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Abstract. 1In this paper we generalize the notion of semigroup
T, (t > 0) and infinitesimal generador A on a Banach space X
to the notions of quasi-semigroup K(t,s), (t,s > 0) and genera-
tor A(t) (t > 0); respectively. 1In addition to prove several
properties of K(t,s) which are analogous to the ones of semi-
groups, we show that under certain conditions, the equation
x(t) = A(t) x(t) + f(t)has a unique solution. We also consider
the dual quasi-semigroup K*(t,s) and the non-autonomous con -
trol system x(t) = A(t) x(t) + Bu(t), where the controls be-
long to the space Lp(O,T;U) with U a reflexive Banach spa-

ce and 1 < p < », Finally, we give necesary and sufficient

conditions for exact and approximate controllability.

Key Words. Quasi-semigroup, generator, evolution equation,

exact and approximate controllability.




1. Introduction. The Sobolevski-Tanabe ]?] ad KatC)lEﬂ theory

consider the non-autonomous evolution equatio:

(1.1) _ x(t) = A(t) x(t), x(0) =x_, t >0

and to garantize the existence and uniqueness of its solution

it is assumed the following hypotheses:

Hypothesis 1. For all t > 0, A(t) is a clos:d operatoron a Ba
nach space X, with domain D[}(t)]= D independent of t and den-

.8e in X.

Hypothesis 2. For each t > Q A(t) generates a strongly conti-

nuous semigroup.

Hypothesis 3. A(t) is strongly continuous.

l(s) is

Hypothesis 4. For each fixed s, the operator A(t) A
bounded and HOlder continuous in t, dn the uniform topology of

operators, i.e.

| [a(t) - A(t)] A'l(_s)Hf_ C|t—-1|a’, 0<a<1l, C>o0.

In this work we shall suppose that A(t) is the generator
of a strongly continuous quasi-semigroup K(t,s) (t,s > 0)
and, 3s we shall see in section 2, A(t) satis ies the Hypothe-
sis 1 of Sobolevski~Tanabe and Kato theory but no necessarily

verifies the hypotheses 2,3 and 4. Further,in example 2.3 we

shall see that A(t) does not generate a strongly continuous



semigroup. However,we shall show that eq (1.1) has as a uni-

que solution the function x(t) = K(Q,t) X,

In this paper we investigate also the problem of the con-
trollability of the non-autonomous and unbounded control sys-

tem

% (t)

A(t) x(t) + Bu(t), 0<t<T

(1.2)
x(0Q)

I
~

where u(.) ¢ Lp(O,T;U) (1 < p < »), A(t) is the generator of
a strongly continuous quasi—semigroup on X and U 1is a re -

flexive Banach Space.

There exists much literature on the controllability of
autonomous and unbounded systems ([1], [2],[3] and [6]) but
there is a little work, as far as we know, on non-autonomous
and unbounded systems. In the case in which A(t) is bounded
and analytical, Korobov an Rabakh Bﬂ give necessary and suffi-

cient conditions for the exact controllability.

In this work, the notion of strongly continuous quasi-se-
migroup will allow us to give necessary and sufficient condi -
tions for the exact and approximate controllability of the

non-autonomous and unbounded system (1.2).

2. Quasi-semigroups. We now introduce what we consider is

the most important definition of this paper.




DEFINITION 2.1. Let X be a Banach space and L(X) a space
of linear and continuous operator from X to X. A family of
operators K(t,s) € L(X) (t,s > 0) is a quasi-semigroup on X if

it commutative and verifies:

a) K(t,0) =1I, (t > 0), I-identity on L(X),

b) K(r,t+s) = K(r+t,s) K(r,t), (t,r,s > 0).

If,in addition,we have

c) 1lim [K(t,s)x -K(t _,s )x ||=0, (x_¢e X).
(t,s)>(t is,) © .2 2 ° °
d) H K(t,s)l]i M(t+s), (t,s > 0) where M(.) is a continuous

and non decreasing function from |[0,*) to [1,«).

e) The subspace D formed by elements of X such that there

exist the limits:

- K(t-s,s)x-x
+ S + s Y

t > 0,

K(0,s)x - x
S

lim
s->0

4

is dense on X, we shall say that the gquasi-semigroup K(t,s)

is strongly continuous.

