On the other hand, however, thanks to the common DDEP model we ma§ unifor-
mly define the objects connectedeith each node of the tree, regardless of
the algorithm. Since the searched object is a control sequence of some
DDEP, a subset of control sequences of the process is connected with each
node. Therefore, each definition of set A(w) may be referred to the uni-
versal definition expressed by means of decisions sequences subset. Thanks
to this it is possible to carry out purely formal comparison of various

algorithms designed for the same problenm.

Let us consider constructing algorithms using a multistage process. Some

initial part of decisions sequence of the constructing process is connected
with each node of decision tree. This sequence, now called a characteristic
sequence of the node, determines the set A(w). In the case of natural pro-
cess the set A(w) contains certain control sequences with the first part
the same as the characteristic sequence. In the case of loose process the
set A(w) contains control sequences which may be constructed by the

enlongation of the characteristic sequence.

Let us consider the branching rules. There are two basic situations. Let

us discuss them for the natural process.

1.The set A(w) contains all decision sequences which the initial part over-
lapes the characteristic sequence for a given node. Obviously, there is
only one branching rule preserving the definition of the set A(w) of this
type. According to the rule, a set of sequences u e U that have common

initial part longer by one element is assigned to a successor of the node




w (Ignal 1965). The additiohal elements (decisions) are different for the

different successors.

2. The set A(w) does not contain all above defined sequences. It is addi-
tionally defined by giving the subset of decisions which cannot appear in
the further part of the construction. The branching rule distinguishes two
successors: first - in which characteristic decision sequence is broadened
by a new decision u’ , aﬁd the second one - containing sequences, the
initial part of which overlaps the characteristic sequence, but in which
the decision u’ will not appear. Such a branching rule can be applied

only for the process that is static with respect to optimal solution.

The above rules may be expressed analogously for the loose processgs. The
algorithm for salesman problem presented in (Systo 1983) is an illustration
of application of the second rule to the loose processes. Admissible solu-
tion, if exists, are ascribed to the nodes that are leaves of the decision

tree.

Improving algorithms (Grabowski 1977, 1978, 1984) lie in the modification

of an admissible solution. The set A{w) is determined by:

- some admissible solution that is characteristic of the node,

- rules determining possible modifications of this solution, in most cases
defined in the same way for all the nodes,

- information limiting the modifications and preventing new generations of

the same nodes.

4. LOWER BOUNDS

4.1. Classification of Lower Bounds

The concept of creating the lower bounds significantly depends on the fact
to which of the above mentioned types belongs the analysed algorithm.
Taking into account the way of creating, the following groups of lower

bounds can be distinguished:

1) bounds obtained as a partial value of monotonously increasing criterion,
calculated for the some part of the control or decision sequence of a suit-

able multistage process (in particular, for the initial part of the

10



sequence),
2) bounds obtained as a result of solution of another problem or task,

3) bounds obtained from the combination of two former types.

Now, let us give some theorems referring to the first group. The similar
statements are presented in (Pearl 1984) but for the state graph model
only.

Let L(w) denotes the lower bound for the node w of the decision tree.

Theorem 1 For each problem (P,Q), where P is a multistage process and
@ - minimized criterion exactly monotonously increasing along the trajec-
tory of the process, there may be applied a B&B construction algorithm with
lower bound equal to the partial value of criterion @ (in case éf maximi-

zation the criterion must decrease).

Proof. The theorem refers both to an additive and to a multiplicative
criterion. L(w) = Qi< Qi+éQi+1+AQ

= < . . .
L(w) Qi Q.1 601+1 6Qi+2 cen
monotonicity of criterion (AQ >0 and &Q > 1).

i+2+...AQn_1 in the first case and

°60n in the second case, because of exact

Although in the case of non-exact monotonicity the theorem holds true, yet
the efficiency of recurrent algorithm lowers because for each succesor w’
of the node w in the decision tree the relation L(v') = L(w) holds and
the elimination activity of the lower bound is much weaker. For this reason
the construction algorithm with lower bound of this type should not be
applied. The algorithm defined in theorem 1 is the simplest one in the
analysed class. It uses minimum information. Obviously, using more informa-

tion we obtain more efficient algorithms.

