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Abstract The photosynthetic response of juveniles of
Decussocarpus rospigliosii, an emergent primary forest
species and shade tolerant in its juvenile stages and
Alchornea triplinervia, a gap-colonizing species of tropical
cloud forest in Venezuela was studied. Daily courses of
microenvironmental variables and gas exchange under
contrasting light conditions (gap and understory) were
carried out in their natural environment and transplanted
to different light regimes (shade and sun) in the field. The
photosynthetic response and some anatomical characteris-
tics of plants from different treatments were analyzed in the
laboratory. Photosynthetic rates were low for both species,
and were negative during some diurnal periods, related to
the low photosynthetically active radiation levels obtained
at both gap (6% of total radiation) and understory (2%).
A. triplinervia shows higher rates (1.5-3.0 pmolm-2s-1)
than D. rospigliosii (0.7—1.1 pmolm-2s-1). Both species
showed increased photosynthetic rates when grown in gaps.
A. triplinervia did not adjust its maximum phoiosynthetic
rates to the prevailing light conditions. In contrast,
D. rospigliosii responded to increased light levels. Both
species showed low light compensation points when grown
under total shade. There was a partial stomatal closure
generally during midday in D. rospigliosii. A. triplinervia
presented lower leaf conductances, transpiration rates and
lesser stomatal control. Some leaf anatomical characteris-
tics, in both species, were affected by variations in the light
regime (i.e. increased leaf thickness, leaf specific weight
and stomatal density). These results suggest that both
species have the ability to respond to variations in their
natural light environments, therefore maintaining a favor-
able carbon balance during the day.
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Introduction

Tropical rain forests are complex ecosystems, both in their
biological diversity, as well as in their spatial arrangement,
characterized by a structure of multiple strata which also
determine a complex light environment. Gap formation
accentuates spatial heterogenity in terms of environmental
conditions, and at the same time dominates the dynamics of
these forests and plays an important role in the evolution of
life history characteristics of plant populations and in the
distribution of individuals within the forest (Bazzaz 1984).

Under non-disturbed conditions, the forest’s complex
structure determines the existence of a vertical profile in
light intensity, as well as air humidity, CO2z concentration,
temperature and wind velocity. Light intensity is the factor
that most influences the vegetation density of the under-
story, photosynthesis, leaf area index and leaf structure
(Mooney et al. 1984; Medina 1986). Most of the emergent
tree species in tropical humid forests require an opening in
the canopy in order to grow and develop and, furthermore,
species may be distinguished by the size of the gap and the
microsite within the gap where they may regenerate (Harts-
horn 1978, 1980; Whitmore 1978, 1989; Denslow 1980,
1987; Bazzaz 1984; Clark and Clark 1987; Swaine and
Whitmore 1988). As a consequence of this hypothesis, it
has been suggested that important characteristics of tropical
forests such as richness of tree species and diversity of
growth forms may be explained, at least partially, in terms
of the frequency with which trees fall and by the hetero-
genity of the created conditions within those gaps (Orians
1982).

The environmental characteristics of gaps, especially
with respect to light and its distribution, are determined
by size, form, orientation and the manner in which it was
created, and, additionally, by the severity of the disturbance
(Bazzaz 1984). The succession that follows gap formation



is likely to depend upon key characteristics of the species as
seedlings and seeds, and specially their response to the new
light climate and their capacity to compete with each other
(Kwesiga et al. 1986). Some specific physiological adapta-
tions of species which colonize gaps are similar to those
found in pioneer species, generally presenting higher light-
saturated photosynthetic rates, transpiration and respiration
rates, stomatal conductivities and nitrogen content than
those of shade-tolerant species (Boardman 1977; Bazzaz
and Pickett 1980; Lebron 1980; Oberbauer and Strain 1984;
Fetcher et al. 1987).

Rapid changes which occur in the light environment of a
particular area due to the creation of a gap greatly influence
the photosynthetic rates and water balance of the upcoming
regeneration and forest understory species. Plant responses
can be through acclimation or by forming new leaves which
are adapted to the new light conditions (Bazzaz and Carlson
1982). Differences between sun and shade adapted plants in
tropical forests are not clear, since a plant may germinate in
a particular environment and develop in another or in a
series of contrasting, alternating environments before
reaching the canopy. Therefore, there may be changes in
morphological, physiological and biochemical properties
during the trees’ development which would determine its
capacity to acclimate to different light regimes, in order to
increase its growth rate to a maximum (Bazzaz 1984;
Fetcher et al. 1987; Clark and Clark 1987).

