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We characterize the leaf spectra of tree species of an Andean cloud forest in Venezuela, grouped according to position in canopy,
subcanopy and understory. We measured leaf re�ectance and transmittance spectra in the 400–750 nm range using a high-
resolution spectrometer. Both signals were subtracted from unity to calculate the absorbance signal. Nine spectral variables were
calculated for each signal, three based on wide-bands and six based on features. We measured leaf mass per unit area of all species,
and calculated efficiency of absorbance, as ratio of absorbance in photosynthetic range over leaf mass. Differences among groups
were signi�cant for several absorbance and transmittance variables, leaf mass, and efficiency of absorbance.e clearest differences
are between canopy and understory species. ere is strong correlation for at least one pair of band variables for each signal, and
each band variable is strongly correlated with at least one feature variable for most signals. High canonical correlations are obtained
between pairs of the three canonical axes for bands and the �rst three canonical axes for features. Absorbance variables produce
species clusters having the closest correspondence to the species groups. Linear discriminant analysis shows that species groups
can be sorted by all signals, particularly absorbance.

1. Introduction

Differences between understory and canopy environmental
conditions are fundamental for forest dynamics. Among the
many variables that distinguish both conditions, some are
very important for physiological processes. In particular,
light characteristics constitute a determinant factor in many
biological processes [1–7].

Differences in solar radiation from the ground to the top
of the canopy are determined by the optical properties of the
leaves, that is absorption, re�ection, and transmission of light
[8, 9]. Leaves in different canopy strata have different optical
properties, and these are related to ecological, physiological,
biochemical, and anatomical characteristics [6, 10–21].

In particular, one leaf characteristic known to vary with
canopy strata is speci�c leaf mass or leaf mass per unit
area (LMA). In earlier studies, leaves of species in sunny

versus shady environments at different locations showed no
signi�cant differences in absorbance, while showing differ-
ences in LMA [10]. Later results suggested differences in leaf
spectral properties, as well as LMA, among species found in
different positions of a vertical gradient (canopy, midcanopy,
and understory) in a tropical forest [15]. Recent studies
indicate that LMA variation is related to tree height rather
than light conditions [22], that seasonal variations in leaf
spectral properties are very high [23], and that physiological
and morphological plasticity are essential for growth and
reproduction in contrasting light environments [24].

Leaf re�ectance spectra characteristics are key to under-
stand the potential to distinguish species in remote sensing
imagery [25–28] and to provide a tool for species identi�ca-
tion [29]. All these efforts indicate that there are detectable
differences in leaf spectral characteristics across species, and
the environmental conditions in which they are immersed.
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T 1: List of species studied in canopy, subcanopy, and understory of the cloud forest in Monterrey, Estado Mérida, Venezuela.

Species Code Family Life form
Canopy (15–25m)

Guettarda steyermarkii Standl. GS Rubiaceae Tree
Lycianthes ferruginea Bitter LY Solanaceae Vine
Miconia resimoides Cogn. MR Melastomataceae Tree
Clusia multi�oraH.B.K. CM Clusiaceae Tree
Viburnum tinoides L.f. VT Caprifoliaceae Tree
Inga sp. IN Mimosaceae Tree
Piper aduncum DC PA Piperaceae Tree
Montanoa quadrangularis Sch.Bip. MQ Asteraceae Tree
Miconia sp. M1 Melastomataceae Tree

Subcanopy (5–10m)
Piper bogotense DC PB Piperaceae Tree
Solanum gratum Bitter SG Solanaceae Tree
Sapium stylareMüll.Arg. SS Euphorbiaceae Tree

Understory (0–5m)
Psychotria sp. P1 Rubiaceae Shrub
Anthurium nymphaeifolium Koch & Bouché AN Araceae Herbaceous
Solanum sp. S1 Solanaceae Shrub
Chamaedorea pinnatifrons (Jacq.) Oerst. CP Arecaceae Palm
Fuchsia venustaH.B.K. FV Onagraceae Shrub
Miconia meridensis Triana MM Melastomataceae Shrub
Palicourea demissa Standl. PD Rubiaceae Shrub
Psychotria aubletiana Steyerm. PU Rubiaceae Herbaceous

In cloud forests of tropical mountains, the elevated
values of cloudiness and complex relief impose additional
restrictions to the quantity and quality of solar radiation
received in different vertical strata [2, 30, 31]. In this paper,
we evaluate leaf spectral characteristics and LMA of twenty
species, located in the canopy (15–25m height), subcanopy
(5–10m), and understory (0–5m) of an Andean cloud forest.
We study the relationship of LMA and leaf spectra, and more
importantly, we look for those leaf spectral characteristics
that can best discriminate among the three groups of species.

We conducted this study in order to contribute data on
leaf spectral properties of tropical cloud forests that could
help support remote sensing species identi�cation proce-
dures, and to understand relationships between ecological
processes and tree canopy position.

2. Methods

2.1. Study Area and Species. e study site is located at
2400m elevation asl, 8∘37�N and 71∘10�W, in the Monterrey
area, Valle Grande, near the city of Mérida, in the Andes
of Venezuela. Mean annual temperature is 13∘C and annual
rainfall is 2560mmwith one peak inMarch–May and another
in August–November. Distributed in several vertical strata,
the vegetation is typical of upper montane Andean cloud
forest and forms a relatively open canopy of 20–25mof height
[32].

We selected 20 species common in the Andean cloud
forest (Table 1); of the nine canopy species, eight are trees,
and the other, Lycianthes ferruginea, is a vine with leaves

and reproductive parts always present in this upper strata;
Sapium stylare, one of the three subcanopy species, was an
individual of a canopy species that was still growing to reach
this stratum, and therefore was considered to be in partial
shade.

2.2. Experimental Setup. For each species �ve mature leaves
in good condition were collected and analyzed (09 January
2001). A few minutes elapsed between collection and mea-
surement, well within the times for leaf spectra to remain
unaltered by clipping; also, measurements focused on the
visible range where spectra are unaltered by clipping [33,
34]. e leaves of canopy and subcanopy species were taken
from a single individual, while the leaves of understory
species were taken from �ve different individuals (because
understory plants have fewer leaves).

In a dark room, we installed a black box with an ori�ce
on one side where we placed a leaf to measure re�ection
and transmission of light coming from a lamp (ELH, 120V,
300W) located 178 cm from the leaf. e spectrum of the
lamp in the range of interest (350–800 nm) was compared
to the spectrum of solar radiation at the site. Even though
the spectra were not exactly the same, the differences are
compensated by taking the ratio of re�ected and transmitted
spectra to the spectrum of the lamp.

Two optical �bers (diameter 0.2mm) conducted re�ected
and transmitted light from the leaf to a spectrometer. e
�ber optic end to measure re�ectance was placed at 2 cm
from the leaf upper surface and the one for transmittance
was placed at 2 cm of the lower surface of the leaf inside
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F 1: Bands and features selected for analysis. Shown for illustration are absorbance, re�ectance, and transmittance spectra for one leaf
of Guettarda steyermarkii (GS).

the black box. e �bers were connected to a portable �ber
optic spectrometer (OceanOptics SD-2000), whichmeasures
the spectrum between the ultraviolet (UV) and the near
infrared (IR), in a range of 200–850 nm, using an array of
2048 diodes with an aperture slit of 100𝜇𝜇m. e dispersion
is (850 − 200)/2048 = 0.32 nm/diode, with a resolution of
12 × 0.32 = 3.8 nm (FWHM). For this study the signals
were analyzed in a narrower range (400–750 nm) of interest
in photosynthesis and plant responses to far red light. Data
were taken simultaneously on two channels with identical
speci�cations, using the two �bers; one to capture re�ected
light, and the other to measure transmitted light. In both
cases, the �ber�s end was bare which has a 25∘ �eld of view.
e other end of each �ber was connected to an optical switch
that allows blocking light to obtain dark response, which is
subtracted from the signals in order to correct for electronic
noise of the instrument.

In addition to leaf spectral characteristics, we determined
LMA for �ve leaves of each species. For this purpose, we
measured dry weight of the leaf blade and divided by the leaf
area, which wasmeasured using an LI-3100 AreaMeter. Here
we report LMA in mg/cm2.

2.3. Spectral Variables. All spectral signals, reference (lamp)
as well as re�ected and transmitted, were smoothed by
a seven-point central moving average [31]. Re�ected and
transmitted signals for the �ve leaves of each species were
divided into the reference signal to obtain ratios of re�ectance
and transmittance as functions of wavelength 𝜆𝜆. Both ratios
were also smoothed by a seven-point central moving average
to obtain re�ectance 𝑅𝑅𝑅𝑅𝑅𝑅 and transmittance 𝑇𝑇𝑇𝑇𝑇𝑇 signals.
Absorbance 𝐴𝐴𝐴𝐴𝐴𝐴 for each leaf was then calculated as

𝐴𝐴 (𝜆𝜆) = 1 − 𝑅𝑅 (𝜆𝜆) − 𝑇𝑇 (𝜆𝜆) . (1)

As an example, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑇𝑇𝑇𝑇𝑇𝑇 signals for one leaf of
Guettarda steyermarkii (GS) are shown in Figure 1.

We de�ned a set of nine spectral variables for each signal
(𝐴𝐴, 𝑅𝑅, and 𝑇𝑇) as summarized in Table 2. We calculated the
variables for each leaf and then averaged across leaves of
the same species. ree of the nine variables correspond to
averages over wide wavelength bands and the other six are
features, that is, averages over a narrow band (Figure 1).

All variables are based on normalized differences and
ratios reported in the literature; some of the variables have
been proposed in reference to absorbance [10, 15, 20, 35],
while others have been proposed for re�ectance [19, 36, 37].
Instead of normalized difference we used a simple ratio
because it yielded lower values of coefficient of variation
across leaves. For brevity of presentation, the variables will
be de�ned using the absorbance signal 𝐴𝐴𝐴𝐴𝐴𝐴 only. However,
the calculations also apply to the𝑇𝑇𝑇𝑇𝑇𝑇 and𝑅𝑅𝑅𝑅𝑅𝑅 signals except
that we used the inverse of the ratio in order to obtain values
less than 1 (Table 2).

For variables based on bands we will denote by 𝐴𝐴𝜆𝜆1−𝜆𝜆2
the mean in the band 𝜆𝜆1 − 𝜆𝜆2 calculated as the integral of
absorbance in this range divided by the bandwidth

𝐴𝐴𝜆𝜆1−𝜆𝜆2 =
1
𝜆𝜆2 − 𝜆𝜆1

󵐐󵐐
𝜆𝜆2

𝜆𝜆1
𝐴𝐴 (𝜆𝜆) 𝑑𝑑𝑑𝑑

≅
1
𝜆𝜆2 − 𝜆𝜆1

𝑛𝑛𝜆𝜆2
󵠈󵠈
𝑖𝑖𝑖𝑖𝑖𝜆𝜆1

𝐴𝐴 󶀡󶀡𝜆𝜆𝑖𝑖󶀱󶀱 × 󶀡󶀡𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖𝑖𝑖󶀱󶀱 ,
(2)

where the integral is approximated by the sum of absorbance
values multiplied by the interval between successive wave-
lengths. Here 𝑛𝑛𝜆𝜆𝑖𝑖 denotes the diode number for wavelength
𝜆𝜆𝑖𝑖.
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T 2: Summary of variables selected for analysis.

Type Code Description Calculation
Absorb. Re�ec. Transm.

PHb Average in photosynthetic range 𝐴𝐴400–705 𝑅𝑅400–705 𝑇𝑇400–705

Bands FRb Average in far red relative to average in photo-
synthetic range 𝐴𝐴705–750/𝐴𝐴400–705 𝑅𝑅400–705/𝑅𝑅705–750 𝑇𝑇400–705/𝑇𝑇705–750

GRb Average in green relative to average in red 𝐴𝐴500–600/𝐴𝐴600–705 𝑅𝑅600–705/𝑅𝑅500–600 𝑇𝑇600–705/𝑇𝑇500–600
MXf Value at maximum relative quantum efficiency 𝐴𝐴620 𝑅𝑅620 𝑇𝑇620
PDf Green feature 𝐴𝐴550/𝐴𝐴660 𝑅𝑅660/𝑅𝑅550 𝑇𝑇660/𝑇𝑇550

Features AIf Anthocyanin index 𝐴𝐴705/𝐴𝐴550 𝑅𝑅550/𝑅𝑅705 𝑇𝑇550/𝑇𝑇705
PIf Photochemical index 𝐴𝐴531/𝐴𝐴570 𝑅𝑅570/𝑅𝑅531 𝑇𝑇570/𝑇𝑇531
FRf Far red index 𝐴𝐴750/𝐴𝐴705 𝑅𝑅705/𝑅𝑅750 𝑇𝑇705/𝑇𝑇750
FIf Far red �uorescence pea� 𝐴𝐴738/𝐴𝐴570 𝑅𝑅570/𝑅𝑅738 𝑇𝑇570/𝑇𝑇738

Weight LMA Leaf weight per unit area in mg/cm2 Dry weight divided into leaf area
Composite EAM Efficiency of absorbance (in cm2/mg) 𝐴𝐴400–705/LMA

Applying this equation, we calculate themean absorbance
in the photosynthetic range (400–705 nm) to de�ne a �rst
variable PHb,

PHb = 𝐴𝐴400–705. (3)

In all calculations, we use 705 nm, the edge of chlorophyll
absorption, instead of 700 nm [36–39].

en, variable FRb, contribution of the spectrum in
the far red (705–750 nm) relative to the one in the full
photosynthetic range (400–705 nm), was calculated as the
ratio of the integral in the �rst range (705–750 nm) over the
integral in the second range (400–705 nm):

FRb =
𝐴𝐴700–750
𝐴𝐴400–705

. (4)

e third band variable is the ratio of the average
spectrum in the green band relative to the red band:

GRb =
𝐴𝐴500−600
𝐴𝐴600–705

. (5)

When de�ning the next six variables, which are based on
narrow bands or features, we will denote𝐴𝐴𝐴𝐴 as the absorbance
at a particular wavelength calculated as the average over a
narrow band (4 nm) around this wavelength; that is to say

𝐴𝐴𝜆𝜆𝜆𝜆 =
∫𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 𝐴𝐴 (𝜆𝜆) 𝑑𝑑𝑑𝑑
𝜆𝜆𝜆𝜆 𝜆 𝜆𝜆  (𝜆𝜆𝜆𝜆 𝜆𝜆 )

≅
∑𝑛𝑛𝜆𝜆𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆𝜆𝜆 𝐴𝐴 󶀡󶀡𝜆𝜆𝑖𝑖󶀱󶀱 × 󶀡󶀡𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖𝑖𝑖󶀱󶀱

4
(6)

which was approximated by

𝐴𝐴𝜆𝜆𝜆𝜆 ≅
1
𝑁𝑁𝜆𝜆𝜆𝜆

𝑛𝑛𝜆𝜆𝜆𝜆𝜆𝜆
󵠈󵠈
𝑖𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆𝜆𝜆

𝐴𝐴 󶀡󶀡𝜆𝜆𝑖𝑖󶀱󶀱 (7)

because the wavelength differences were homogeneous over
a small 4 nm interval. Here 𝑁𝑁𝜆𝜆𝜆𝜆 corresponds to the number
of points in the 4 nm interval.

