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ABSTRACT. A simple proof of a more general version
of the Orlicz interpolation theorem for Lipschitz
operators is given along with some applications.

1. INTRODUCTION

Let (2,Z,u) be a o-finite measure space and let ¢:[D,w)+ﬁb;ﬂ
be an Orlicz function, i.e., a nondecreasinq continuous convex function
such that ¢{0) =0.

If S(u) is the space of all real-valued measurable functions (two
p-almost everywhere equal functions are the same), then the
functional I¢:S(u) > [0,2] defined by

L (x) = | o (Ix(e)])au
2

is a modular on S(u). The Orlicz space L¢ =L¢(u) =L¢(Q) is the
space of all xeS(u) for which I¢(rx)<°° for some r >0, dependent
on x.

The functional

HxH¢= Mf{r>0:MJUr)il}

defined on the whole of S(H) is a norm on L¢, The Orlicz class

Lz =L$(u) is the set of all xeS(u) for which I¢(x)‘<m. This set is,
in general, only convex. The space L$ =l§ (#) is ‘the space of all
xeS(u) for which Lp(rx)< o for any r>0. This is a closed subspace
in Ly and the norm |Ll|¢ onl% is continuous, i.e.,if’xd% and
|x{ > x, + 0 then llxnlu ~0. In the case when ¢(u) =f we write,

for brevity, the letter p instead of ¢.



The first interpolation theorem considering Orlicz space (not
only L space) as intermediate is due to Orlicz. He proved in[ﬁi}
that any‘separable Orlicz space L¢(a,b) is an interpolation space
between L,(a,b) and L_(a,b) for linear operators. Next, in(14] he
proved that any Orlicz space L¢(a,b) is an interpolation space
between L,(a,b) and L_(a,b), even for Lipschitz operators. In the
present paper-we give a generalization of the theorem of Orlicz
with a simple proof and with some applications to inequalities related

to rearrangement functions.

The nonincreasing left-continuous rearrangement of xeS{H) is
the function x*=x: < (0,2) > [0,9] defined by

x;(t) = infl2>0:d,(3) <t} ,

where dx(k) =u({te : [x(t)| >A}) and inf ==, The collection of
all xeS(u) for which d (A) i o will be denoted by So(H). For every
xeS,(u) we have d (A) >0 as A~>= and so x*(t) is finite for
any t>0.

The rearrangement has the following properties (cf. [7]):

(1) 0<x, * x implies x;(t) t x*(t) for all t>0.

(ii) 0<x<y implies x*(t) < y*(t) for all t>0.

(iii) If m denotes the Lebesgue measure, then

u({te : |[x(t)]| >2}) = m({s>0:x*(s) ?X}) for all A>0,

and we say that x and x* are equimeasurable even though they are
defined on different measure spaces. Moreover,

I |x|du = J x* dm.
§2 0

(iv) For functions x and y in S{u) we have

]: (x#y)* dn < }t'

.
x* dm +L‘ y*dm for all t >0.
0



We introduce the a-truncation (a>0) of function x defined on &by

(®(t) = min (Ix(t)],0) sgn x(t).
Let us note that for functions x and y defined on & we have

(1) k(¥ ey -y )] < Ix(t) - y(t)] for all ted.

The paper is divided into four sections. In 52 we give two
proofs of the interpolation theorem for a]moét Lipschitz mappings.
The main theorems are proved in 83, including the proof of Orlicz
theorem, AppTications of these results to averaging operator,
Jensen inequality, Hardy-Littlewood P6lya theorem, Lorentz-Shimogaki
inequality and Brudny¥ result about modulus of continuity of x and

x* are considered in section 4.

2. INTERPOLATION OF SEMI-LIPSCHITZ OPERATORS

In the proof of the first theorem we will need the following
lemma ‘about representation of Orlicz functions.