DEFINITION 2.2. Let K(t,s) be a strongly continuous quasi-se-
migroup. The family of operators A(t) , (t > 0) with common do-

main D, defined by:



K(t,s)x - x

A(t)x = lim+ S

s+0

' (x € D)

is called the generator of the quasi-semigroup K(t,s).

The following examples show that the class of strongly con-

tinuous quasi-semigroups is very broad.

EXAMPLE 2.1. Let T (t > 0) be a strongly continuous semi-

tl
group on X. If K(t,s) = Ty (t,s > 0) then K(t,s) is a

strongly continuous quasi-semigroup.

EXAMPLE 2.2. Lets denote by X the Banach space of the uni -
formly continuous and bounded real functions defined on [b,m)

with the norm of supremum.

The family of operators K(t,s) e L(X) defined by:
(K(t,s)x) (E) = x(s® + 2st +£), (t,s > 0)

is a strongly continuous quasi-semigroup of contractions.
In fact, the conditions a), b), ¢) and d) of the definition
2.1 can be verified easily. 1In order to verify e) Wwe put
D= {xeX:x e X}.

D is a dense subspace de X ([7] p. 24). If x e D, then

2 -
( K(t'E) XX ) () = X (s +235 +6)-x(8) (s,t > 0);



% (%425 (£=5) +E) =% (£)

K(t-s,s)x-x ) () = = , (0<s <t).

S

¢

Let us put.
2 . -2
F(s) = x(s"+2st +§&), G(s) = x(s"+2s(t~-s)+&).

Then, F(0) = 2t %(&) and G(0) = 2t x(£), thus

( BLESIXX ) () = yum, ( KlESSaS)Xox ) (gyopp g
s~0 z

lim
s->0

( KLQL§L§:§) (£)

lim = 0.
s+0" s
Let us see that
lim  ( K(E,s)x=%) o p5 uniformly:
s-+Q s
.2 )
” K(.t,z)X“X ” = sup X (s +2S§+£)—X(_£) _ 2t}.{(€)’
£>0

2 . 2 .
- sup ' (s“+2st)X(£) + (s +2st) _ 2tk(£)l
£20 S
: 6(s? + 2st)
= sup |s x(§) + = S ~ )
£>0
6(52 + 2st) ‘ +
sl|[x]|| + = - 0, when s » 0 .

A

]

By the same preeedure we ©an prove the existence of the



rest of the limits. As consequence, the generator A(t), (t> 0)

of K(t,s) is given by

A(t) : D » X, A(t)X .= 2tx .

EXAMPLE 2.3. Let T, a strongly continuous semigroup on a
Banach space X, and A its infinitesimal generator. The fa-
mily of linear and continuous operators :

K(t,s) = exp(Tt+s - Tt) (t,s > 0)

is a strongly continuous quasi-semigroup. In fact, the pro -
perties a), b) and c) of the definition of quasi-semigroup can

be verified easily.

d) It is well-know that there exist constants M,W > 0 such

that

| T !l < M expwt), (£ > 0). ([7]);

consequently,

W(t+s)

|| K(t,s) ]| < exp(2Me ) = M(t+s).

e) We know that D = D(A) is a dense subspace of X, in addi-

tion for each X € D we have that

1im K(t,s)x-x _ lim K(t-s,s)x-x _ AT, X (t > 0)

s+0+ s s+0+ S t



and
. K(0,s)x-x -
, ’ =
lim, = AX ((8]).
s-0
Consequently, the generator A(t) (t > 0) of K(t,s) is
given by:

A(t) «: D> X, A(t)x = ATtx.

.

OBSERVATION. The evolution operator associated to (1.1) is de-

fined (_I:2],:5],|:7:[) as the family U(t,s) € L(X), (0< s <t<w),

wich satisfies the following four properties

i) U(r,r) = I - identity on L(X).
ii) U(t,r) U(r,s) = U(t,s) (0 < s <r <t <

iii) U(.,.) is strongly continuous

iv) The operator 32%%i515 thrre exists and is continuous.

It can be shown, in addition, that if A(t) satisfies the
hypothesis 1,2,3 and 4 of the Sobolevski-Tanabe and Kato theory

there exists tha evolution operator U(t,s), hich verifies

dU(t,r)x
ot

= A(t) U(t,r)x ; x €D

In this case, the only solution of (1.1) is

x(t) = U(t,O)xo, X, € D.
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A strongly continuous quasi-semigroup K(t,s), induces an

evolution operator U(t,s). In fact, if we write

U(t,s) = K(t,t-s) (0 <85 <t < =)
we see that U(t,s) is an evolution operator.

Conversely, given an evolution operator U(t,s), it induces

.

the quasi-semigroup defined by

K(t,s) = U(t+s,t), (0 <t < t+s < =).

THEOREM 2.1. Let K(t,s) be a strongly continuous quasi-semi-

group on the Banach space X. Then

a) If x, € D, K(r,t)xo e D (¢, r > 0)

b) For each X, € D and r > 0,

9K (r,t)x

5T = A(r+t) K(r,t)xo = K(r,t) A(r+t)x_.

(o}

c) If A(.) is locally strongly integrable, then for .each

X esD and r > 0, we have

t
K(r,t)x0 = X + {0 A(r+s)K(r,s)xO ds (t > 0).

PROOF. It is analogous to theorem 2.9 of [2]; by using the
identities

K(r,t+s] = K(r+t,s) K(r,t)

K(r,t) = K(r+t-s,s) K(r,t-s), t > s.
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THEOREM 2.2. Let A(t) be the generator of a strongly continuous
quasi-semigroup K(t,s) on a Banach space X. Then for each

X, € D and r > d, the problem

(2.1) x(t) = A(r+t) x(t), x(0) = X

admits a unicue solution.

PROOF. By theorem 2.1, the function x(t) = K(r,t)xO is solu-
tion of (2.1). If y(t) is another solution, we consider the
function
F(s) = K(r+t, t=-s) y(s), ssﬁLﬂ.
A routine calculation shows that ¥(s) = 0, for each

s € (0,t); therefore, F is constant and so

F(t) = F(Q) <=> y(t) = K(‘r,t)xo.

PROPOSITION 2.1. Let A(t) be the generator of a strongly con-

tinuous quasi-semigroup and £:[0,T] + X a continuous function.
If {xn}'CiD converges to x and A(t)x, converges uniformly to

£(t) on [0,T], then for each 0 <r<T, A(r)x = £(r).

PROOF. It is consequence of uniform convergence and c) of the

theorem 2.1.

THEOREM 2.3. Let K(s,t) be strongly continuous quasi-semigroup
on a Banach gpace X, with A(t) strongly continuous. If

£: [0,T] » D is a continuous function and
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-_— —

t
[ K(r+s, t-s) f(s)ds € D (0 <t <T),

then the problem

x(t) A(r+t) x(t) + £(t), 0 < t < T

(2.2)
x(0)

X €D
o

admits as unique solution, the function

t
(2.3) » x(t) = K(’r,t)_xO + [ K(r+t,t-s) f(s)ds

0
PROOF. It is analogous to theorem 2.2.3 of [7] by using the

identity

K(r+s, t+h-s) f(s) = K(r+t,h)K(r+t, t-s) f(s).

DEFINITION 2.3. Let f ¢ Lp(O,TfX), p > 1. The function

t
(2.4) Xr(t) = K(r,t)xO + J K(r+s, t-s) f(s)ds
70

is defined as the mild solution of (2.2) on [0,T].

PROPOSITION 2.2. The function xr(t) is well defined and is

strongly continuous on [0,T].

PROOF. It is & consequence of the following relations:

t
a) Il ( K(r+s, t-s) f(s)ds|| < ¢1/9 M(r+t) ][f[%, 1,1_



-]13-

b) Xr(t+h) - Xr(tl = K(r, t+h)xo - K(r,t)xo

t
+ (RK(r+t,h)-I) [ K(r+s, t-s) f(s)ds
0]

t+h
+ [ K(x+s, t+h-s) f(s)ds, h >0, t >0,
¢ Z

c) xr(t—h) - xr(t) = K(r,t—h)xO - K(r,t)xO

t-h
+ (I - K(r+t-h,h)}) f K(r+s, t-h-s) f(s)ds
Q

t
- J K(r+s, t-s) f(s)ds , 0 < h < t.
t-h

PROPOSITION 2.3. Let A(t) be the generator of a strongly conti-
nuous quasi-semigroup K(t,s) on a Banach space X and B € L(X)
such that B2 = B with BK(t,s) = K(t,s]B. Then A(t)B 1is the

generator of the strongly continuous quasi-semigroup

R(t,s) = B[X(t,s) - I]+ I.

PROOF. It is very easy.

PROPOSITION 2.4. Let A(t) and K(t,s) be as in the preceding
proposition and B € L(X) such that K(t,s)B = BK(t,s). Then
A(t) + B is the generator of the strongly continuous quasi-se-
migroup defined by

R(t,s) = B K(t,s).
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PROOF. It is very easy.

PROPOSITION 2.5. With the same hypothesis of the preceding pro-

position, the function x (t) = R(r,t)xO is solution of the in-

tegral equation

(2.5)

PROOF.

EXAMPLE 2.4.

t
z(t) = K(r,t)_,xO + f K(r+s,t-s) B z(s)ds
0

. — _ tB
xr(t) = R(r,t)xo = K(r,t)e Xq

t
K(r,t)x, + K(r,t) J B 5B as
Q
t sB
K(r,tlxo + [ K(r+s, t-s) K(r,s) e B x, ds
Q

t
K(r,t)x + J K(r+s, t-s) x (s)ds.
o} 0 r

Let r >0 and u € IR. Consider the problem

.

2(t+r) 3, x(t,&) + p x(t,&)

9. x(t,8&)

x(0,8)

x,(E) ;i &, £2 0.

If X,D and K(t,s}) are as in example 2.2, then

K(t,s)x(E) = x(s° + 2st +E).

) Let us define B: X » X by means of Bx = ux. If is clear
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that K(t,s)B = BK(t,s) and A(t): D - X, the generator of

K(t,s) is defined by

A(t)d = 2t ¢ , (£ > Q)

Hence, the problem Pu r) can by written as
14

I

x (t) (A(x+t) + B) x(t), t >0 .

P )
r
x Q).

1l
>

If X, € D, then applying theorem 2.2 and proposition 2.4,

we obtain that

_ _ Bt
x(t) = R(r,t)xo = e K(r,t)xO

is the unique solution of the problem Pr)'

Consequently, the problem Pu r) admits a unique solution.

14

This solution 1is:

x(t,g) = 't xo(fc2 + 2rt +£).

EXAMPLE 2.5. Consider the problem

atx(tlg)ﬁ = 9 X(tlt+g) + UX(.tIE).r

3
\X(O’g) = Xo(g) ’ trg _i 0 ’

P )

where u ¢ R is fixed:
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Using the example 2.4 and the proposition 2.4, we obtain

that the unique solution of Pu) is

t-1 ® XO (nt +£)

x(t,£) = e . , X g D.

nl o)

n=0

The following Theorem is a generalization of the proposi-

tion 2.4.

.

THEOREM 2.4. Let A(t)be the generator of a strongly continuous
quasi-semigroup K(t,s) on a Banach space X and B £ L(X). Then
A(t) + B is the generator of a strongly continuous quasi-semi-

group R(t,s) defined by

t
(2.6) R(r,t)x = K(r,t)x + [ K(r+s,t-s) BR(r,s)x ds,
o o) 0 o

in addition if
|| K€r,t) || < M(xr+t),

then

|| RCx,tl]] < M(x+t) exp (]| B M(r+t)t).

