Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by-nc-sa/3.0/ve/
dc.contributor.authorCastañeda Marín, Hernando
dc.contributor.authorColina Morles, Eliézer
dc.contributor.authorRodríguez Graterol, Wladimir
dc.contributor.authorParra O., Carlos A.
dc.date.accessioned2010-07-12T22:03:45Z
dc.date.available2010-07-12T22:03:45Z
dc.date.issued2010-07-12T22:03:45Z
dc.identifier.urihttp://www.saber.ula.ve/handle/123456789/31371
dc.description.abstractwe propose a new perspective on the identification of linear dynamic system using structural similarity. The proposal consists in the meaningful exploration of each model, specifically behavior of the state variable. The decomposition of the behavior of a state variable in different modes of behavior of a system, each one has a different set of weights and shows different patterns of behavior. These weights are more significant than eigenvalue to develop a new technique for identifying linear system and invariants over time. We use two methods based on different areas of knowledge such as linear algebra and statistics. This paper is a conceptual proof that enriches the implementation and validity not only from point of view algorithmic likewise physic mathematical.es_VE
dc.language.isoeses_VE
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDynamic Clusteringes_VE
dc.subjectStructural Similarityes_VE
dc.titleUnderlying system using dynamic clustering and structural similarityes_VE
dc.typeinfo:eu-repo/semantics/article
dc.description.colacion1-8es_VE
dc.description.emailhcastaneda@ula.vees_VE
dc.description.emailecolina@ula.vees_VE
dc.description.emailwladimir@ula.vees_VE
dc.description.emailcarapa@unipamplona.edu.co, cparra@unipamplona.edu.coes_VE
dc.subject.facultadFacultad de Ingenieríaes_VE
dc.subject.tipoArtículoses_VE
dc.type.mediaTextoes_VE


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem