UNIQUE FACTORIZATION RINGS WITH ZERO DIVISORS
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I. Introduction. Throughout this paper R will be a commutative ring

.

with identity having total quotient ring T(R). Unique factorization
domains (UFD's) play an important role in commutative ring theory. Classi-
cally, a UFD is defined to be an Integral domain R satisfying the two
factorization conditions: (UFD1l) every nonzero element of R that is not

a unit is a product of irreducible elements and (UFD2) if O # roceeT

n
= Syt esy where the ri's and sj's are irreducible, then n = m and
after a suitable reordering ri and si are assoclates for i=1,*°*,n.

(Here by an irreducible element we mean a nonzero nonunit element r of
R with the property that r = ab for a,b € R implies a or b is a
unit. Two elements a and b are associates if a = ub where u is

a unit.) If r 1is an irreducible element in a UFD, then r is a prin-
cipal prime, i.e., (r) is a prime ideal. Indeed, if r |ab # 0, then
after factoring a and b into irreducibles, the condition (UFD2) shows
that r'a or rlb. Conversely, in any ring, a regular principal prime
is irreducivle. Moreover, if pl---pn = ql~--qm are two factorizations
of a regular element into a product of regular principal primes, then

n = m and after a reordering pi and qi are associates for i=1,---,n.
(ql---qm =Dy P € (pl), so say Q € (pl).. Then g, = ap, - But q,
is irreducible so a 1s a unit and hence p1 and q1 are associates.

Cancelling Py from both sides of the equation and applying induction



yields the conclusion. Actually, more is true. Any factor of a product
of regular principal primes 1s itself a product of regular principal
primes. Hence any irréducible factor of a product of regular principal
primes is actually a principal prime. Thus we get the "stronger" result
that a product of principal primes has a unique decomposition into irre-
ducible elements.) Thus an integral domain is a UFD if and only if it
satisfies (UFD3): every nonzero nonunit is a product of principal primes.

In this paper we study generalizations of properties (UFD1) and (UFD2),
or (UFD3) to rings with zero divisors. There are many ways in which this
can be done. In fact, two such generalizations have already been given
by Galovieh [11] and Fletcher ([8] and [9]).

Galovich [11] defines a unique factorization ring to be a commutative
ring with identity satisfying (UFD1) and (UFD2). He shows that if R is
not an integral domain, then every irreducible element is nilpotent, so
R 1is a quasilocal ring. Further, if R has more than one nonassociate
irreducible element, then M2 = 0, where M 1s the unique maximal ideal
of R. Thus a ring R 1is a unique factorization ring (in the sense of
Galovich) if and only if R is either a UFD, a quasilocal ring (R,M)
with M2 = 0 (here every nonzero nonunit is irreducible), or R 1is a
special principal ideal ring (SPIR) (i.e., R 1is a principal ideal ring
with a single nilpotent prime ideal). Galovich then gives a complete
structure theory for rings of the last two types using Cohen's Structure
Theorems for complete local rings. Since Galovich gives such a complete

' we will not con-

characterization of his "unique factorization rings,'
sider them further.

In the second section we consider the unique factorization rings




defined by Fletcher [8]. 1In fact, throughout this paper by a unique faq-
torization ring (UFR) we mean a unique factorization ring as defined by
Fletcher. Fletcher [9] showed that a ring is a UFR if and only if it is

a finlte direct product of UFD's and SPIR's. We will give an alternate
proof of this result via Mori's theorem characterizing rings in which
every principal ideal is a product of prime ideals (T-rings) and our work
on factorial rings contained in the third section. We also give ﬁeveral
new conditions characterizing UFR's and Ti-rings.

In the third section we define a third generalization of UFD's which
we call a factorial ring. A factorial ring is a ring in which UFD1 and
UFD2 hold for the regular elements or eguivalently, R is factorial if
every regular nonunit is a product of principal primes. Examples of fac-
torial rings include direct products of UFD's, total quotient rings, and
rank one discrete valuation pairs. Here we use a slight modification of
Kennedy's [1l4] notion of a Krull ring (with zero divisors). We character-
ize a factorial ring as a Krull ring with trivial divisor class group.