£

PROQOF. The solution of the integral equation (2.6) will be of

the form

R(r,t) =} R _(r,t);
n=0
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where RoCr,tl = K(r,t), and
t
(2.7) Rn(r,t)xo = [OK(r+s, t—s)BRn_l(r,s),xo ds, n=1,2,3...

FPirst we have that
I R (x ) || < M(r+t);

and proceding by induction we see that

[l Bl M(rt+e) £]"

Il R (r,t) || < M(x+t). -
consequentlx,the series
R(r,t) = } R, (r, t)

n=0

is bounded by the convergent series

n=0,1,2,3,....

o n
m(ret) § L Buh’.“r*t” = M(r+t), exp (]| B|| M(r+t)t),
n=0 y

and hence it is convergent in the topology of

the uniform con-

vergence of L(X), uniformly on compacts of [0,®).

Now, we have that

R(r,t) =n§0 Rn(r,t)xO
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(e}
K(r,t)xO +n§1 Rn(r,t)xO

I

o t '
K(r,t)xO + Z' J K(r+s,t—s)BRn_l(r,s)x ds

n=1 /0 ©
t ©
= K{r,t)xO + J K(r+s,t-s)B Z Rn(r,s)xO ds
0 n=0
t .
= K(r,t)x_ + [ K(r+s,t-s)BR(r,s)x_ ds.
e} 0 0

Thus, for each r > Q0 fixed, R(r,t)xO is solution of (2.6).

If xr(t) is another solution of (2.6), then
t
I R(r,t)x - Xr(t)l|§ [OM(r+t)|lBl|||R(r,s)xo—xr(s)H ds,
and by Gronwall's Lemma we get that

R(r,t)xO = xr(t), (t > 0).

.

Now let us see that R(r,t) satisfies the conditions of the

definition (2.1).
Clearly the condition a) is satisfied

c) From expression (2.7) it folloys that R(r,.) is strongly
continuous. Now we will prove thaf R(.,s), is strongly con-

tinuous:
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[l R(r,s)x - R(ro,s)xo]li ]lK(r,son - K(ro,s)xOH

s
+ K(r+o,s- - +0, 5~
Ilfo (r'a,s @)BR(r,a)x_ - K(r_+o,s-a) BR(r_,a)x_ d_||

+

. s
< |l K(x,s)x_ - K(r_,slx_|| ( || X (r+o,s-a)BR(r_,a)x_ -

0 o
- K(r, +a,s-a)BR(ro,a)on da

s
+[ |[K(r+a,s—a)B(R(r,a)xo - R(ro,u)xo)H do.
0

The first two terms go to zero according to c) and
d) of the definition 2.1 and by dominated convergence theorem.

Hence

s
l R(r,slx_ - R(ro,s)xolli e#—[OM(r+s)HBH IR (x,a)%, —Iuroﬂwxoﬂda

therefore the strongly continuity of R(r,.) and Gronwall's lem-

ma it follows that

|| R(r,s)x - R(ro,s)xol[i e exp (|| B M(x+s)s);

which implies that R(.,s) is continuous.

Now

|| RCr,tlx - R(ro,to)on < |k, t)xg - K(ro,to)on

t ,
+ “ IOO,K(I""S,t—S)BR(rJS) XO - K(ro + S,to‘S)BR(IOIS)XO‘ dS”
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t .
+ IIIOO K(r+s,t-s) LB(I,S)XO - R(ro,s)xng

£ ‘
+ || [ K(r+s,t—s)BR(r,s)xO dasl|| ,

t
o

whichbconverges to zero if (r,t) converges to (ro, to) which

proves c).