Lemma 1. .Every Orlicz function ¢ has a representation
() o(u) = au+ | (ws), dnls),
0
where p is a nondecreasing nonnegative right-continuous function
on [0,=) and a=p(0*)
Proof. ft'is wei] known that every Orlicz function ¢ can be
—_ u .
represented in the form ¢(u) = [ p(s)ds, where p is the right-derivative

of ¢. By integration by parts ©we get

u . u —_ u C . (U
j “p(s)ds = up(u) -J sdp(s) = up(07) + Ju dp(s) - I sdp(s)
o o 0 0

= up(0®) + Iu (u-s)dp(s) = ua + Im (u-s),dp(s).
0 0

Let us now expTain with some examples how to interprete (2) wi th
dp(s) as the measure:



1° If p=¢' is absolutely continuous then we have according

to Lemma 1 that ¢(u) = au + IQ (u-s), ¢"(s)ds. Notice that in
o ,
[6] it is assumed the existence of ¢" and that it is locally

integrable.

2° If ¢(u) = 0 for O0<u<l and u-1 for u>l, then p(s) =0 for
0<s<1 and 1 for s>1, and for u>l we have

u .
j (u-s)dp(s) = u[p(0")-p(0)] + (u-4y [p(11)-p(17)] = u-1;
o _
3°. If ¢(u) = u for 0<usl and u® for u>l, then p(s)=1 for
0<s<1 and 2s for s>1, and for u>l we have

u
[ (u-s)dp(s)

0

) u
W[p(01)-p(0)] + (u1) [p(19)-p(17)] + L(u-sms

u-1+2u® - u? - 2u+1=u? - u,

In the sequel the space (f',Z',v) will be a o-finite measure
space

Theorem 1. Let T:L, (W) +L_(u) > Li(v) +L_(v) be an operator
such that T0=0 and

(3) | Tx-Ty ], < MlIx-y ||, ¥x,ye L,(W),

(4) irxTl, < mMlIxll,  ¥xel (w).

Then | | .

(5) I,(Tx/M) < T (x) ¥ xeLg(u) N L, (n)
and .

(6) Tl < mldx iy ¥ xelg (W) A ba(w)

First'proof. By taking T/M instead of T, if necessary, we may

assume that M=1.
First, we prove that if (4) holds and M is 1 then for each
xel 1(U)+Lm(u)

(7) 1Tx(t) - (10 e)] < Imx(0)-T{?) ()] v-a.e..
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In fact, if [Tx(t)| <o then (7) isvobviqus; if on the other hand
[Tx(t)| > a then since IlT(x(a)HI“)i lh(a)anj'a, it follows that

|T(X(a))(t)|§}x v-a.e.. Hence

(Tx(t) - (10 (@ (8)] = |Tx(t)-asgnTx(t)| = [Tx(t)] -
< () - 1T 0] < (-1 (1) | v-ace. .

Now, if xeL$(u) i L,(u) then from the representation (2) of ¢
and the Fubini theorem

(1) = | emtiay

Jo it + [7 o ), s o

al I1x}] , + J:]Q'.(nx(t)l -5), dvdp(s)

[§]

al [Tx| 1, + ijlTX(t) - (1)) ()] avdp(s).
Using property (7) of T and the assumption (3) we have

() <a Ll + | et ets)

<allxl, + Lj Hx-x(S)H1 dp(s)

= allxll, ¢ [ (Ixte)l-s) guants).
o 0 ‘Q
Again, from the Fubini theorem and representation (2) of ¢

[4(Tx) < Lz[alx(t)l + j: (|x(t)]-shdp(s))du |

. j o(Ix(t))du = T,(x).
Q ¢
Hence TxeLg(v) and I¢(TX) < I¢(X)-

The second part of proof follows inmediately from the above and
the definitions of L, space and ll-1|¢ norm.