For example, absorbance 𝐴𝐴620 at 620 nm, wavelength
at which maximum relative quantum efficiency occurs, is

calculated using (7) in the interval from 618 to 622 nm. Our
�rst feature variable MXf is simply 𝐴𝐴620:

MXf = 𝐴𝐴620. (8)

Next, we de�ne PDf, the magnitude of the depression in
absorbance at 550 nmwhich is observed in all spectra (Figure
1). It was calculated as the ratio of average absorbance at
550 nm to the one at 660 nm:

PDf =
𝐴𝐴550
𝐴𝐴660
, (9)

where 𝐴𝐴550 and 𝐴𝐴660 are each calculated using (7).
Next, we use a concept similar to the Anthocyanin

Re�ectance Index which is a difference of the inverse of
re�ectance at 550 and 705 nm [19]. Instead of difference, we
use a ratio of the value at 705 nm to the one at 550 nm. We
will call it Anthocyanin Index (AIf):

AIf =
𝐴𝐴705
𝐴𝐴550
. (10)

For the next variable we use the concept of Photochemical
Re�ectance Index (PRI) based on a normalized index of
re�ectance at 570 and 531 nm; the �rst wavelength is a
reference and the second corresponds with the xanthophyll
pigment which inmany plants relates with light use efficiency
[36, 39–41]. Again instead of normalized difference we use a
simple ratio and de�ne it as photochemical index (PIf)

PIf =
𝐴𝐴531
𝐴𝐴570
. (11)

Based on the modi�ed normalized difference vegetation
index that uses the re�ectance at 750 and 705 nm [36], and the
simple ratio (SR) of re�ectance at these wavelengths [42], we
use a ratio of absorbance values at 705 and 750 nm to de�ne
a far-red Index (FRf):

FRf =
𝐴𝐴750
𝐴𝐴705
. (12)
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In order to relate to the �uorescence peaks at 685 and
738 nm [36, 43, 44] we selected, as the next variable, the ratio
of absorbance at 738 nm to the one at 570 nm (same reference
used for PIf) as an absorbance index at the �uorescence peak
(FIf):

FIf =
𝐴𝐴738
𝐴𝐴570
. (13)

e 738 nm feature was visually appreciable in the signals for
canopy species but less so for subcanopy and understory. A
variable related to the peak at 685 nm was explored but not
used because the signals exhibited small differences among
species and groups at this wavelength.

An additional composite variable, efficiency of
absorbance per unit mass (EAM), combines a spectral
variable PHb with LMA and was calculated as the ratio of
𝐴𝐴400–705 to the leaf weight LMA:

EAM =
𝐴𝐴400–705
LMA
=

PHb
LMA
. (14)

Its units are the inverse of LMA units; that is, are given here
in cm2/mg. We used this ratio because historically vertical
variations in LMA have been associated with light conditions
[10, 15]. However, recent evidence indicates that vertical
changes in LMA are more related to tree height [22].

2.4. Statistical Analysis. Spectral variables were calculated
using absorbance, re�ectance, and transmittance for each
leaf. en, for each species the average, standard deviation,
and coefficient of variation of all variables were calculated
across the �ve leaves. We also calculated averages of leaf
means and coefficient of variation for the three species
groups, that is, canopy (C), subcanopy, (S) and understory
(U). In addition, we calculated the leaf means and coefficient
of variation of LMA and the leaf means of EAM.

e leaf means by species were used to conduct statistical
tests and multivariate analysis among the species and among
the groups. All tests and analyses were conducted separately
for each signal absorbance, re�ectance, and transmittance.

First, for each spectral variable we used a nonparametric
analysis of variance (ANOVA, Kruskal-Wallis test) to detect
differences among all three groups and a Wilcoxon test to
compare each group pair. A multivariate analysis of variance
(MANOVA, Wilks test) was used to determine if there were
differences among the groups based on the full set of spectral
variables. In addition, we conducted the same univariate tests
(Kruskal-Wallis andWilcoxon) for LMA and EAM.en, we
determined whether LMA can be predicted from the set of
spectral variables by stepwise multiple linear regression.

Second, we conductedmultivariate analysis procedures to
examine the relationships among spectral variables, among
species, and among groups of species. We started with the
correlation matrix to study relationships between pairs of
variables and conducted principal component analysis (PCA)
to examine how many potential combinations of variables
could account for most of the variance among species. en,
we conducted canonical correlation (CANCOR) analysis
between the set of band variables and the set of feature

variables to determine how well these sets explain each
other. Next, we conducted hierarchical clustering using
the Minkowski distance and the Ward method to examine
relationships among species and compare clusters formed
with the prede�ned groups. Finally, for the purpose of
developing a linear combination of spectral variables that
maximize differences among species groups we conducted
a multiple linear discriminant analysis (LDA) using the
spectral variables. All variables were standardized prior to the
multivariate procedures described above.

Calculations and statistical analyses were programmed
using the 𝑅𝑅 system version 2.10.1 [45]. e program used
to calculate the discriminant function is part of the MASS
package for the 𝑅𝑅 system [46].

3. Results

As exempli�ed in Figure 1, absorbance, re�ectance and
transmittance signals show expected patterns for all species.
Notably, for re�ectance and transmittance we see low values
from 400 to 500 nm, a peak at ∼550 nm, an elbow at ∼690 nm,
and a sharp increase in the 700–750 nm range (Figure 1).
Such patterns produce a typical absorbance spectrum with
high values from the beginning of the photosynthetic range,
a valley at 550 nm, a recovery to high values at ∼690 nm, and
an abrupt drop to 750 nm (Figure 1).

Absorbance values at the 550 nmdepression, at the recov-
ery past 660 nm, and the far red decline from 705 to 750 nm
showed variations among canopy species and understory
species (Figures 2 and 3), but less so among subcanopy species
(Figure 2). e most contrasting canopy, species are CM and
MQ with little and strong reduction at 550 nm respectively
(Figure 2). In the understory group, CP and PU showed
the most important reduction at 550 nm, while FV, PD,
and AN, showed the least important reduction at 550 nm
(Figure 3). Similar patterns are noted for transmittance;
however, re�ectance spectra are very similar among species
and groups (Figures 2 and 3).

Spectra averaged by group showed differences in
absorbance and transmittance among groups, but very
small differences in re�ectance (Figure 4). Particularly, the
550 nm feature and the far red slope show clear differences
among groups of species for absorbance and transmittance,
and small differences for re�ectance. In addition, notable at
550 nm the absorbance is less for understory species, followed
by canopy species and then slightly larger for subcanopy,
even though these last two groups have similar values
(Figure 4). At 660 nm the largest absorbance corresponds
to subcanopy, being understory and canopy lower and
similar to each other (Figure 4). Between 570 and 620 nm the
absorbance shows the clearest difference among the groups,
being larger for subcanopy, followed by canopy, and then
by understory. From 700 to 750 nm the differences increase
with wavelength and show a gradient from understory,
to subcanopy, and canopy. In addition, two small valleys,
one at 738 nm and another in between 738 and 750 nm
are noticeable in all groups. e patterns just described for
absorbance are also apparent in the transmittance signal but



6 �cienti�ca

400 500 600 700

0

0.4

0.8

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0

0.4

0.8

GS

Canopy

LY

Canopy

MR

Canopy

Canopy Canopy Canopy

Canopy

Sub-canopy Sub-canopy Sub-canopy

Canopy Canopy

CM VT IN

PA MQ M1

PB SG SS

F 2: Absorbance (𝐴𝐴), re�ectance (𝑅𝑅), and transmittance (𝑇𝑇) spectra averaged across leaves for canopy and subcanopy species.

of course inverted in sign. e double valley (peaks in this
case) in 738–750 nm is more accentuated (Figure 4).

Group average and standard deviation of the coefficients
of variation (CV) across leaves are given in Table 3. ere
is relatively low variability (∼1-2%) across leaves for all
absorbance variables except for far red features (FRf, FIf)
which have high CV values (∼15–30%), and the far red band
FRb which has intermediate variability (∼8-9%). ere is
high variability (∼15–45%) across leaves for re�ectance and

transmittance except for PIf which is in the range ∼2-3% and
GRb which is ∼5–8%.

Leaf means of all spectral variables suggest patterns
in the group differences and within-group variability. For
absorbance (Figure 5), potentially signi�cant differences
among groups are not evident except for FRb, AIf, FRf, and
FIf. Differences in group averages of all variables are very
small for re�ectance� moreover, the variability within groups
is large for all variables (Figure 6). Potentially signi�cant
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F 4: Spectra for each group (canopy, subcanopy, and understory) averaged across species. (a) Absorbance (𝐴𝐴) and Re�ectance (𝑅𝑅). (b)
Transmittance (𝑇𝑇).

differences in group averages (and with lower within-group
variability) are more evident in a few transmittance variables;
PHb, FRb, and MXf (Figure 7). However, there is frequent
occurrence of extreme values for canopy species in most
variables.

ere are no signi�cant (𝑃𝑃 𝑃 𝑃𝑃) differences among
all three groups or pairs of groups in re�ectance (Table 4)
except between canopy and understory species for AIf.
Differences among all three groups (Table 4) were found to
be signi�cant in absorbance for FRb, AIf, FRf, and FIf, and
in transmittance for PHb, MXf, and PDf. is suggests the

importance of far red absorbance and the photosynthetic-
range transmittance in separating groups. Subcanopy species
had signi�cant differences with understory species only.
�ven though these two groups exhibit signi�cant differences
only in MXf absorbance, they have signi�cant differences in
transmittance forPHb, FRb, MXf, and FIf.

e clearest differences are between canopy and under-
story species. ese groups show signi�cant differences in
absorbance for FRb, PIf, FRf, and FIf (all related to far red
except for PIf), in re�ectance for AIf, and in transmittance for
PDf (Table 4). �one of the signals are signi�cantly different
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T 3: Group average ± standard deviation of coefficient of variation (CV, in %) of leaf means. Groups (Gp.) are canopy (C), sub-canopy
(S), and understory (U). Spectra (Sp.): absorbance (𝐴𝐴), re�ectance (𝑅𝑅), and transmittance (𝑇𝑇).

Sp. Gp. PHb FRb GRb MXf PDf AIf PIf FRf FIf
C 1.58 ± 1.05 8.86 ± 2.67 0.88 ± 0.33 1.60 ± 1.06 2.10 ± 0.86 2.14 ± 1.64 0.47 ± 0.25 15.89 ± 6.24 14.36 ± 6.26

𝐴𝐴 S 1.89 ± 1.14 9.63 ± 3.62 0.93 ± 0.15 1.88 ± 0.98 2.29 ± 0.49 2.26 ± 1.07 0.25 ± 0.05 17.28 ± 4.99 17.23 ± 4.49
U 1.88 ± 0.96 8.28 ± 3.20 0.96 ± 0.39 1.87 ± 0.86 2.12 ± 0.97 1.52 ± 0.54 0.38 ± 0.20 30.40 ± 12.62 22.22 ± 8.93
C 26.21 ± 17.06 21.33 ± 16.07 8.37 ± 5.07 26.33 ± 17.25 20.28 ± 13.79 8.43 ± 6.14 3.59 ± 2.26 11.99 ± 7.82 15.79 ± 12.19