Now we will prove the part d) of the definition 3.1:

R(r,t+S)XO - R(r+t,s) R(r,t)x0

t+s
= K(r,t+s)_xO + [ K(r+a,t+s—a)BR(r,a)xo dao
0

s
-(K(r+t,s) + [ K(r+t +o,s-a)BR{r+t,a)da) (K(r,t)x_ +
0

t
+ J K(r+a, t—a)BR(r.a)xo da)
0

I:K(r,t+s)“.xo - K(r+t,s) K(_r,t)xoj

.

rt+s

+ K(r+a-, t+s—a)BR(r,a)xO do.
/0
= ,

- K(r+t +q, s-a)BR(r,t)xo dao
/0

t
- [ K(r+t,s) K(r-a,t-a)BR(r,a)xo do
0



t+s
= ( K(r+a, t+s —a)BR(r,a)xo da
t

s
- [ K(r+t +a, s —a)BR(r+t,a)R(r,t)xo do
0

Since

K(r+a,t+s-a) = K(r+t,s)K(r +a, t-a).
Changing variables in the first integral we obtain
R(r,t + s)xO - R(r+t,s)R(r,t)xO

t
= [ K(r+t +a,s—a)B[h(r,t+s)xo - R(r+t,a) R(r,t)xéjda,
0

and by Gronwall's lemma it follows that

R(r,t+s) = R(r+t,s)R(r,t)

e} Let t >0 and X, € D;

.

R(t,s)x -x ‘ K(t,s)x —x s
lim © O - 1im ———S-—-Q—O + % J K(t+o,s~ }BR(t,a)x_ da
s+Q s s+0 0 ©

A(tlxo +‘K(t,Q)BRLt,Qon

I

(A(t) + Blx_.

Let us suppose that t > 0. Then

-21-
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- - l E o -
_ R(t s,s)_xO X o K(t s,s)xo X
lim, S = lim
s~>Q

s
+ % [ K(t—s+a,s—a)BR(t—s,a)xo d%}

0

1l

A(Lt)xo + K(t,O)BR(t,O)xO

il

(A(t) + B)xo,

Since D 1is dense on X, then A(t) + B is the generator

of R(t,s).
3. Dual quasi-semnigroup.

In this section we shall define the dual quasi-semigroup

and prove some properties analogous the ones of dual semigroups.

PROPOSITION 3.1l. Let K(t,s) be a strongly continuous quasi-
semigroup on a Banach space X. Then
a) K*(t,0) = I* , I* the identity operator on X*.

b) K¥*(r,t+s) = K*(r+t,s)K*(r,t).

c) 1lim K*¥(t,s)x* = K*(to,so)x* (x* e X*)

in the weak* topology of X*.

da) || k*(t,s) || < M(t+s).
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PROOF. The proof is analogous to the case of semigroups [2].

DEFINITION 3.1. The function K*(t,s) of the preceding propo-
sition is called the dual quasi-semigroup of K(t,s). In gene-

ral, K*(t,s) is not strongly-continuous however, what follows

is true.

PROPOSITION 3.2. If K(r,t) is weakly continuous, then for each

.

r > 0 fixed, the @plication K(r,.) is strongly continuous in

(0, +=«).

PROOF. If x(t)= K(r,t)to, then 1is weakly continuous and the-

refore Bochner integrable on compact intervals in (0, +o).

Let £ > 0 be and consider

0 2 a<n < B < & - ¢ < &, e > 0,

x(g) K(r,Eon = K(r+n, E—n)K(;r,n).xo.

K(r+n, &-n)x(n);

therefore
B _
(B-a) x(&) = j K(xr+n, £€-n)x)dn ;
o
A B
(B-0) x(&+e) = ( K(r+n,£ + € -n)x(n)dn
o
consequently

(B-a) X (E+¢e) - x(E)]=
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B _
= f K(r,nl [R(r+n, £+ e-n)x_ - K(r+n, E-n)xQ]dn '
(¢7

therefore,

B
(B-a) || x(EXel-x (€) || < M(x+p) f || KCe#n, € = emnx_ = K(r +n, &-n)x_|[dn .
a

If K is continuous in the second variable, then

B8
lim J || K(x +n,& + e-n)lx = K(r +n,e -n)x || dn = 0.
o o
e+0 ‘¢ -

The general case is consequence of the density of the con-

tinuous function in Ll(Q,T;X).