In this work we examine the photosynthetic and stomatal
response and some anatomical characteristics to contrasting
light conditions (understory and gap) in juveniles of two
cloud forest tree species, and evaluate the hypothesis that
tree species with different regeneration patterns should have
different physiological responses in relation to CO2 assim-
ilation and acclimation capacity to a range of light envir-
onments. The species, with different successional charac-
teristics, are Decussocarpus rospigliosii, an emergent spe-
cies of the primary forest which in its juvenile stages is
shade-tolerant, and Alchornea triplinervia, a species which
colonizes gaps; both are dominant species of Andean cloud
forests (Sarmiento et al. 1971).

Materlals and methods

Site characteristics and plant material

The study site was located in La Carbonera, Cordillera de los Andes
(8°39’'N; 71°24’W), between 2200 and 2500 m asl. Mean annual
temperature is 14.9°C with a maximum below 20°C and minimum
above 8.5°C. Mean annual precipitation is between 1500 and 1800 mm,
with a wet season (March—November) and a mild dry season
(December—March). Cloud cover and fog occur almost daily due to
the condensation of saturated air from the Lago de Maracaibo Basin.

Sarmiento et al. (1971) classifies the vegetation as a high montane
cloud forest, dominated by evergreen species with a mixed and
irregular canopy. As a consequence of the high humidity, cellular
and vascular epiphytes and epiphyles (Araceae, Orchidaceae, Brome-
liaceae, mosses and lichens) are frequent. The understory is dense,
composed mainly of shrubs and young trees of the species from the
higher strata (Lamprecht and Veillon 1957). Decussocarpus rospiglio-
sii (Pilger) de Laubenfels (Podocarpaceae) is an emergent tropical
conifer which may reach 45 m. Leaves are oval-lanceolate, opposite,
amphistomatic, coriaceous, between 7 and 22 mm long and 3 to 6 mm
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in width. Alchornea triplinervia (Spren.) M. Arg. (Euphorbiaceae) is a
species from the early successional stages. It may reach up to 30 m at
the study site and it is found as seedlings or young plants in gaps
produced by fallen trees. Leaves are single alternate, coriaceous from
20 to 70 mm long and 20 to 50 mm in width (Huber 1986; Steyermark
and Huber 1978).

Field studies

A 100 m2 gap produced by several fallen trees was chosen as the study
site for seedlings and juveniles (20-40 cm) of A. triplinervia. Juveniles
of D. rospigliosii (20-40 cm) were located in a non-disturbed forest
area adjacent to the gap.

Fourteen daily courses of carbon balance and microclimatic vari-
ables were carried out at each site monthly from September 1989 to
January 1991. A fully portable system, consisting of a leaf chamber, an
air supply unit, and an infrared gas analyser unit, operating in the open
mode was used to measure gas exchange in the field (LCA-2, The
Analytical Development Co. Ltd. Hoddesdon, Herts, England). The
leaf chamber contained a solid state humidity sensor, a thermistor for
chamber temperature measurements, and a quantum sensor for photo-
synthetically active radiation (PAR) measurements. Gas exchange rates
were calculated from flow rates, projected leaf surface area sealed
within the chamber, and CO2 and water vapor concentration differ-
ences between reference and analysis air (von Caemmerer and Farqu-
har 1981). The gas exchange measurements [conductance (Gs), CO,
assimilation (A) and transpiration (E) rates] were conducted on five
newly and completely expanded leaves of five individuals of each
species, at 1-2 h intervals.

In order to study plant responses to changes in the forest’s light
microenvironment, individuals of each species were transplanted to
polyethylene bags (0.0182 m3) with a 50: 50 sand, forest soil mixture.
These plants were placed in a partially shaded site for 4 months as a
recuperating period. Afterwards, ten plants of each species were placed
in their natural habitat (A. triplinervia in gaps; D. rospigliosii in the
understory) for 3 months. Individuals of each species were randomly
divided into two groups, one remained under natural conditions while
the other was transferred to the contrasting environment for 9 months.
After this period, plants were brought to the laboratory for measure-
ments under controlled conditions. Leaf conductance and CO2 assim-
ilation rates were measured before and after transferring plants to the
different light treatments. Air and leaf temperatures were measured
with copper-constantan thermocouples connected to a digital micro-
voltmeter (Data Precision, Model 258). Relative humidity was mea-
sured with Assmann ventilated psychrometers placed at 1.5 m at each
site (gap and understory). Vapor pressure difference between leaf and
air (VPD) were calculated from these temperatures and relative
humidities (Pearcy et al. 1987). Total radiation was measured with a
pyranometer.

Laboratory studies

Transplanted juveniles of both species were used to obtain CO:
assimilation-leaf temperature and CO: assimilation-PAR curves. A
detailed description of the system used in these laboratory experiments
is given in Rada et al. (1992). For the former curves, leaf temperature
was decreased from 32 °C down to 3 °C at approximately 4 °C intervals.
PAR was maintained constant at saturating levels (650 pmolm-2s-1).
For the latter ones, leaf temperature was maintained constant at its
optimum for photosynthesis (18 £1°C). For both curves, 20 min
elapsed before taking measurements at each interval in order to
stabilize the plant’s response.

Leaf material from the different treatments was used for total
nitrogen determinations (microkjeldahl method; Miiller 1961) and
chlorophyll content (Ammon 1949). Some leaf morphological and
anatomical characteristics were studied on material sampled in the
field and placed in formalin (5 cc)-acetic acid (5 cc)-70% ethyl alcohol
(90 cc; Johansen 1940). Epidermal sections were observed under a
light microscope (Leitz, Dialux 20 EB) with a 1.25 XX light camera.
Specific leaf weight was obtained after drying leaves of known area at
80°C until reaching a constant weight.
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Kruskall-Wallis (non parametric 1-way Analysis by ranks) and
Friedman (2-way analysis by ranks; P <0.05) was used for the
statistical analysis. A rectangular hyperbola was used to describe the
relationship between photosynthetic rate (A) and photosynthetically
active radiation (PAR; Landsberg 1977).

Results

Daily courses of plant responses to their natural light
environment

Figures 1 and 2 show representative mean daily variations
in the microclimatic parameters and responses of A. tripli-
nervia and D. rospigliosii juveniles, in their respective
habitats, during wet (29 September 1989) and dry (17 Jan-
uary 1991) seasons. Maximum leaf temperatures and VPD

Time (h)

were reached during midday (1130-1330 hours) for both
species, when maximum radiation and air temperature
were, generally, obtained (Fig. 1, 2). The difference in
mean VPD between both species is approximately 0.1 KPa
with a maximum of 0.85 KPa in A. triplinervia during the
wet season (Fig. 1). Leaf conductance and transpiration
rates for both species tend to follow each other throughout
the day. For A. triplinervia, these variables were low and
were not significantly different between wet and dry
seasons (mean Gs 0.108-0.190 molm-2s-1, mean
E 09-1.7 mmolm-2s-1 r-test, P <0.05). Even though
D. rospigliosii showed higher values and greater fluctua-
tions during both seasons, differences were not significant
(mean Gs 0.176-0.388 molm-2s-!, mean F 122~
2.86 mmolm-2s-1, t-test, P <0.05).



Fig. 2 Daily course of leaf tem-
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Leaf conductance decreases during midday hours in
D. rospigliosii when an increase in VPD was observed
(Fig. 2). There is a negative exponential corrclation be-
tween Gs and VPD (r = 0.62), which is not as evident for A.
triplinervia (Fig. 3). However, for the daily coursc in Fig. 1,
which corresponds to an exceptionally clear day during the
wet season, the VPD for this latter species in the gap
reached maximum values of 0.9 KPa. As a consequence,
a partial stomatal closure together with a decrcase in the
transpiration rate were produced at midday (Fig. 1). Pho-
tosynthesis did not seem to be related to leaf conductance in
either of the species during both wet and dry seasons (Fig. 1,
2). Maximum COz2 assimilation rates were reachied when
PAR and VPD were greater (generally at midday).

Differences between the two light environments are
observed in the mean PAR frequency distributions shown
in Fig. 4, which correspond to 175 measurements for both

Time (h)

seasons. The highest percentage for the gap was I'ﬂ‘ll‘"d n
the 25-50 pmolm-2s-! interval (32%) with just 18.8% ex-
ceeding 100 pmolm-2s-1. In the case of the understory. S}%l
of the measurements were found in the 0—10 pmolm-;s-l
interval and approximately 81% between 0-25 polm =s7%
If we assume that values above 50 pmolm-2s-! arc duc O
sun flecks (Chazdon 1988), only 12.5% of thc measure-
ments fell above this value; however, it contrihll‘lg‘_Ll on
average to 58% of the total PAR measured for the difterent
dates. Hardly 6% of the measureinents were abovc s:‘lllllfat'
ing light intensities for photosynthesis (100 pmolim =% )

Net photosynthesis-PAR relationships (Fig. 5) show lh_at
A. triplinervia in gaps reached maximum pholns)’llll\etlc
rates of 2—-3 pmolm-2s-!, at saturating  PAR fevels of
200 pmolm-2s-1. D. rospigliosii, in the understory. .\‘hO“"Cd
maximum photosynthetic rates of 1 pmolm-2s-1, saturating
at PAR of 100 pmolm-2s-1.
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Fig. 3 Relationship between leaf conductance, (Gs), and leaf-air vapor
pressure difference (VPD), for (a) D. rospigliosii, in the understory
(A), Gs = e(-0.773-2.698 VPD), r = (.62, SE = 0.43, and (b) A. triplinervia
in a gap environment (@). All data for 10 days of field observations are
included in the figure

Fig. 5 Relationship between the
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Fig. 4 Frequency distributions of photosynthetically active radiation
(PAR) in a gap (Q) and the understory (M). Values are representative of
dry and wet seasons

Daily courses of plant responses in different treatments

Daily variations of microclimatic parameters and responses
of transplanted A. triplinervia and D. rospigliosii in their
natural light environment (gap and understory, respectively)
and in contrasting light conditions (A. triplinervia in shade
and D. rospigliosii in gaps), for the wet season are shown in
Fig. 6. A. triplinervia in the gap shows a VPD in average
0.1 KPa higher than in the understory, with maximum
values of 0.4 KPa in both treatments. Leaf conductance
and transpiration in the gap were higher than in the
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Fig. 6 Daily course of leaf tem-
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understory, a trend which is maintained throughout all the
daily courses (Garcia-Nufiez 1992).

Mean VPD of 0.2 KPa for both light environments was
observed for D. rospigliosii, with maximum values of
0.4 KPa at midday. Even though there is a significant
increase in stomatal frequency for D. rospigliosii plants
developed in the gap (Table 1), leaf conductance and
transpiration rates are higher for the understory. Since
VPD in the gap, for this species, is slightly higher than in
the understory, the lower leaf conductances in exposed
environments may be related to the type of stomatal control
presented by D. rospigliosii (Fig. 3).

Net photosynthetic rates for both species were 1.7 times
higher in gaps compared to the understory values; with
maximum values of 1.26-2.32 umolm-2s-! for A. tripli-

14 13 e 7 ® 10 n 12 RR ] 14 1 16 7

Time (h)

nervia and 0.85-2.08 pmolm-2s-! for D. rospigliosii, fol-
lowing closely the PAR response for both light environ-
ments (Fig. 6).

Both species maintained a positive carbon balance in the
understory, with low CO: assimilation rates, and which
were slightly higher in A. triplinervia and reaching light
saturation at approximately 100 umolm-2s-! (Fig. 6). De-
spite higher photosynthetic rates and lower leaf conduc-
tances in A. triplinervia, water use efficiency (WUE) for
both light environments (0.8 and 0.5 mmol CO2/mol H;0 in
gap and understory, respectively), were not significantly
different when compared to D. rospigliosii (0.5 and
0.2 mmol CO2/mol H:20 in gap and understory, respectively,
-test, P <0.05).
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Table 1 Photosynthetic and anatomical characteristics of fully expanded leaves from A. triplinervia and D. rospigliosii, n = 4, * P <0.05

between treatment, ** P <0.05 between species

Treatments

A. triplinervia D. rospigliosii
Dark respiration rate (Wmolm-2s-!)
Gap -0.3410.07 -0.66+0.09*
Understory -0.18+0.00 -0.041+0.03
Light compensation point (tmols m-2s-!)
Gap 6.50+1.09 7.5012.12*
Understory 3.50%2.12 1.67+£0.82
Quantum efticiency (mol CO: molph-!)
Gap 0.06+0.02 0.06 £0.02
Understory 0.08 +0.06 0.04+0.01
Maximum photosynthetic rate (umol m-2s-1)
Gap 4.4010.64 4.0110.26*
Understory 2.8710.63 1.571£0.04
Maximum photosynthetic rate (Lmol moIN-1s-1)
Gap 59.30+7.16 56.74 + 8.84*
Understory 52.84+13.68 27.13+0.76
Nitrogen content (mg g-!)
Gap 23.57+0.80% ** 12.96 +0.39**
Understory 21.251+0.63 11.131£041
Chlorophyll content (mg g-!)
Gap 9.20+0.25 6.98 + 0.40*
Understory 8.31+1.30 9.56+0.33
Chlorophyl! a/b ratio
Gap 3.1010.33 1.82+0.16
Understory 2.591+0.36 2.141+0.17
Chlorophyll/Nitrogen relationship
Gap 0.39+0.02%* 0.541£0.03* **
Understory . 0.39+0.07 0.851+0.05
Specific leaf weight (g m-2)
Gap 44,11 £1.03% ** 76.48 1 2.74% **
Understory 35821+ 1.55 68.15+1.97
Stomata number (mm-2) Abaxial Adaxial
Gap 1321+0.23 134 +£0.26* 131+0.26
Understory 127+0.49 117+0.20 11510.14

Photosynthetic responses under controlled conditions

Photosynthetic responses to light per unit leaf area in
A. triplinervia and D. rospigliosii grown in gaps (6% of
total insolation) and understory (2% of total insolation) are
shown in Fig. 7. Maximum photosynthetic rates for both
species were found in individuals developed in the gap
(approximately 4 umolm-2s-1). Light saturation for the gap-
adapted trees was reached between 200 and 300 pmolm-2s-!
and for the understory between 100 and 200 pmolm-2s-! for
both species (Fig. 7).

The light compensation point (Table 1) was low for both
species grown in the understory (3-4 umolm-2s-! for
A. triplinervia and 1-2 pumolm-2s-1 for D. rospigliosii).
In the gap, D. rospigliosii showed a slightly higher point
(7-8 umolm-2s-1) compared to A. triplinervia
(6-7 pumolm-2s-1). These low compensation points for
both species are similar to the light levels registered in
the forest’s understory. The apparent quantum yield (based

on incident radiation) is higher in A. triplinervia (Table 1).
There were no significant differences (P <0.05) in this
parameter between the different light treatments for both
species (Table 1), which indicates that there is no photo-
inhibition.

Plants developed in the understory showed lower dark
respiration rates (Table 1). On the other hand, dark respira-
tion rates on a leaf area basis, showed a linearly increasing
tendency with respect to leaf weight/leaf area and the
amount of total nitrogen per unit dry weight in the range
of light available to which they were exposed (Garcia-
Nifiez 1992).

Optimum temperature for photosynthesis was approxi-
mately 18°C for both species (Fig. 8), a value which is,
generally, close to the mean air temperature experienced in
their respective environments. It is important to note that
D. rospigliosii has a broader range than A. triplinervia,
which partially indicates a greater acclimation response.
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Nitrogen content, leaf chlorophyll and anatomical
characteristics

In both species total nitrogen content per unit leaf weight
was higher in plants developed in the gap, being signifi-

Fig. 8 Relationship between photosynthetic rate (A) and leaf temper-
ature under controlled conditions. (a) A. triplinervia in a gap,
y=-2.1069 + 0.8771x-0.0215x2, (b) D. rospigliosii in the understory,
y=0.6192 + 0.3193x~0.0086x2. Vertical bars are standard errors (n = 4)
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cantly higher in A. triplinervia for both light environments
(Table 1). There were no significant differences in the
amount of chlorophyll per unit weight between both spe-
cies, even though the values of A. triplinervia in the gap
were slightly higher than in the understory, while for
D. rospigliosii, chlorophyll concentration in the understory
was significantly higher than for the gap (Table 1).