Second proof (when v(&')<u&i and modulo some facts about

rearrangement). As in the first proof, let M=1. Given u>0, let for
xel ,(u) be a=x*(u) and x1=x(a). Then by properties (iv) and (iii)
of rearrangement

u * u. * u *
jo (Tx); (t)dt i’o (Tx-Tx,), (t)dt + Io (Tx,), (t)dt

< (Tx-Txl): {t)dt + ul |Tx1| |
0

'g-‘ FTx(t) -Tx (t)[av + ul [T, ||

-

Using assumptions (3) and (4) on T, property (iii) again and the
fact that dx(a).i u we get

U,
j (Tx),(t)dt ijkz’lx(t)-xl(t) | dutul |x, ],
§

0
| d ()
= jgz(lX(t)[-a)+du+ua<_j0‘(xu(t)-a)dt + uo

< Jo (x(t)-a)dtua =Io x,(t)dt.

Hence, if xelL, (u) then

u u
(8) j (Tx)5(t)dt < [ x“(t)dt for all O<usue.
0 ~h M

Now, we prove that if (8) holds and v(&') <uf then for xd%ﬂu)n~LAu)
we have '

j ol Dy < | ollx(0)]an.

Q! Q

In fact, let A = {20 : x;(t)>s}, By = {0 : (Tx):(t)>s} and
a =mAS, b

S S =mBS. Then from property (iii) of reérrangement,
representation (2) of ¢ and the Fubini theorem we have that

V(') N
1w = | etimhas = [ s
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@) o)
[ agme s T[T Im0se-1, auets

v(&') (® (s
<a j&‘ (maj(nae+ | | 7 LmOS(0-s] dtapls),

and from the assumption (8),

ue
< a j xu(t)dt + J
0 0

'(i)’ x,(t)dt - sb_)dp(s).

But now, if b_ < a . then

S
a a

bs* ‘S* S*
I x"(t)dt-sb_ = I- x (t)dt - J x (t)dt - sb
S ‘ S

0 0 4 bs
aS

< s xM(t)dt - x*{ag)(agb.) - sbg
0

<

a ag
. * = * -
lD x7(t)dt - s(as-bs) - sby 16 x"(t)dt sa,

] >
and if bS aS then

b a b
S * S * S x .
j K(t)dt-sb, = | - x*(t)dt + [ x*(t)dt -sb_,
0 0 a
s
and t>a implies x*(t) < s,

a a

s S
< © x*(t)dt + s(b_ -a_ ) - sb_ = J x*(t)dt - sa_.
- jo s s s S

Hence, from the above, Fubini theorem, representation (2) of ¢
and property (iii) we get

use

I.(Tx) < a j Cx*(t)dt + jm ( Ias x*(t)dt -sa_)dp(s)
=" 0 o TS

. “32 N oo *.
= 3 Jo x (t)dt + fo Jo [x (t)fs]+ dtdp(s)
: Y ( '
= ¢(x*(t))dt = | ¢(|x(t)[)du = I,(x).
f

10 4



In the case when T is a linear operator and ¢(u) = uP we have
a simple proof of the particular case of M. Riesz interpolation
theorem, i.e., for Py= 1, p,=° and 1<p<> (cf. also [6], where it
ijs assumed that T is also positive). In the nonlinear case with
¢(u) =uP the above theorem fo]jows also from Lions [9] and Peetre
[15]). Brezis and Strauss [1] used in the proof of Theorem 1 the
additional condition of T being ;xmitive . Moreover, their theorenm
is for convex lower semi-continuous function ¢ on m® such that
min¢=¢(0)=0. In LJI] it is proved that if both measure spaces are
the same and either nonatomic or counting then (3) and (4) with
M=1 imply (8). Then the Calderdn-Mitjagin theorem (see [7],p, 105)
and the fact that Orlicz space Lg(u) n.L,(u) has the Fatou
property imply (6). '

Corollary 1. Let T:L1+Lw'*L1+Loo be a Tinear operator which is
bounded in L, and L. If either L, c(Li+L )2 or L, =L, +L_ hold

a . ¢ "9
with L, <« (L,+L_)% then T is bounded in L,.
% ® = ¢

Proof. For any xeL¢ the sequences Xn =x1A is in L¢ n L,
where Aﬁ’Q and uAn < o (such a sequences of sets exists because
Wois o-finite). If Lye(L,+L)® then |lx-x Il ,| ~ 0 and the

boundedness of T in L,+L, implies |[Tx-Tx lIL 4L > 0.

oo}

Thus Tx, * Tx u-a.e. By Fatou lemma and Theorem 1 we have
k

T < 1"'nf Tx < MTiminf | |x_ [1, < M |x]],.
[Txlly < imi || nk||¢_ fmi Ilnk||¢_ LIx] 1

If L¢=L¢ +L, w1th L¢ c (L,+L.)? then from the above T is bounded
0
in L¢ . Therefore T, as linear operator, is bounded in Hp+Lw L¢.