THEOREM 3.1. Let K(r,t] be a strongly continuous quasi-semi-
group on a Banach space X. Then
a) If x* € D(A*(r+t)), then K*(r,t)x* € D(A*(r+t))

and

A* (r+t)K* (r,t)x* = K*(r,t)A* (r+t)x*

K*(t,s)x* - x*
s

b) x* ¢ D(A*(t)) <=> w* - lim,
s~>0

K*¥(t-s,s)x* - x*
s

= w* - {
w llm+
s~>0

I

A* (t)x* (t > 0)
c) If A(t) is strongly integrable,

t .
K¥(r,t)u¥ - x¥ = f A¥ (r+s) K¥(r,s)x*ds
0
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“x* ¢ () D(A*(t)) = D*
£>0

PROOF. It is analogous to theorem 2.2 of [2].

PROPOSITION 3.3. Let K(t,s) be‘strongly continuous guasi-se-
migroup of isometries on a Hilbert space H. Then its genera-

tor A(t) is skew-symmetric.
4. Controllability.

Consider the non-autonomous and unbounded system.

(4.1) x(t) = A(t)x(t) + Bu(t), x(0) =x_, 0 < t<T

where A(t) is the generator of a strongly continuous guasi-se-
migroup K(t,s) on a Banach space X, B € L(U,X) where U is a
"Banach space and control function u(.) € Lp(O,T;U), (p > 1).
According to definition 2.3, the mild solution of (4.1) is given
by
t

x(t) = K(O,t)xo + JOK(s,t—s)Bugs)ds, 0 <t <T.
DEFINITION 4.1. We shall say that the system (4.1) is exactly
controllable in time T > 0,if for each X 1 X1 € X there exists a

control u ¢ Lp(O,T;UI such that the mild solution of (4.1)

x(t) corresponding'to u, verifies: x(T) X

Consider the operator

G Lp(O,T;U) - X,

7
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defined by
T
GTu = [ K(s,T-s)]Bu(s)ds.
0
It is easy to see that GT is linear and continuous and
that (4.1) is exactly controllable if and only if G, is ontoy

that is

GT Lp(O,T;U) = Range GT = X. .
DEFINITION 4.2. We shall say that the system (4.1) is appro -
ximately controllable in time T > 0 (approximality controlla-

ble in free time] if
Range G = X , {E = U Gy L = X.

In what follows we shall suppose that X and U are refle-

.xive Banach spaces.

THEOREM 4.1. If u ¢ Lp(O,T;U), 1l < p < o, then (4.1) is exac-
.tly controllable in time T > 0, if and only if there exists

r > 0 such that

r|| B* K*C.,T—;)X*HL > || x*||, 1.1 1, x* ¢ X*,
q P g

PROOF. If we put W = LP(O,T;U), then GT e L(W,X) and by
Theorem 3.3 of reference [2], we have that

Range Gy = X <=>3 r > 0: rl G¥ x*[[ > || x*[|, &* e X*).
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Let us calculate G%

T
* = * - )
< X¥*, GT u >X*,X <X ,jOK(s,T s}B u(s)ds>X*,X

T
= J <B* K*(s,T-s)x*, u(s)> ds
0

= < B¥* K*(O,T—.)X*,u(-),.>w*

W
Therefore, )

G; x* = B* R*¥(.,T-.)x* ¢ Lq(O,T;U*),

This ends the proof.

The following theorems are immediate consequence of theo-

‘rem 3.6 of [2].

THEOREM 4.2. The system (4.1) is approximately controllable in

time T > 0 if an only if
B* K(t,T-t) x* =0, O <t < T, implies x* = Q.

THEOREM 4.3. The system (4.1) is approximately controllable in

free time if and only if

B* K*(t,T-t), ¥T >0, 0 <t < T, implies x* = 0.

Supported by C.D.C.H.T proyect C-391-89 of Universidad de los

Andes.
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