𝑅𝑅 S 39.13 ± 21.41 32.96 ± 17.15 8.17 ± 1.08 44.67 ± 22.30 23.26 ± 7.90 10.89 ± 6.08 3.64 ± 1.67 15.52 ± 2.76 29.73 ± 12.31
U 34.16 ± 21.01 29.38 ± 19.36 8.04 ± 6.22 36.62 ± 22.82 22.40 ± 20.46 8.30 ± 4.28 2.72 ± 1.13 12.85 ± 5.78 22.98 ± 11.77
C 33.74 ± 10.72 20.74 ± 8.78 6.53 ± 5.99 35.70 ± 14.65 26.44 ± 22.97 7.74 ± 3.98 2.61 ± 2.07 12.59 ± 8.48 18.27 ± 8.03

𝑇𝑇 S 30.52 ± 12.19 20.22 ± 4.28 6.71 ± 3.33 33.98 ± 10.37 39.77 ± 20.05 5.11 ± 2.34 1.52 ± 0.31 10.56 ± 2.35 16.52 ± 1.85
U 22.77 ± 12.54 15.81 ± 8.79 5.29 ± 2.95 24.85 ± 14.70 28.36 ± 27.29 6.46 ± 3.97 1.86 ± 0.87 9.00 ± 4.38 13.50 ± 7.11

T 4: Signi�cance (𝑃𝑃-values in %) of differences among all groups (C-S-U) by Kruskal-Wallis test. and between groups by Wilcoxon test
(𝑃𝑃-values <5% are highlighted in bold). Groups are canopy (C), sub-canopy (S), and understory (U).

Spectra Groups compared PHb FRb GRb MXf PDf AIf PIf FRf FIf
All 28.10 0.32 22.40 15.60 10.20 1.95 7.09 0.41 0.14

𝐴𝐴 C-S 100.00 14.50 72.70 48.20 48.20 60.00 60.00 37.30 10.00
S-U 13.30 13.30 37.60 4.85 19.40 8.48 27.90 19.40 8.48
C-U 27.70 0.06 11.40 32.10 5.92 0.79 2.74 0.03 0.02
All 95.48 77.80 24.00 83.70 27.46 7.47 12.60 93.33 73.79

𝑅𝑅 C-S 86.36 60.00 60.00 60.00 37.27 20.91 28.18 86.36 100.00
S-U 92.12 63.03 27.88 77.58 19.39 63.03 37.58 92.12 77.58
C-U 88.84 88.84 16.72 96.26 37.04 3.60 7.45 81.48 48.07
All 4.57 7.41 15.77 3.64 2.26 46.02 29.59 18.94 12.74

𝑇𝑇 C-S 60.00 20.91 20.91 37.27 6.36 100.00 86.36 72.73 48.18
S-U 1.21 1.21 8.48 1.21 8.48 27.88 13.33 19.39 4.85
C-U 9.27 42.34 32.13 9.27 3.60 37.04 32.13 13.88 23.59

among groups according to a MANOVA (Wilks test) using
all spectral variables (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, 0.33, 0.11 for absorbance,
re�ectance, and transmittance, resp.).

Weight and the composite variable (LMA and EAM)
exhibit differences among groups (Table 5). Group average of
LMA is highest for canopy, followed by understory and lowest
for subcanopy. Variability across leaves is relatively high, with
CV being highest for canopy, followed by subcanopy, and
being lowest for understory. Signi�cant differences are found
among all groups (Kruskal-Wallis 𝑃𝑃-value 0.023 and 0.01
for LMA and EAM respectively) and between canopy and
understory for both LMA (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃) and EAM, (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃),
and between canopy and subcanopy for EAM (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃).

Stepwise regression analysis of LMA as a function of
spectral variables generated the best predictor based on all
variables (except PHb) for absorbance, on four variables
(MXf, AIf, PIf, and FIf) for re�ectance, and on only two
variables (FRb, and PDf) for transmittance. e adjusted 𝑅𝑅2
for these regressions are 0.64, 0.52, and 0.90 for absorbance,
re�ectance and transmittance, respectively. e 𝑃𝑃-values
indicate a very signi�cant trend in all cases, and particularly
for transmittance (0.007, 0.004, and 1.7 × 10−9 respec-
tively). e 𝑃𝑃-values for the coefficients of the regression for
transmittance are very signi�cant (∼4 × 10−9). However, all
coefficients for absorbance have 𝑃𝑃-values exceeding 5%, and
those for re�ectance are in the 1�5% range. CM, having a

LMA much larger than any other species generates a very
large 5% con�dence interval at high values of LMA.

Correlation analysis (Table 6) shows strong correlation
coefficients (>0.85) for at least one pair of band variables
for each signal: GRb-FRb in absorbance, PHb-FRb in both
re�ectance and transmittance. Also, one feature variable
FIf is correlated with other feature variables: with FRf for
absorbance, with MXf and FRf in re�ectance, and with MXf,
FRf, and AIf in transmittance. Each band variable is strongly
correlated with at least one feature variable for all signals,
except GRb in transmittance. e pair PHb-MXf has strong
correlation for all signals, whereas PIf show low correlation
values with other variables for all signals.

ree principal components explain more than 95% of
the variance for absorbance and transmittance, and nearly
90% for re�ectance (Table 7, PCA). Very high canonical
correlations are obtained between pairs of the three canonical
axes for bands and the �rst three canonical axes for features
(Table 7, CANCOR). e �rst pair of axes have correlation
values larger than 0.995, the second pair of axes has values
larger than ∼0.95, and the third pair has values larger than
0.89. e correlations are always highest for absorbance
(Table 7, CANCOR). e square of the SVD (singular value
decomposition) terms obtained by the LDA and their ratios
show much higher discrimination power for the �rst axis
(LD1) compared to the second (LD2) for absorbance (∼3.5x)
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T 5: LMA by species, group average for LMA and EAM, and coefficient of variation (CV, in %) across leaves for LMA.