0

It is natural to ask: is it true that if L, is an Orlicz space then either

|_¢C(L1+Lm) L¢-L¢ +L with L¢ c(L +L,)37. We remark that

if ul<e then L¢<: L, L? and if u is-a counting measure then
either 2,22 = c, or Ay=i =4 +2°° with £, <c/

¢ I



3. MAIN THEOREMS

Using Theorem 1 and considerations from Orlicz paper [14] we
prove a more general version of Orlicz theorem about interpolation
of Lipschitz operators in L, and L. |

Theorem 2. Let T: L,(u) +L (M) > L,(v)+L_(v) be an operator
such that

(3) HTx-Tylt, < Ml x=y|], ¥ x,yel, (M),

(4') [Tx-Tyll, < Mlx-yll, ¥ x,yel (w).

Then

(6') HTx-Tylly <mibeylly, ¥ xyel (0) AL (w).

Proof. For any fixed X, € L,(u}y N L_(n) and for xel (u)+L _(u)
let

T x := T(x+xo) - Txo.

Then T,0 = 0 and

[T x=Toyb ], = HITOwx ) - Tlyax D, < mEix-yl o wxyel (W),

T x e = HTOex ) =Tx [ e < Milxll, Vxel ().
From Theorem 1 we get

HTxb g < midxdly ¥ xely(u) Ly (0)
this means that
ITOxg) - Txol 1y < MEIxHy ¥ oxeL () AL, (W)

or
(9) ||TX-T"0H¢,<_"1||X'X0[ |¢ ¥ xeL&(u) N L¥(11), ?<0 e Ly(u)nL(n).

For arbitrary x,yeL¢(h) N L,(1) we consider the truncations

x(k),y(k). Then 2z, : =T(x(k))-T(y(k))-converges to Tx-Ty in the
L,(v) -norm, because (3) and }| []|,-nom is continuous.

Consequently, the same convergence holds #n the measure v.
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Therefore, for a property chosen sequence kn’ the sequence z

(k,) (k,) “n
converge v-a.e. to Tx-Ty. Then Xo: =X and Yot =Y have

the following property
(10) x.,y, 6L, (1) N L (W), lxn-ynl < |x-y| wu-a.e. and Tx =Ty > Tx-Ty v-a.e.
Now, by (10), Fatou property of the norm and (9) we get

HTx-Tylly < Viminf | T -Ty, [,

R—»w0

< Mliminf ||x -yn||¢ __MIIX-YII
n=>w

Corollary 2. (Orlicz theorem). If T:L (0,1) > L,(0,1) is a
Lipschitz operator in L,(0,1) and L_(0,1) the T is also Lipschitz
in L¢(0,1).

Corollary 3. If the operator T:L (B) N Lo(1) > L,(v) n L (V)
satisfy (3) and (4') for x,y e L,(u) N L (#) then (6') holds for
X,y e Li(u) N L(w).

Corollary 3 with additional assumption that L,(u) N L (®) is dense
in both L (u) and L_(u) (this means that e and L¢—L¢)
part1cu1ar case of a general theorem of Browder [2].

is a

Remark 1. If ufi=e and for arbitrary x,ye L¢(u), it is
p0551b1e to construct sequences X n*Yn with properties (1) then
1EV/Esy to see that (6') holds even for x,y € L (u) On the other
hand, if uf=< and L¢(u) NL,(k) is dense in L¢(u) then, by
continuity, (6') holds also for x,y e L (u)

We prove now that density of L ntL, 1n L¢ is equ1va1ent to
condition 6, for small u of ¢.

Proposition 1. Let M be a o-finite measure and Hi=e, Assume
that £ contains a nonatomic part of infinite measure or there
are atoms {An}:=1 such that 0<infuA, < supiA < <. Then the
following conditions are equivalent:

(a) L¢00 N L,(x) is dense in L¢(u),
() Ly(u) AL () = Lg(w) N L(w),
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. s C s ' . (2u
(c) ¢ satisfies condition 8, : Timsup %TUYL < o

u+o*
Proof. Let us prove that (a) implies (b).

If (§§6L¢ n L, then from the as§ﬁﬁiion there is a sequence
0<x e L, N L, such that llx-xn|l¢ + 0. Let yn:=min(xn,||x|lw). Then

Yo € Linl, and

[x-y | = Imin(x, [ Ix11) - min(x ol Ix] ) < x-x | w-a.e.,
i YIS a a
ie., |lx yn||¢ 0. If we prove that y ely then xely

a
¢

For any fixed r>0 let ¢ = ¢(rHyn|LJ /(PHanLJ <
a
o(rlixll) 7 (rllx]]) < =. Then Iolry,) Zer IQ y(t)du<e and so y el,.

(because L} is closed in L¢) and so xeL$ ntL,..

Now, let xeL¢ and r>0 be such that I¢(rx)< ®,

If An = {teﬂ : rlx(t) | >n~'} then

¢(n'1)uAn = J ¢(n'1)du j_J “o(r|x(t) |)du j.I¢(rx) <
Al | Al :
for any natural number n. Hence HA <@ and so xl, e L¢f\L1.
n

On the other hand, there is a sequence (sn) of simple functions
such that s = x. 0f course, s el ,N L,. Then putting

X =51 + x1
n n Q'\An A,
We have that xneeL¢r\L1.Moreover, XIQ\AH -snlsﬂﬁn ¥ 0,

_,a
x-xlAn :le\An Y0 and XIQ\An € ch ntL, = I.q> NL, Therefore

sl < 11 0cesp)1gg 1l + ety [, >0

as n*~,  This proves that (b) implies (a).

Let us prove the equivalence of (b) and (c).

: ¢(2n) = [} :
Assume that 11m8£p HON . Let (xn) 2¢\ 6 If v s

u+
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nonatomic then there are pairwise disjoint sets B, such that HB =1
for each natural number n. Let

x =} x,1g (convergence in u).
n=1 n '

Then xe L¢ryL;\(L$ NL.). In the second case, let

[ o
x = Y x 1, (convergence in u),

then also xeL¢ n.Lg\(Lz NL,). That is, (b) implies (c). The last
implication which we should prove is that (c) implies (b). Let
xeL¢ nL, and I¢(rx) < o for some r>0. Put

¢, = sup {%%E%l : ijjzn'lrllxllw} .

Then c <« (because ¢ satisfies 8, condition) and

n

n < n-1 < I -
I¢(2 rx) < ¢ I¢(2 rx) j,..__k=1 ¢\ I¢(rx) < o

i.e.,rxeLg and so xeLg ntL,.

It may not be simple to check directly whether an operator is
nonexpansive 1in L¢. Then the following result may be useful:

Corollary 4. If T: Lo(u)+L _(u) > L,(u) +L_(H) is nonexpansive
in L,(u) and L_(u), then T is nonexpansive in L¢(u) provided that
ufi<e  or p is such.as in Proposition 1 and ¢ satisfies condition
62

Remark 2. If an operator T is such as ih Theorem 2 then, with
the same proof, I¢(Ilﬁlld < I¢(x-y) for x,y e L,(mu) such that

x-yeLg(u). Notice that in [1], this is proved with the additional
assumption that T be positive. Moreover, if for the space X the
inclusions L,(u) +L_(v)eXeS(K) hold, and for any x,ye X it is possible
to construct sequences Xn*Yn with property (10) then



13

(11) I¢ (I%—T-Y— < I¢(x-y) for x,yeX.