We follow standard terminology from commutative ring theory with the
possible exceptions of Fletcher's definitions of irreducible element and
associate elements (in Section II). Our general references will be
Gilmer [12], Kaplansky [13], and Larsen and McCarthy [15]. Fossum [10]
is a general reference concerning Krull domeins and Larsen and McCarthy

[15] 1s an excellent reference for valuation pairs and Prufer rings.

II. Unique Factorizatlon Rings. We begin with a brief review of the

following definitions from Fletcher [8] necessary to give Fletcher's defi-

nition of a unique factorization ring.



Let R be a commutative ring with 1 and let r € R. A refinement
of a factorization r = al'°°an is obtained by factoring one or more of

the ai's. A nonunit r 1is said to be irreducible if each factorization
of r has a refinement containing r. Two elements & and b of R
are associastes if (a) = (b). The U-class of an element r 1s defined

to be the saturated multiplicatively closed set U(r) = {b € R|b(r)=(r)].

A U-decomposition of an element r 1is a factorization

-

- loool o e 0 l' ' -
r (pl pk;)(p1 pk) such that (i) the p,'s and p,'s are irreduc

’

ible, (ii) p’i €U(p1°"pk) for i=1,°--,k' and (iii)

P, ¢ U(pl---ﬁi--opk) for i=1,--:,k. TFletcher shows that if r 1is a
product of irreducible elements, then r has a U-decomposition. Two

3 = I-.-' s = l---' e
U~decompositions of r €R, r = (p1 pk:)(pl pk) (ql qz')(ql qz)
are associates if (i) k = £ and (i1i) after a suitable change in the order
of the factors in the second half of each U-decomposition (called the

relevant factors), we have pi and qi are associates for 1i=1,---,k.

A ring R is called a unique factorization ring (UFR) if (UFR1) every

nonunit of R has a U-decomposition and (UFR2) any two U-decompositions
of a nonunit element of R are associates.

Before proceeding, some remarks about the above definitions are in
order. Fletcher [8, page 580] gives an example of two elements that are
associate (i.e., (a) = (b)), but b does not have the form &a = ub where
u is a unit. However, if a 1is a regular element (i.e., a nonzero
divisor) and a and b are associates, then (a) = (b), so a =rb
and b =as so a=1rb=rsa. Since &a 1s regular, rs =1, so r is
a unit. Thus if a 1s regular, Fletcher's notion of associates agrees

with the usual definition. Also, if a is regular, then U(a) 1s just



the set of units of R, for if t{a) = (a), then ta and a are assoc-

lates, so ta = ua where u is alunit, so t =u 1is a unit. Hence if
I
t 1is a regular element, a U-decomposition of t has the form

t = ( )(tl---tn) where t,,--:,t are irreducible elements in the usual

l’

sense. In this case to say that any two U-decompositions of t are

associates just says that if t =%t _---t =1 .++t’ where the t,'s and
1 n 1 m i

t''s are irreducible, then n = m and after a reordering the t and

i

' -
ti's are associates.

g'S

Fletcher shows [9, Theorem 19)] that a ring is a UFR if and only if
it is a finite direct product of UFD's and SPIR's. It follows from
Fletcher's structure theorem for UFR's that an element of a UFR 1s irre-
ducible if and only if it is prime. Hence in a UFR every element (prin-
cipal ideal) is a product of principal prime elements (1deals). Either
of these two propertles actually characterizes UFR's. This 1s an immediate
corollary to the result of Mori mentioned in the Introduction. (Mori
proves this result in a series of four papers [17]-[20]. A proof of this
result may also be found in [12].) Without using Fletcher's characteri-
zation of a UFR as a direct product of UFD's and SPIR's, we show that an
irreducible element in a UFR 1s prime. Fletcher's structure theory for

UFR's will then follow from Mori's theorem.

Theorem 2.1 (Mori). Let R be a commutative ring. Then every principal
ideal of R 1is a product of prime 1deals if and only if R 1is a finite
direct product of SPIR's and integral domalns with the property that every

principal 1deal is a product of prime ideals.



Recall that a ring 1s called a m-ring if every principal ideal is a
product of prime ideals. A T-ring that is an integral domain is called
a Ti-domain. Thus in a Ti-domaln every nonzero principal ideal is a
product of invertible prime ideals. Many characterizations of m~domains
may be found in [3],[4],[6] and [7]. For example, an integral domain R
is a T~domain if and only if R is a locally factorial Krull domain or

if and only if R(X) 1is a UFD.

Corollary 2.2. For a commutative ring R the following conditions are

equivalent.

(1) Every element (principal ideal) of R 1s a product of principal
prime elements (ideals).

(2) R 1is a finite direct product of UFD's and SPIR's.

(3) R is a wW-ring and every invertible ideal of R is principal.
Lemma 2.3. An element of a UFR is irreducible if and only if it is prime.

Proof. (<=) 1In any ring a principal prime is irreducible. (=>) Suppose
that R 1is a UFR. Let r be irreducible. First suppose that r 1is not
regular. Then there is an a # 0 with ar = 0. Let

a = (ai"-a;,)(al---an) be a U-decomposition of &a. If r € U(al---an),
then (a) = (al---an) = r(al-'-an) = r(a) = 0, a contradiction. Hence

r 1is one of the relevant irreducible factors involved in a U-decomposi-
tion of 0. Suppose that ef € (r), so ef =cr. Let ¢ have a U-
decomposition ¢ = (c'---cQ,)(cl---cL). If r is one of the relevant

1

irreducible factors in a U-decomposition of cr, then after taking a



U-decomposition of e and f, multiplying them together and reducing

the product to a U-decompositlion of ef, we see that r must be a rele-

vant irreducible factor of e or f, so e € (r) or f € (r). Thus we
can assume that r 1is not a relevant factor of re so r € U(cl"'cz),

eveg )(c s e ) = (O), Moreover,
n £

1

i.e., r(cl---cx) = (cl---cz). Now (a 1

since (cl---cz) = r(cl---cz), in this product we can delete any of the

1
a.'s with (ai)

r as a factor. Thus we are reduced to showing that an irreducible element

1]

(r). But this yields a U-decomposition of 0 without

that is regular is prime. Let ab € (r) where a and b are regular
elements. Then ab = cr for some c¢ € R. Factoring a and b into
irreducible elements and applying the remarks in the third paragraph of
this section concerning U-decompositions of regular elements, we see that
r must be an irreducible factor of a or b so a € (r) or b € (r).

Hence by Corollary 3.5 (in the next section) we see that (r) 1s prime.

It is interesting to note that in Lemma 2.3 we only used the unique-
ness of U-decompositions (UFR2) for O and for regular elements. Com-
bining this observation, Lemma 2.3 and Corollary 2.2 yields the following

characterizations of UFR's.

Theorem 2.4. For a commutative ring R the following conditions are

equivalent.

(1) R is a UFR.

(2) R satisfies (UFl) (i.e., every element of R has a U-decomposition,
or equivalently, is a product of irreducible elements) and R satis-

fies UFR2 for 0 and for regular elements.



(3) Every principal ideal of R is a product of principal prime ideals.
(L) Every element of R 1is a product of principal primes.

(5) R 1is a finite direct product of UFD's and SPIR's.

In the introduction we observed that if a regular element r is a
product of principal primes, then this is the only decomposition of r
into irreducible factors, up to order and associates. Thus any two U~
decompositions of r are associates. Suppose that a nonregular element
is a product of principal primes. Then since a principal prime is irre-
ducible, r has a U-decomposition. A natural question is whether any
two U-decompositions of r are associates. (This is of course the case
for a UFR.) The answer is no. Let K be a field and
R = K[[X,Y]/X,Y)(X)(Y). Then X and Y (the images of X and Y,
respectively, in R) are principal primes, but ( )(XXY) = ( )(XYY)
are two nonassoclate U-decompositions of 0.

It is well known [13, Theorem 5] that an integral domain is a UFD
if and only if every nonzero prime ideal contains a nonzero principal
prime ideal. We wish to extend this result to UFR's. We first however
give a lemma that may be of independent interest. We will need the
following known facts about the ring R(X). For a commutative ring R,
the ring R(X) 1s the ring R[X]s where S is the multiplicatively
closed set S = {ao+alX+---+aan € R[X] '(ao,---,an) = R}. We will use
the following facts about R(X) which may be found in [2]. There is a
one-to-one correspondence between the minimal (maximal) prime ideals of
R(X) glven by P <—> PR(X). For any ideal A of R, AR(X) N R = A.

An ideal A of R is finltely generated and locally principal if and



only if AR(X) is principal. Every finitely generated locally principal

ideal of R(X) 1is principal.