Canopy Subcanopy Understory
Species LMA (mg/cm2) Species LMA (mg/cm2) Species LMA (mg/cm2)
GS 14.86 ± 2.28 PB 3.20 ± 0.21 P1 4.85 ± 0.51
LY 5.4 ± 1.86 SG 4.35 ± 0.28 AN 6.49 ± 0.83
MR 9.46 ± 1.59 SS 5.42 ± 1.65 S1 4.64 ± 0.45
CM 30.43 ± 2.16 CP 4.72 ± 0.17
VT 9.43 ± 2.2 FV 6.66 ± 0.95
IN 10.13 ± 1.6 MM 4.68 ± 0.51
PA 7.97 ± 1.33 PD 5.48 ± 0.48
MQ 4.67 ± 0.89 PU 3.87 ± 0.18
M1 5.28 ± 0.30

Group average ± Std Dev
Canopy Subcanopy Understory

LMA (mg/cm2) 10.85 ± 7.99 4.32 ± 1.11 5.17 ± 0.97
LMA leaf CV (%) 17.13 ± 8.52 14.48 ± 13.82 9.39 ± 3.68
EAM (cm2/mg) 0.12 ± 0.05 0.23 ± 0.06 0.18 ± 0.03
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T 6: Correlation between spectral variables for all spectra (absorbance 𝐴𝐴, re�ectance 𝑅𝑅, and transmittance 𝑇𝑇). High values (>0.85) are
highlighted in bold. Italics denote high correlation between bands or between features. Underlined cells show correlations of FIf with other
feature variables.

Spec FRb GRb MXf PDf AIf PIf FRf FIf

𝐴𝐴

PHb 0.52 0.88 0.98 0.88 0.49 0.23 0.18 0.32
FRb 0.71 0.44 0.77 0.87 0.57 0.86 0.95
GRb 0.83 0.99 0.60 0.45 0.38 0.53
FIf 0.22 0.58 0.74 0.65 0.97

𝑅𝑅

PHb 0.90 −0.03 0.98 0.05 0.52 0.14 0.65 0.80
FRb 0.02 0.94 0.12 0.62 0.27 0.69 0.90
GRb 0.05 0.91 −0.49 0.06 −0.16 −0.23
FIf 0.85 −0.20 0.61 0.43 0.89

𝑇𝑇

PHb 0.97 0.68 0.99 0.42 0.86 0.36 0.88 0.96
FRb 0.79 0.98 0.44 0.88 0.51 0.92 0.99
GRb 0.72 0.37 0.58 0.78 0.77 0.74
FIf 0.96 0.36 0.91 0.52 0.95
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and re�ectance (∼8x), but nearly the same for transmittance
(∼1.1x) (Table 7, LDA).

Dendrograms from the cluster analysis were cut at a
distance (height) generating three clusters. Of all signals,
absorbance produces species clusters having the closest cor-
respondence to the pre-de�ned species groups (Figure 8).
Cluster 1 (lemost box) consistsmostly of canopy species and
two of the subcanopy species (SS and SG); whereas clusters 2
and 3 (middle and rightmost boxes) are mostly understory
species with a couple of canopy species (LY andMQ) and the
other subcanopy species (PB). e only understory species
included in cluster 1 is FV, which joins SS at low height.
However, two canopy species are included in clusters 2 and 3;
LY in cluster 2, and MQ in cluster 3. Both join these clusters
at higher nodes and thus are relatively dissimilar to all the
understory species.

LDA results are similar for all three signals. As an
example Figure 9 shows the results for absorbance. We can
clearly appreciate differences among groups. e �rst axis

(LD1) discriminates between canopy and understory species.
Subcanopy species are located at intermediate positions of
this axis, but separated from the other two groups by the
second axis (LD2). All canopy species are in the negative part
of LD1 whereas understory species have positive values. IN is
at the extreme of canopy species, whereas PD and MM are at
the extreme of understory species (Figure 9). For the sake of
space we do not include LDA coefficients but we observed
that with relatively higher values GRb, PDf, FRf, and FIf
contribute to LD1, while FRb, GRb, PDf, and FIf contribute
the most to LD2.

4. Discussion

Absorbance, re�ectance, and transmittance spectra display
patterns similar to the ones reported for other tropical forests
[10, 15, 20]. Absorbance spectra showed variations among
species in the 550 nm depression and the far red decline
(Figures 2 and 3).ese differences are noticeable for canopy
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and understory species, but less so for subcanopy species.
Absorbance in the 500–705 nm range is less for understory
species, followed by canopy species and subcanopy (Figures
2 and 3).is is evident at 550 nmcon�rming previous results
in rain forests [15]. From 705 nm the largest absorbance
corresponds to canopy species, which is a different result for
three of the four species measured at La Selva, Costa Rica
[15].