If we assume a little more about operator than in Theorem 1
or Theorem 2 then the proof will be simpler, '

Theorem 3. Let L,(u) +L_(u)eXeS(r) and let T:X » S(v) be
a positive monotonic C-sublinear operator, i.e., for any x,ycX

x>0 =—> Tx>0

0<x<y==> Tx<Ty

e 0w | = AL (1]
IT(x+y) | <CUTx] + |Ty])
and
(4) HTx] [, < M{x]], ¥ xel (u).
Then
(13) s(T(Ix])) < M*T(s(CMIx])) v-a.e.

In particular, if we assume further that

(3*) [ITx|], < M[[x]], ¥xeL, (u),
then
(5') I,(Tx/(CM)) < I (x) VxeLg(u),
and
(6) [1Txl 1, < olxll,  ¥xel ().

Proof. Let ¢*(v) = sup (uv-o(u)) and ¢ (v) = inf{u>0:4(u)>v}.
u>0
then ¢**=¢, ¢(¢"*(u)) < u —and by Young inequality
w6 (v) < a(u) +6 (4% VD) olu) + v .

Therefore, for any v >0,



14

and from (12)

T(|x[) <c TellxDtTl o, o
¢ (v)
Then from (4) we get
T(|x]) < C T¢£l¥|)+Mv a.e.
(v)
* -] u+v . . . .
Let us note that ¢ (u) = inf —1——  if ¢' is an increasing
v>0 ¢ (v) )

function then this follows from the fact that for v=¢'(u) we
have utv =¢ (u) ¢ ‘(v) - equality in the Young theorem. For
the general case- see [12], Lemma 2.

Thus
TO)x]) < cMe™ (To( x| ) /M) = Mo~ (To(]x])/M)-

and (13) holds. The proof of the next part follows inmediately
“from (13) and the assumption (3').

Corollary 5. Positive and monotonic sublinear L,-L_
contractions are also contractions in Orlicz spaces L¢
mbraﬁlary holds also for positive and linear contractions. We
wish to point out that this result generalizes the corresponding
result in [8] for linear positive cgkractions on Lp spaces.

4. APPLICATIONS

We now consider some applications of the results of the last
section,

a) Averaging operator and Jensen inequality

Let A =(An) be a finite or countable disjoint collection of
a measurable sets of 9 with 0 <An<w. Define the averaging
operator PA:LI(“) +L (w) » Ly(u) +L_(u) by

1
Pax(t) = rz] (ﬂ; IA x(s)du) lAn(t).
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Then PA is a linear positive operator bounded in L (u) and in
Lm(“) with the respective norms equal to one. Hence from Theorem 3

$(Pa(Ix])) < PaleClx])) u-a.e.
and, in particular, we have the following:

Theorem A (Jensen inequality). If O<uA<= then

L () k) .
oG |, Ixlo) = 55 [ etixan,

Moreover, PA is bounded in L (u) -and has norm equal to one.

¢

b) Inequalities with rearrangement function

Let T :So(u) - So(O,w) be defined by Tx=x:. Then from
property (iii) of rearrangement [w Tx(t)dt = f [x|du. We prove
0 Q

now that T is a nonexpansive map from Ll(“) into Ll(O,w) and
from L_(u) into L_(0,=).

If x,yeL,(u) then

|1Tx-Ty[], = J; (Tx-Ty), dt + E(Ty—Tx)+dt

A

] 'T’ N —T d
L:[T(maX(IXI ly])) -Ty] dt + [;[T(max(lxl lyl) -Tx] dt

[ Tmax([x]. Iy1) = Iyl T + | [maxCIxl, IyD) - x| T &
Q 9]

[ Ixd-itfe < tbently.