Lemma 2.5. Let R be a commutative ring and let A be an ideal of R.
Suppose that every prime ideal P minimal over A has the property that
P/A is finitely generated and locally principal. Then there are only

finitely many prime ideals minimal over A. .

Proof. By passing to R/A, we may take A = 0. Hence we are assuming
that every minimal prime ideal of R 1s finitely generated and locally
principal. We need that R has only finitely many minimal primes. Pass
to the ring R(X). By the remarks of the above paragraph the minimal
prime ideals of R(X) are principal. It suffices to show that R(X) has
only finitely many minimal primes. Thus we may assume that the minimal
prime ideals of R are principal. Let S %be the multiplicatively closed
subset of R generated by the minimal principal prime elements. It suf-
fices to show that 0 € S. For if 0 = pl---pn where the pi's are min-
imal principal primes, then any minimal prime contains a Py and hence
has the form (pi). Suppose that 0 € S. Then we can enlarge (0) to a

prime ideal P maximal with respect to PN S # d. But since P contains

g minimal prime ideal, this is absurd.

Theorem 2.6. A ring R is a UFR if and only if
(a) every rank zero prime ideal is principal, and
(b) every prime ideal of rank > 0 contains a principal prime ideal of

rank > 0.
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Proof. (=>) This is evident from the fact that a UFR is a finite direct
product of UFD's and SPIR's. (<=) Suppose that R satisfies (a) and (b).
By the previous lemms, R has only a finite numbe; of minimal primes, say
(pl),---,(pn). Let M be a maximal ideal of R. If rank M > 0, then

M contains a nonminimal principal prime (p). Since (p) §>(pi) for some
i, we have (pi) = (p)(pi). In Ry, Wwe have (pi)M = (p)M(pi)M’ so by
Nakayama's Lemma (pi)M = (O)M, so R, 1s an integral domain. Eénce each
maximal ideal M contains a unique minimal prime ideal (pi) and either
M= (pi) or (O)M = (Pi)M' Hence either (pi) is both a maximal and

minimal prime ideal or (p,) = (p )2. The (p,)'s are also comaximal.
i i

i
)1 °n > (p,)
Let (0) = (pl (pn) where elther si =1 or si 1 and pi
is a maximal ideal. (Here we have used the fact that 4/(0) = (pl)[1'--f1(pnl)
Sy Sp S3
Then R e=R/(J;>l) X ---xR/(pn) . If s, >1, then R/(pi) is a SPIR
and if si = 1, then every nonzero prime ldeal of R/(pi) contains a
nonzero principal prime ideal by (b) and hence R/(pi) is a UFD.
Using the techniques of the above proof, it is not hard to show that
a ring R is a m-ring if and only if (a) every minimal prime ideal of R
is finitely generated and locally principal and (b) every prime ideal of
rank » 0 contains a finitely generated locally principal prime ideal of
rank 2 O.

Our last result of this sectlon considers the question of when

R[X], R[[X]], or R(X) 1s a UFR.

Theorem 2.7. (1) R[X] is a UFR if and only if R is a finite direct
product of UFD's.

(2) 1If R[[X]] 4is a UFR, then R is a finite direct product of UFD's.
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(3) R(X) 'is a UFR if and only if R is a T-ring.

Proof. (1) Suppose that R = D_ X te XD is a direct product of UFD's.

1
Then each Di[X] is a UFD and hence R[X] = Dl[X]X--- XDn[X] is a

direct product of UFD's and hence is a UFR. Conversely, suppose that

R[X] is a UFR. Let P ---,Pn be the minimal prime ideals of R. Then

12

PlR[X],--°,PnR[X] are the minimal prime ideals of R[X]. Now since no

PiR[X] can be maximal, it follows as in the proof of Theorem 2.6 that

R[X] = R[X]/PlR[X] X oo XR[X]/PnR[X] = (R/Pl)[X] XX (R/Pn)[X] and each

(R/Pi)[X] is a UFD. Hence each R/P, 1s a UFD and R =R/P X - XR/P .
(2) The proof is similar to (1). Since a power series ring over a

UFD need not be a UFD, a power series ring over a UFR need not be a UFR.
(3) Suppose that R is a m-ring. Then R =R X ... XR ~ where

1

each Ri is either a SPIR or Ti-domain. If Ri is a SPIR, then it fol-

lows from [1, Theorem 8] that Ri(X) is a SPIR. If R, 1is a m-domain,

i
it follows from [7, Theorem 2] that Ri(X) is a UFD. Hence
R(X) = Rl(X) X oo an(x) is a direct product of SPIR's and UFD's and so
is a UFR. Conversely, suppose that R(X) 1s a UFR. Let Pl,---,Pn be
the minimal prime ideals of R. Then PlR(X),---,PnR(X) are the minimal
prime ideals of R(X). Hence PlR(X),-'-,PnR(X) are comeximal, so we
51 Sn 51 s
have (0) = PlR(X) -°°PnR(X) =P R(X)f1-°-f\PnR(X), so contracting
s s
back to R gives (0) = Pllfﬁ---f]Pnn and Pl,---,Pn are still comaxi-
s1 Sp Sy sy
mal. Hence R =R/P."X---XR/P ". Now (R/P1 )(X) -%R(X)/Pi R(X) is
either SPIR or UFD {(according to whether s 1 >1 or s 1= 1). It follows
s
from [1, Theorem 8] or [7, Theorem 2] that R/Pii is a SPIR or Tm-domain,

respectively. Hence R 1s a finite direct product of SPIR's and
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T-domains, so R is a Tm-ring.

Another way to étate (2) of Theorem 2.7 is that R[X] is not a UFR
if R is a SPIR. Since every finitely generated locally principal ideal
of R(X) 4is principal, R(X) is a UFR if and only if it is a Tm-ring.
The proof of (1) of Theorem 2.7 may be modified to yield the result that
R[X] is a ®-ring if and only if R 1is a finite direct product Qf

TI-domains.

IIT. Krull Rings and Factorial Rings. Kennedy [1L4] has extended the

notion of a Krull domain to commutative rings with identity which may con-
tain zero divisors. We begin with some necessary definitions. Let R

be a commutative ring with identity having total quotient ring T(R). We
do not assume that R # T(R). Let TF(R) denote the collection of regular
fractional ideals of R, so F(R) = {R} if R = T(R). For A,B € F(R),
the set [A:B] = {x € T(R) ,xB € Al is again an element of F(R). We
will usually denote [R:[R:A]] (A € F(R)) by A, end we will say that
A is divisorial if A = Av’ As in the domain case, Av is the intersec-
tion of the (necessarily regular) principal ideals containing it. The set
D(R) of divisorial ideals of R Dbecomes a semigroup under v-multiplica-
tion (for A,B € D(R), define AxB = (AB)V) with R as identity. As
in the domain case, Kennedy shows that D(R) is a group if and only if

R is completely integrally closed. Let I(R) be the subgroup of D(R)
consisting of invertible ideals and let P(R) be the subgroup of I(R)
consisting of regular principal ideals. The quotient group

C(R) = I(R)/P(R), called the class group of R, 1is a subgroup of the
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divisor class semigroup C1(R) = D(R)/P(R). Thus R is completely inte-

grally closed if and only if C1(R) is a group. l

We now give the definition of a Krull ring. Our definition d;ffers
from that given hy Kennedy in that we allow a total quotient ring to be a
Krull ring. (This is analogous to allowing a field to be a Krull domain.)
Allowing a total quotient ring to be a Krull ring appears to make the
statement of certain theorems more uniform; for example, then a direct
product of rings i1s a Krull ring if and only if each direct factor is a
Krull ring.

A ring R is a Krull ring if either (1) R = T(R) or (2) there
" exists a family {(Va’Pa)} of discrete rank one valuation pairs of T(R)
such that (I) R =W, and (II) va(a) = 0 for all but a finite number
of a for each regular a € T(R) and each P, 1s & regular ideal of V.

Krull rings can be defined without recourse to valuation pairs. ([15]

is an excellent reference for valuation pairs.) For Kennedy's definition,

this is done in [1L4] and [16].

Proposition 3.1. R is a Krull ring if and only if R is completely

integrally closed and R satisfies the maximum condition on divisorial

ideals.

Proof. First, suppose that R = T(R). Then by (our) definition R is a
Krull ring, R is completely integrally closed and R satisfies the

maximum condition on divisorial ideals (indeed, R 1is the only divisorial
ideal). Thus we may suppose that R # T(R). The implication (=>) appears
in [14, Proposition 2.2] while the implication (<=) appears in [16, Theo-

rem 5].