Significant differences were also found in the chloro-
phyll/nitrogen relationship between both species. A. tripli-
nervia showed similar values in gap and understory, while
in D. rospigliosii the values were lower in the gap (Table 1).
The chlorophyll a/b ratio was higher in A. triplinervia for
the two light environments, although there were no signif-
icant differences between treatments (Table 1). Values for
A. triplinervia in the understory were lower than the gap.
On the other hand, the understory results were higher than
the gap values for D. rospigliosii. A. triplinervia presented a
higher instantaneous nitrogen use efficiency (INUE) in both
light environments, even though the differences were not
significant.

A. triplinervia leaves developed in both gap and under-
story have medium-sized leaves (20—100 cm?). Both leaf
thickness and specific leaf weight (SLW) were significantly
higher in the gap (160.25 pum; 44.11 g/m?2, respectively)
than in the understory (145.25 pum; 35.82 g/m2). This leaf
thickness decrease in the understory was due, principally, to
a decrease in the thickness of the epidermis of the upper
surface and in the spongy parenchyma. The palisade/
spongy parenchyma relation was similar in both environ-
ments and the stomatal density was slightly higher in leaves
grown in the gap and significantly larger than in the
understory.

D. rospigliosii leaves grown in the gap presented higher
values of leaf thickness and SLW (263.10 pm; 76.48 g/m?,
respectively) compared to those grown in the understory



T 122

(240.61 pm; 68.15 g/m?, respectively). This greater leaf
thickness was due to a larger spongy parenchyma, while the
palisade parenchyma and the epidermis remained the same.
Stomatal density was significantly higher in both surfaces
for leaves grown in the gap. Stomatal cell size was similar
for both light environments.

Discusslon

Mechanisms of stomatal regulation

Our results show two distinct patterns in relation to tran-
spiration rates and stomatal regulation in the studied
species. A. triplinervia, the gap-colonizing species, main-
tains low and relatively constant leaf conductances and
transpiration rates throughout the day. In contrast,
D. rospigliosii presented higher leaf conductances and
transpiration rates, together with a partial stomatal closure
due to changes in the environment’s evaporative demand.
This type of stomatal control has been reported for many
different life forms and, particularly, in conifers (Kaufmann
1976; Grieu et al. 1988; Meinzer et al. 1984). In adult
individuals of D. rospigliosii which constitute the emergent
stratum where water deficits may generate due to high VPD
and to the high hydraulic resistance presented by conifers
(Edward and Jarvis 1982), this mechanism would be
effective in controlling water losses. Meinzer et al. (1984)
found that in D. rospigliosii stomatal closure occurs with
increments in the evaporative demand, being independent
of the general water status of the leaf. This high sensitivity
of stomata to VPD has been reported in several species
from tropical rain forests (Huc and Gueh! 1989; Granier
et al. 1992).

Lower conductance and transpiration rates and a lesser
stomatal control in A. triplinervia, contradicts what has
generally been found, i.e. species in early succesional
stages present much higher transpiration rates compared
to shade-tolerant species (Bazzaz and Pickett 1980). How-
ever, this species maintains its stomatal conductance con-
stant and lower during the daily cycles compared to
D. rospigliosii, but with higher assimilation rates than this
latter species. These characteristics permit A. triplinervia to
maintain a higher intrinsic water use efficiency (A/Gs),
which would have a greater adaptive value in exposed
habitats (large gaps) and in those individuals which reach
the higher stratum in the forest’s canopy. The greater
stomatal conductance found in D. rospigliosii may give it
an advantage to profit from light flecks and increase the
assimilation rate by increasing the internal CO; concentra-
tion as has been proposed for other species (Mooney et al.
1983; Pearcy et al. 1987; Chazdon and Fetcher 1984,
Pearcy and Calkin 1983).

Photosynthetic responses

The light environment where the measurements were car-
ried out was not homogeneous due to the variability of

microsites, furthermore in our acclimation experiment
shaded housing was not used to control and homogenize
light levels. The results are, therefore, heterogeneous, and
will be discussed in terms of the trends which in many cases
are consistent and clear, showing significant differences
between treatments and species.