If x,yel (u) then |x| < [[x=y]l iyl Iyt<lix=yI1, + |x]; thus

*

X" < ||x-yll_ +y and y* < |lx=yl]_ + x'. Hence

[Tx-Tyl ], = TIx*=y*|1, < lIx-yll, .
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Let us note that for x,yeS, (u) it is possible to construct
sequences X,y with property (10). In fact, let xn'x(n)lA

and y_ "y( hA » where A 70 and uA < »(such a sequence or>ets
exists because u 15 o finite). Then XpsYn € Ly L (u)rlL (1) and from property (1)

of truncation and property (i) of rearrangement we get |xn—yn|§:|x(")—y J<\x-¥|
and x*-y* — x*-y* a.e,, '

nJn ,
From the above and remark 2 we have

Theorem B. For each Orlicz function ¢ and for any xgyeSO(u)

I¢(x*-y*) i I¢(x-y).

This inequality is proved in [3] for the case Lp(O,l) and in [4]
for the case when @ = R" with Lebesgue measure. Let us note that
in [4] this inequality is assumed to hold for x,yeS(m®"™) . This
is a m1sun3?§tand1ng because if x,yeS\So, then x*=y*=w and the

left side of inequality is not defined.

Theorem C (Hardy, Littlewood and Pélya). Let x,yel;(u) +L_(u).
u u '
Then J x*(s)ds iJ y*(s)ds for any O<u<uy® if and only if
0 0

I¢(x) < I¢(y) for any Orlicz function ¢.

The proof that the inequality with rearrangement functions
implies that for I¢ is the same as the second proof of the

Theorem 1, On the other hand, if I¢(x) < I¢(y) for any Orlicz

function then J Hx|;0+¢15_f (lyl -t), du for any t >0, because
Q Q

¢t(u) =(u-t)+ is an Orlicz function.

Let O<u<p2 and t =y*(u). Then

u * L * g
jo [x*(s)-t] ds if) [x*(s)-t] ds = jo ety W)

o0

= Jo dx(th)d = de(tﬂ)dx = jo d(lxl-t)+(k)d)‘
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Q
- [ Uxltde < [ Uyl - f [*(s)-t] s
Q Q . 0

u
= [ [y*(s)-t]ds,
-0

and the proof is complete,

From theorems B and C it follows easily the following

Theorem D (Lorentz-Shimogaki inequality [10]). If.
x,yeLl(u) +L_(u), then for.  O<u<n@

u u '
[ (x*-y*)*<s)dsij (x-y)*(s)ds.
0 0

¢) Modulus of continuity of equimeasurable functions

Let us now confine our attention to periodic functions on [0,1]
with period 1. Given an xeL¢(O,1), the expression

w¢(t,X) = sup |[|x(-+h) - X(-)II¢
O<h<t
is called the integral modulus of continuity, in L¢, of x. Using

BrudnyY result in [3] for Lp(O,l) spaces and Orlicz theorem we
prove the following inequality

Theorem E  (BrudnyY inequality). If xeL¢(0,1) then
m¢(t,x*) < 3w¢(t,x).

Proof. Theorem B (or Orlicz theorem, i.e. the special case
of our Theorem 2) implies that operator T:L (0,1)+L,(0,1)

defined by Tx=x* is nonexpansive in L (0,1).

¢
P61ya-SzegB inequality means that ||(Tx)'||¢_<_||x'||¢ for

xeL¢ = {xeL¢:xeAC, X eL¢}.
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Now, let us consider, for xel and t>0, the Steklov average

)
function

+t t
xt(u) = ¢! [u x(s)ds = t™* J x(s+u)ds.

u 0
Then
a [t a1 (¢ |
[Ixgxl], <t IO [Ix(e4s)x] ], ds <t IO 0, (5:X)ds <a (%),
. . _ -l . -1
X4 eL¢ and let||¢ =t | |x( +t)-x||¢ <t m¢(t,x). .
Hence

m¢(t,Tx) §_w¢(t,Tx-Txt) + w¢(t,Txt)

<2l [TeTxgll, + e 1, < 2l lxxgll, + tlxgll,

5_2w¢(t,x) + m¢(t,x) = 3w¢(t,x).
This proves the theorem.
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