1k

Proposition 3.2. Let Rl,---,Rn be commutative rings with identity.

Then Rlx see an is a Krull ring if and only if each Ri is a Krull

ring.

Proof. This follows easily from the characterization of Krull rings
given in Proposition 3.1 and the following facts about direct products of

rings: 'I’(Rlx an) = T(Rl)x XT(Rn), Ry X «e- an is completely

integrally closed if and only if each Ri is completely integrally closed,

Alx XAn is a divisorial ideal of Rlx XRn if and only if each

Ai is a divisorial ideal of Ri and RJ.X '--)<Rn satisfies the maximum

condition on divisorial ideals if and only if each Ri does.

Under Kennedy's definition the above proposition would not be true.
For Kennedy [1k, Proposition 2.5] remarks that if R is a Krull ring and
S is a total quotient ring, then RXS 1is & Krull ring, but S is not

a Krull ring under Kennedy's definition.

Proposition 3.3. Let Rl,---,Rn be commutative rings with identity.

X---XRn) = c(Rl)x -~-XC(Rn) and Cl(RlX-~-an)

Then c(R1

= C1(R,) X *++ XxC1(R ).
1 n

Proof. Both equalities follow from the facts that the ideal Alx ---XAn

of R:LX---XRn (each Ai

ideal (respectively invertibéﬂ or divisorial) if and only if each Ai is

is an ideal of Ri) is a regular principal

a8 regular principal ideal of R (respectively invertible or divisorial).

i
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Recall that R 1is called a UFR if R 1s a finite direct product of
UFD's and SPIR's. Clearly a UFR is a Krull ring with trivial divisor
class group. Kennedy remarked this [1l4, Proposition 3.1] and raises the
guestion of whether a Krull ring with trivial divisor class group 1s a
UFR. Matsuda [16] answered this question in the negative as follows. Let
D be a UFD and let S be a total quotient ring that is not a UFR, then
DXS is a Krull ring, not a UFR, but ¢€1(Dx8S) = c1(D)xcC1(s) = 0.

We next give another natural extension of UFD's to commutative rings
with identity that may contain zero divisors. We will show that this
class of rings is just the Krull rings with trivial divisor class group.
To avoid confusion with our previously given generalizations of UFD's,
we call these rings factorial rings. In what follows, a nonunit element
a of a ring R 1s irreducible if for any factorization a = bc 1in R
either P or ¢ 1is a uvnit in R. Two elements a and b of R are
associates if a = Ab where A is a unit of R. If a and b are
both regular, then a and b are associates if and only if (a) = (v).

A commutative ring R with identity 1s called a factorial ring if

(I) every regular nonunit element of R is a product of irreducible

\

(regular) elements, and (II) if r,ryccrr = s ccts  are two factoriza-
tions of a regular nonunit of R into irreducible elements, then n =m
and after reordering (if necessary) r, and 8, are assoclates for
i=1,--,n. Thus R 1is factorial if and only if UFD1l and UFD2 hold for
regular elements of R.

Clearly an integral domain is a factorial ring if and only if it is

a UFD (i.e., a factorial domain!). A total quotient ring is vacuously

a factorial ring. It 1s easlly seen that a direct product of rings
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Rlx ."XIﬂ1 is factorial if and only if each Ri is factorial. Hence
a direct product of factorial domains (UFD's):and total quotient rings
is a factorial ring. Thus a factorial ring néed not be a UFR, but a UFR
is a factorial ring. It will follow from Theorem 3.6 that if R is a
factorial ring and S 1is a multiplicatively closed set consisting of
regular elements, then RS is a factorial ring.

Our definition of a factorial ring is analogous to that of Priifer
rings which generalize Prufer domains. Recall that an integral domain
is called a Prufer domain if every finitely generated nonzero ideal is
invertible. Prufer domains are also characterlzed among integral domains
as those integral domains whose lattice of 1deals 1s distributive. A
ring R is called a Prufer ring if every finitely generated regular ideal
is invertible. A ring R 1s called an arithmetical ring if the lattice
of ideals of R 1is distributive. Our generalization of UFD's to fac-~
torial rings is similar to the generalization of Prufer domains to Prufer
rings just as the generalization of UFD's to UFR's is similar to the
generalization of Prufer domains to arithmetical rings. (An excellent
treatment of Prufer rings may be found in [15].)