Theorem 2. For each problem (P,0), where P is a multistage process and Q
- minimized criterion additively separable for the process, there may be

applied B&B algorithm with lower bound equal to the sum of partial value of
criterion Q@ for the state Y and lower estimation of criterion for the

i
final sections of trajectories starting in the state Yy -

Proof, as obvious, will be ignored.

Theorem 3. let (P,Q) be a problem where @ 1is the minimized criterion
multiplicatively separable for the process P and BQi > 0 for each pair

(u,y) such that the transition function is determined for it. The construc-

11



tion B&B algorithm exists for the problem,where the lower bound is equal to
product of the partial value of criterion Qi for the state Yy and lower
estimation of criterion for the final section of trajectories starting in

the state yi.

Proof. Let R(yi) denotes the lower estimation. The theorem follows from
the fact that the value of partial criterion Qi is positive for each
state. Thus:

L{w) = Qi- R(yi) = Qi- 8Q

-8Q .+38Q_.

-6Qn because R(yi) = 8Q i+2" n

i1 i+1

Above theorems were formulated for an arbitrary multistage process. It must
be stressed, however, that even if for the construction of admissible con-
trol sequences of some DDEP we may use a loose process, the criterion may

be not separable for this loose process. Therefore such a multistage loose

process- can be used only as auxiliary one.

4.2 Second Group of Lower Bounds

Let us consider the second group of lower bounds. In this case, one must
pay attention that the lower bounds for a task differ from the lower bounds
for a whole problem. Fig. 2 presents the types of lower bounds obtained as

a result of change of model but only for a task.

Let us introduce some formal distinctions of relaxation types. We say that
the task A’ 1is relaxed task in relation to the task A if the set of

admissible solutions of the task A’ contains the set of admissible solu-

tions of task A. As we consider only the problems in which the searched
object is a decision sequence of a multistage (natural or loose) process,
so in the discussion over relaxation of the task we will employ the follo-

wing definition of process relaxation.

~

let P = (U,Y,yo,f,YN,YG) be an individual multistage process and Gd’Yd
be the set of admissible control sequences and the set of admissible traje-
ctories respectively. Let us recall that the transition function f is
defined by means of function g : Y =+ ZU , defining a subset of possible

decisions in the state y.

Definition 7. Relaxation of an individual process P 1is a modification of

the process lying in such a change of definition of any of U,YN,YG sets or

12



function g , that the set. of admissible control sequences Gé of the new
process P’ 1s not less than the original set Gd and, moreover, Yﬁ <
YN, YG S YG'

tive modified elements), whereas the remaining elements defining the

Up(y) < U;(y) for each y € Y (prim values denote respec-

process stay unchanged.

As the individual process P uniquely defines the task of searching for
the admissible solution, therefore defining the types of process relaxation

we define the types of task relaxation.

a. Relaxation consisting in the reduction of a set of not admissible states.
Let the set of not admissible states be defined as an alternative of predica-
tes YN ={yevY: wl(y) v wzly) v ...wN(y)} . This set may be decreased by
omitting at least one predicate in the definition or by a suitable change of

its data.

b. Relaxation consisting in in enlargement the set of final states. Let the’

set of final states is defined by means of predicates conjunction YG ={y €

Y : ¢ly) n¢ly) n ...¢(y)}. This set may be enlarged by omitting at least one
of the predicates in the definition or by a suitable change of its data.

c. Relaxation lying in the modification of definition of sets Up. Let the
sets Up are defined by means of predicates conjunction Up(y) = {ueU:
ul(u,y) n uz(u,y) n ...up(u,y)}. This sets may be enlarged by omitting at
least one of the predicates in the definition or by a suitable change of

its data.

Relaxation can be also made by means of adding some predicates but it cannot
be done automatically.

In particular, when the data are changed, some predicate may happen never

to fulfill for the process. It may be removed as a redundant then. In this
case the change of data causes the change of form (scheme) of definition of

a given set. This has been represented on Fig. 2 by the broken line (1).

Let us notice that, due to the modification of the definitions of sets
YN’YG and Up , some state coordinates appearing in the deleted predicates
may turn out to be redundant in the model of relaxed process. For this
reason, the definition of the set of states, and consequently the defini-
tion of the transition function may be also changed. This has been repre-

sented in Fig. 2 by the broken line (3).

13



If the control sequence_my.be'constructed by means of various multistage
proéesses, then the type of relaxation depends on the used process.
Therefore we may distinguish: .

- task relaxaﬁion resulting from the relaxation of multistage natural
process,

- task relaxation resulting from the relaxation of multistage loose
process; here the type of relaxation additionally depends on the chosen

loose process.
Now let us define the problem relaxation.

Let us recall that the process P is defined with use of paremeters. When
the parameters are replaced by data, then we obtain an individual process
P (instance of problem). Let P(D) denotes the individual process P € P

obtained for the established data D (data assignment).

Definition 8. Process [P’ 1is relaxed in relation to process P if for

each data assignment D , the individual processes P’ (D} € P’ and P(D) € P

are the pair of processes such that P’ 1is relaxed in relation to P.

Definition 9. Problem A’ is relaxed in relation to problem A if there

exists a pair of processes P’ and P defining the sets of admissible
solutions of problems A’ and A, respectively, and such that process P’

is relaxed in relation to P.

To sum up, we may distinguish the types of relaxation taking into account:
a) a kind of the used multistage process,

b) kind of limitation modified in the process.

4.3 Lower Bounds Domination

A good lower bound should possibly best approximate the criterion value and
not require much calculation. Different lower bounds can be proposed for a
given problem. Their domination is usually presented by, so-called, graph
of domination relation, i.e. such a graph that particular lower bounds are
ascribed to its nodes. The lower bounds are coded by means of graphical
symbols. The symbols are set specially for the considered problem (Potts
1980; Grabowski 1984). Domination graphs are constructed separately for the

particular problems.

14



LOWER BOUNDS FOR
OPTIMIZATION TASKS

2 /

LIMITATIONS OBTAINED
AS A RESULT OF 3
CRITERION CHANGE LIMITATIONS OBTAINED
AS A RESULT OF
e INDIVIDUAL PROCESS CHANGE
DATA
CHANGE 6 I
s DATA
CHANGE OF CRITERION CHANGE
ALGORITHM
9 . 7 v
RELAXATION | RELAXATION
BY DATA | OF PROCESS P
CHANGE
10 I g I
RELAXATION OBTAINED BY CHANGE OF
CHANGE OF DEFINITIONS OF: PROCESS P
SETS OF POSSIBLE DECISIONS, STRUCTURE
SET OF NOT ADMISSIBLE OR g
FINAL STATES
12 & 11 v
CHANGE OF DEFINITIONS OF STRUCTURE CHANGE
DECISION, STATE OR TRAN- |¢-Z--|BY DATA PROPERTIES
SITION FUNCTION ALGORITHM CHANGE

Fig.2 Types for lower bounds for a task, obtained as a result of its model
change. The broken lines indicate additional consequences of some changes.

15



Thanks to the introduced classification of lower bounds, we may formulate
general rules satisflied by the domination relations regardless of the

analysed problen.

Let us consider a task (P,Q). Let L(w) denotes the lower bound for the
node w of the decision tree of B&B algorithm. We say that the lower bound
L' dominates lower bound L 1if for each node ww of the decision tree the

following holds: L’'(w) z L(w).

We can distinguish the following domination rules. When discussing the
change of process, criterion and data we will mean change in the desired

direction.

a) The bound obtained as a result of a change of the criterion and a
change of the process is dominated by the bound obtained as a result of a
change (the same) of criterion only or a change (the same) of the process

only.

b) The bound L’ obtained as a result of a change of the process struc-
ture and a relaxation of process (meaning def. 7) is dominated by the bound
L. obtained from a change (the same) of the process structure only or as a

result of only a relaxation of process.

c) If the bound L is obtained as a result of omission of some predicates
in the definition of sets YN,YG,Up and the bound L’ is obtained as a
result of omission besides these predicates still further predicates, then
bound L dominates bound L’ (speaking about definitions of the mentioned
sets we mean the previously given alternative form in case of set YN and

conjunction form in the case of sets YG and Up).

d) The lower bound obtained as a result of relaxation of the individual
process P by missing a predicate in the definition of sets YN’ YG or Up
is dominated by the bound obtained as a result of change of data only,

obviously the data appearing in this predicate.

S. EXAMPLE

To illustrate the introduced division of lower bounds, let us refer it to
the exemplary limitations for the flow-shop problem with the general mini-
max objective function, given in Grabowski (1984). The flow-shop problem in

16




the form n/m/P,r/fmax may be formulated in the following way. There is
given n-elements set of jobs which are to be performed by means of m-
element sequence of machines M. tach Jjobs consists of m-element sequence of
operations which are to be performéd on the subsequent machines. Times of
performing subsequent operations. of each job are known. Relation »> of
partial order in the set of jobs is known. For each job, e.g. i-th one,
there is determined a nbn-decreasing function fi : Cim + R representing
the cost connected with completion the job in time Cim . The sequence of
the jobs fulfilling the requirements of partial order should be find, such

that f = max f,(C, ) reaches minimum.
max i 7im

Grabowskil (1984) has given an algorithm which may be treated as an impro-
ving algorithm. Basing on the verbal description of the problem, there were

determined the following lower bounds defined by:

a) relaxation of operational capacities of machines,
b) relaxation of time of operation,

c) relaxation of the function of job costs,

d) relaxation of sequential bounds (of partial order),

e) relaxation of the number of jobs,

Now let us present their position in the scheme of laower bounds given in

Fig. 2.

ad.a)

Relaxation of operational capacities of machines consists in the admittance
that for certain selected machines (with limited flow capacity equal to 1),
the number of operations performed simultaneously may be arbitrary. It

causes a change of the algorithm of transition function, therefore corres-

ponds to block 12. . *

ad.b)
Relaxation of time of operation consists in the assumption of an uniform
(minimum) time of duration of all operations performed on certain machines.
It signifies the introduction of an additional property fulfilled by data,
and it causes a change of the algorithm of the transition function. It

corresponds to block 11.

ad.c)
Relaxation of the function of job cost lying in the assumption that the

function of cost of all jobs are the same and it is equal to
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-
f (t) = min f,(t) Ost<ux
1=i=n

corresponds to block 2.

ad.d)
Relaxation of partial order i.e. assumption that » = @ corresponds to the
relaxation of process. It causes a change of definition of the sets Up ,

and it is represented by block 10.

ad.e)
Relaxation of the number of jobs lying in determination of lower bound for
a certain subset of jobs Z’ ¢ Z corresponds to the process relaxation lying
in the change of definition of the final states set, and is represénted by
block 10.

6. CONCLUSIONS

In the paper the formal discussion of B&B algorithms optimizing the control
of discrete determinable processes are discussed. Two main definitions
constitute the formal basis for presented consideration: the definition of
discrete determinable event processes given in the previous lecture and the
definition of multistage decision process. Both the notions are defined in
terms of knowledge-based models.

Then a classification of lower bounds is given. With regard to the logical
approach, the classification can be carried out on the more detailed level
and it is utilized for defining the rules of the lower bounds domination.
It is very essential for computer decision support systems, especially with

respect to the possibility of automatic generation of lower bounds.
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