Some of our results, such as photosynthetic rates and the
photosynthetic acclimation capacity to changes in the light
environment, do not coincide with the species’ successional
stage and its degree of shade tolerance as described by
Bazzaz and Pickett (1980) and Bazzaz and Carlson (1982).
Similar results have been reported in tree species from
tropical rain forests (Denslow 1980; Langenheim et al.
1984; Walters and Field 1987; Fetcher et al. 1987).
The fact that there were no significant differences in the
maximum photosynthetic rate, measured under optimum
laboratory conditions, when both species were grown in the
gap, may be due to the light environment where the
experiment was carried out (100 m2 gap, receiving 6% of
total insolation), an amount which was, probably, not opti-
mum to obtain the maximum photosynthetic capacity in
A. triplinervia. D. rospigliosii, which has a shade tolerant
seedling bank, is able to adjust its photosynthetic capacity,
responding to increases in radiation levels without showing
signs of photoinhibition. These results suggest that
D. rospigliosii would benefit from the opening of small
gaps, increasing its growth rate, in the same manner as has
been described for other tropical rain forest seedlings
(Fetcher et al. 1983; Popma and Bongers 1988; Sanchez-
Coronado et al. 1990). Studies of the influence of light on
the development of D. rospigliosii show that, although it
may resist complete shade in the understory, it can grow
better under medium to high light conditions (Lamprecht
and Liscano 1957).

Both A. triplinervia and D. rospigliosii showed low and
very similar light compensation points when grown in
complete shade. Therefore, it is difficult to classify them
as shade-tolerant, since the light compensation points seem
to be more affected by the treatments than by the species.
The small difference found with respect to quantum yield
between treatments for both species, may be possibly due to
the small difference between the amount of radiation
received by the gap compared to the understory, and,
therefore, no damage was produced in the photosynthetic
apparatus when moved from shade to light. D. rospigliosii
showed low dark respiration when grown in the understory,
which permits it to maintain a positive carbon balance
throughout the day, compared to A. triplinervia grown in
the understory. These differences in respiration rates may
be the factor which determines the success or failure of
seedlings growing in the understory, where the plants may
spend many hours below the light compensation point
(Loach 1967).

Total nitrogen content in leaves differ between species
and may show their successional status. The higher nitrogen
content per unit dry weight in the gap species (A. tripli-
nervia), indicates a better nutritional status found in rapid
growing species of the early succession. In contrast, the
lower nitrogen content found in D. rospigliosii, together



with a higher specific leaf weight, are characteristics of late
succession species and/or slow growing primary species
(shade-tolerant; Mooney et al. 1984; Medina 1986; Evans
1989). A. triplinervia is equally photosynthetically efficient
in its nitrogen use in both gap and understory which means
that there is no acclimation response. In contrast,
D. rospigliosii increases its INUE when placed in the gap,
which supports the idea that this species depends on gaps to
reach the higher forest strata and to reproduce. However,
the phylogenetic difference between an angiosperm and a
gymnosperm must be taken into account when comparing
physiological and morphological attributes and their rela-
tion to the successional status.

Maximum photosynthetic rates and leaf nitrogen found
for both species growing in the gap are low when compared
to Amazonian species (Reich et al. 1991), but are similar to
values reported for tree species from other cloud forests
(Afiez 1987) and to understory species from tropical rain
forests (Koyama 1981; cited in Mooney et al. 1984). These
results support Grubb’s (1977) prediction with respect to
low photosynthetic rates in mountain cloud forests.

The light regime also affected leaf structure in both
species. A. triplinervia shows a decrease in leaf thickness,
SLW and stomatal frequency when grown in the understory,
while D. rospigliosii presents an increase in these param-
eters when grown in the gap. As a consequence, the
photosynthetic rate shows a linear relationship with respect
to SLW in the range of light availability to which these
plants were exposed (data not shown). Similar results have
been reported in leaves of species developed under different
light regimes (Chabot et al. 1979; Jurik et al. 1979; Fetcher
et al. 1987; Sims and Pearcy 1989).

In general, our results suggest that both species have the
capacity to respond to changes in the natural light environ-
ment, maintaining a favorable carbon balance, even though
the COz assimilation rates are low. Although A. triplinervia
is generally found in exposed habitats, its high maximum
photosynthetic rates, INUE and quantum yield suggest that
this species may also occupy shaded habitats. D. rospiglio-
sii’s characteristics such as lower dark respiration rate, light
compensation points, chlorophyll a/b ratio and a higher
chlorophyll/nitrogen relationship and leaf conductance,
may give this species a competitive edge which may assure
its survival as a seedling bank in the understory. The
photosynthetic acclimation in this shade-tolerant species
permits it to be more competitive when a gap occurs.
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