Qur next theorem gives several equivalent conditions for a commuta-
tive ring with identity ring to be a factorisl ring. In the case of an
integral domain R, these conditions are all well known to be equiva-

lent to R being a UFD. We first need a lemma concerning divisorial

ideals.

Lemma 3.4. Let R be a commutative ring with identity and let A and
B Ye divisorial ideals of R. If A and B contain the same regular

elements, then A = B.
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Proof. Notice that since A 1is divisional, for a regular element

r € T(R) we have [R:A] c;(r)<i>r_l[R:A] c Rer 1 € [R:[R:A]] = A.
Hence [R:A] and [R:B] are divisorial ideals conteined in the same
set of regular principal ideals. Since a divisorial ideal is the
intersection of the principal ideals containing it, [R:A] = [R:B].
Hence A = [R:[R:A]] = [R:[R:B]] = B.

.

Corollary 3.5. Let A be a divisorial ideal in a commutative ring

R. Then A is a prime ideal if and only if whenever the product

of two regular elements lies in A one of them lies in A.

Proof. Let ab € A. Suppose that a € A and b € A. Then

(a,A)*r' P A and (b,A)v;‘_J A. Hence by Lemma 3.4 there exist regular
elements 8, € (a,A)v - A and bl.E (b,A)v - A. Then

albl.e (a,,A)v(b,A)v c ((a,A)(b,A))v c Av = A, Since 8 and bl
are regular, by hypothesis a, € A or bl_E A. This contradiction

show that A is prime.

The next theorem, the main result of this section, gives several

characterizations of factorial rings.

Theorem 3.6. For a commutative ring R with identity the following
conditions are equivalent.

(1) R is factorial.

(2) R is a Krull ring with C1(R) = 0, i.e., every divisorial

ideal of R is principal.
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(3) R is & Krull ring and every maximal divisorial ideal is principal.

(4,) R nhas thF maximum condition on regular principal ideals and the
intersection of two regular principal ideals is principal.

(5) R is a Krull ring and the intersection of two regular principal
ideals is principal.

(6) Every regular prime ideal of R contains a regular principal
prime ideal. .

(7) Every regular element (principal idesl) is a product of regular

prinicpal prime elements (ideals).

Proof. Since the above seven conditions hold for a total guotient

ring, we may assume that R # T(R). Kennedy [14, Proposition 3.1]

gives the following implications: (3)<=>(5)<>(2)<>(L4). The
equivalence of (6) and (7) is similar to the domain case which

is given in [13, Theorem 5]. (7)=>(1): A prime element is irreducible
and ‘the decompositions of a regular element into a product of (regular)
primes is unique up to order of the factors and associates.

(3)=>(7): Since R has ACC on regular principal ideals, every
principal ideal is a product of irreducible principal ideals. Hence

it suffices to show that an irreducible principal ideal is prime. ILet

r be irreducible. Then clearly (r) is a meximal divisorial ideal.
Suppose that abe€ (r) but a g€ (r) and b £ (r). Then (a,r):_e(r)
and (b,r) =) (r), so (a,r)v = (b,r)v = R. Hence R = ((a,r)v(b,r)v)v =
((a,r)(b,r))v c (r)v = (r). This contradiction shows that (r) is

prime. (1) =>(b): Clearly a factorial ring has ACC on regular principal

ideals. Let r and s be two regular elements, we need that
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(r) n (s) is principal. Let t be the product of the irreducible
factors dividing both r and s. Let r =r't and s = srt where

s' and t' have no common irreducible factors. Since (r) N (s) =
(r't)n (s't) = t((r') N (s')), it suffices to show that (r') N (s') = (r's').
Thus we can assume that r and s have no irreducible factors in
common. Now (r) N (s) 2 (rs). Suppose that u € (r) N (s) is
regular. Then r/u and s/u, so by the uniqueness of the factor=
ization into irreducible elements u must have all the irreducible
factors of both r and s, so since r and s have no common irre-
ducible factors, rs/u so ue¢€ (rs). Thus (r) N (s) and (rs) are
two divisorial ideals containing the same regular elements, so by

Lemma 3.4, (r) N (s) = (rs). (4)=>(5): We show that every divisorial
ideal is principal. Then D(R) is a group, so R is completely
integrally closed and R has ACC on divisorial ideals, so R 1is a
Krull ring. Let A ¢R be a divisorial ideal If (x) 1is a regular
(fractional) principal ideal, then R N (x) being the intersection of
two regular principal ideals is principal. Hence, A =.n{%(s)fs is
regular with a € (s) R} If r is irreducible, (r) is & maximal
divisorial ideal. Since every irreducible principal ideal is a maximal
divisorial ideal, the proof of (3) =(7) gives that every regular
element of R is a product of prime elements. Iet t € A be regular.
Then (s)=2 A implies (s)2 (t) so s is just a product of a some
of the primes occurring in t. Hence there are only finitely many
distinet regular principal ideals containing A, so A 1is a finite

intersections of principal ideals and hence is principal.