Canopy species presented higher values of LMA, com-
pared to subcanopy and understory species. is result
con�rms vertical differences of LMA observed in all forests
[22]. Our LMA values are in the same range as those reported

for La Selva [15] but lower than those reported for a cloud
forest in Puerto Rico [20]. is �nding may suggest less
severe light or water restrictions in our site when compared
to the cloud forest in Puerto Rico. ere is substantial
variability in LMA as indicated by relatively large values ∼
10–17% of CV (Table 5). LMAdifferences are signi�cant only
when comparing canopy and understory species; however
there are signi�cant differences in �AM between canopy and
subcanopy as well.

Several spectral variables show differences among the
groups of species, mostly those variables related to far red
and weight (Table 4). e only others are MXf, showing
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T 7: PCA: Proportion of accumulated variance of the �rst three
principal components. CANCOR: correlations between canonical
axes. LDA: Singular value decomposition (SVD) terms and ratios.

PCA Comp. 1 Comp. 2 Comp. 3
𝐴𝐴 0.646 0.881 0.952

Accumulated variance 𝑅𝑅 0.536 0.770 0.889
𝑇𝑇 0.740 0.877 0.966

CANCOR Can. 1 Can. 2 Can. 3
𝐴𝐴 1.000 0.996 0.973

Correlation
coefficient 𝑅𝑅 0.995 0.987 0.968

𝑇𝑇 0.999 0.949 0.890
LDA LD1 LD2 LD1/LD2

𝐴𝐴 31.188 8.998 3.466
SVD square 𝑅𝑅 22.961 2.879 7.975

𝑇𝑇 15.880 14.397 1.103

differences between subcanopy and understory, and PIf
which shows differences between canopy and understory
(Table 4). In general, the difference between subcanopy and
canopy groups and between subcanopy and understory are
less appreciable than the differences between canopy and
understory species (Table 4).

For absorbance, variables related to far red, FRb, FRf,
and FIf all display a gradient from high to low for canopy,
subcanopy and understory leaves (Figure 5). For FRf and FIf
this is due to a lesser absorbance decline from 705 to 750 nm
for subcanopy and canopy when compared to understory
(Figure 4). For FRb however, the pattern is an indication of
increasing absorbance at 550 nm from understory to canopy
and subcanopy.

EAM allows differentiation among canopy and sub-
canopy groups, and canopy and understory, but not between
subcanopy and understory. EAM is lower for canopy species,
which is due to larger values of LMA, thus con�rming previ-
ous results in other forests [10, 15]. Historically, this �nding
is interpreted in terms of lower plant’s cost to produce the
leaf mass needed to achieve required absorbance. However,
recent evidence indicates that vertical changes in LMA are
due to tree height because of different water restrictions at
higher canopy levels [22].

It is interesting that only two transmittance variables
explain 90% of LMA.e regression coefficients indicate that
estimated LMA decreases with FRb and increases with PDf.
is �nding would suggest that leaves with higher mass will
transmit less light and thus suppress growth in lower forest
strata. However, upon further scrutiny of this result we found
that this relation may not be robust because of high leverage
by CM. We ran the regression analysis again aer removing
CM from the data set. e adjusted 𝑅𝑅2 for the best predictors
declined to 0.38, 0.30, and 0.60 for absorbance, re�ectance,
and transmittance, respectively. Furthermore, four variables
are required by the best predictor based on transmittance and
only two (GRb and MXf) had 𝑃𝑃-values < 0.05.

Strong correlation between PHb with MXf, indicates
the importance of 620 nm in explaining absorbance over

the photosynthetic range. Similarly, the strong correlation
between PDf with GRb, indicates that the depression at
550 nm (relative to the mid of the red-band) explains most
of the difference between the red and green bands. Other two
strong correlations correspond to the variables in the far red,
FRb with FIf, and FRf with FIf.

ree principal components suffice to account for more
than 90% of the variance suggesting co-linearity amongmany
variables.Our approachwas to select variables based on ratios
of well-known bands and features. Variables could be selected
by pattern recognition methods and other features may be
found. For example, when separating leaves of trees and lianas
in tropical dry forests, based on re�ectance spectra, as many
as 10–100 features are selected [47].

Absorbance variables can generate one species cluster
related to canopy species and two other clusters related to
understory species (Figure 8). ese two clusters join at a
slightly higher distance and can be considered as one cluster
related mostly to understory species. However, subcanopy
species do not form a separate cluster, but mix within the
other clusters; SS and SGwith the canopy cluster and PB with
the understory clusters. is �nding con�rms that species
differences are much more marked between canopy and
understory, and that subcanopy tends to be similar to canopy.
It should be noted that we treated SS as a subcanopy species
because leaves were taken from an individual in midcanopy,
but normally trees of this species reach the canopy.

As shown by the LDA, the �rst axis separates species
along a gradient from canopy to understory (le to right
in Figure 9). Satisfyingly, subcanopy species are intermediate
along this axis. Of the three subcanopy species, SS has positive
values and is closest with understory species, particularly to
FV (also suggested by the cluster analysis).e other two, SG
and PB, have negative values and are closest to the canopy
species, especially to GS and LY (but recall that PB came
closest to understory in the cluster analysis).

Only one LDA axis would suffice except for slight dif-
ferences of subcanopy species with extremes of the other
two groups. Further separation of subcanopy species with
respect to the other two groups is provided by the second
LDA axis. However, PB remains close to other groups along
this axis as well. In this case, M1 (canopy group) and
AN (understory group) have a position approaching the
subcanopy group. ere is relatively good separation among
species themselves along the two axes; although we did not
address differentiation at the species level, our results indicate
that it may be feasible.
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