We next give an example of a factorial ring that is not a direct

product of UFD's and total quotient rings.

Example 3.7. ILet V %be a valuation domain with value group the
lexicographic direct sum of two copies of Z, i.e., V is a rank 2
discrete valuation ring. The maximal ideal of V is principal,

say (P) and Q = Jil(pn) is the other nonzero prime of V. Singe
V is discrete Q # Q2. Then V/Q2 is a one-~dimensional quasi-local
ring with Z(V/Qe) = Q/Qz. Every regular (principal) ideal is of the
form (pn), so V 1is an indecomposable factorial ring. In terms of

valuations, (V/Qg,(P)/QQ) is a discrete rank one valuation pair on

P(V/Q°).

If R is en integral domain, then R 1is Krull (factorial)
if and only if R[X] is Krull (factorial). This is no longer true
if R is not a domain. For if a R is nilpotent, a/X is
integral over R[X]. Hence if R[X] is a Krull ring, R[X] must
be completely integrally closed which implies that R is reduced.
It is however easy to characterize the rings R for which R[X] is
factorial. It is interesting to note that we get the same answer as

in Theorem 2.7.

Theorem 3.8. For a commutative ring R the following conditions are
equivalent.
(1) R[X] is factorial.

(2) R[X] is a UFR.

20
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(3) R is a finite direct product of UFD's.

Proof. Theorem 2.7 gives (3)=>(2). If R[X] is a UFR, then
every element of R[X] is a product of principal primes. Hence
every regular element of R[X] is a product of principal primes,

so by Theorem 3.6, R[X] is factorial. (1) = (3). By the remarks

of the previous paragraph, if R[X] is factorial, then R[X] is s
Krull ring and hence R must be reduced. Since X is regular in
R[X], X must be a product of principel primes. Hence (0) = (X)

in R~ R[X]/(X) is a product of principal primes. Thus R has a
finite number of minimal primes, each of which is principal, say
(pl),...,(pn) are the minimal prime ideals of R. Since R is
reduced the zero divisors of R are (pl) Uu...U (pn). Hence
(pl),...,(pn) are the only nonregular prime ideals of R. Since

R is reduced, the only units of R[X] are units of R. Hence
elements of R are associate in R if and only if they are associate
in R[X]. Thus if a regular element of R has two nonassociate
factorizations in R, it has two nonassociate factorizations in R[X].
But since R[X] is factorial, this is impossible. Moreover, since
R{X] nas ACC on regular principal ideals, so does R. Hence >R

is factorial. Hence by Theorem 3.6, every regular prime ideal of R

contains a regular principal prime ideal. Hence by Theorem 2.6, R

is a UFR.

L]
Actually many other divisibility properties for integral

domains can be carried over to rings with zero divisors. Let R
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be a commutative ring having total quotient ring T(R). The set
P(R) of regPlar fractional principal ideals forms a partially ordered
abelian group, with partial order (a) < (b) if and only if (b) € (a).
This group, called the group of divisibility of R, may also be
characterized as the multiplicative group of units of T(R) mod:
the units of R. Clearly P(R) = 0 if and only if R = T(R).
P(R) is lattice ordered if and only if R is a GCD ring, that is,
every pair of regular elements of R has a GCD or equivalently the
intersection of two regular principal ideals is principal. Thus by
Theorem 3.6 a ring R is factorial if and only if R is a GCD ring
with ACC on regular principal ideals. Thus a ring R is factorial
if and only if P(R) is order isomorphic to a direct sum of copies
of Z (with the order (ay) = (b,) if and only if &g < %,  for
each a vwhere ?Z is the given group).

With the same point of view many of the results from [3]-[6]

can be extended to rings with zero divisors.
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