
1

A Tunable Slow Start for TCP
Andrés Arcia-Moret∗†, Omar Diaz∗ and Nicolas Montavont†

∗Universidad de Los Andes, Mérida, Venezuela
†Institut Telecom / Telecom Bretagne, Université Européene de Bretagne, France

Email: {andres.arcia, omardiaz}@ula.ve, nicolas@montavont.net

Abstract—Recently, there has been an interest in accelerating
the initial bandwidth discovery phase of TCP. In this paper
the feedback provided by TCP Acknowledgements (ACKs) does
not only mean (as in legacy TCP) that a single data packet
has gone out of the network, but also that new data packets
can be sent in bursts as opportunistically indicated by the
receiver. For this purpose, regular ACKs can be split so that an
acknowledged portion of a segment instructs the sender to open
more aggressively its congestion window. This article details the
implementation and testing of ACK division which has been used
so far to compensate the effect on TCP performance of random
losses, spurious timeouts and handovers at transport level. We
specifically show the benefits of using the ACK division in slow
start for long delay networks.

Index Terms—Split ACK, TCP, slow start, divack.

I. INTRODUCTION

The advent of faster access and core networks yields to
the need of efficiently using the available bandwidth [1],
[2]. This efficiency has to consider at least three aspects:
the rapid use of the available bandwidth, the fair use of the
bandwidth and the effective increasing of the TCP goodput.
At the same time it is well-known that the omnipresence
of TCP and the increasing number of technologies for the
Internet makes difficult proposing changes on TCP that can
be widely adopted; and naturally TCP does not adapt well to
all possible scenarios. For example, for high delay networks
(e.g., satellite networks), TCP performance is poor unless there
is a performance enhancing proxy (PEPs) to accelerate data
transfers [3]. However, PEPs break the so-called Internet end-
to-end principle by storing the state of TCP connections. On
the other hand, long delays to reach the TCP fair-share of
the bandwidth affect medium size transfers, such as web or
interactive traffic.

In TCP congestion control, the sender controls the sending
rate by manipulating a congestion window (cwnd) which limits
the number of packets that can be sent without having received
an acknowledgement (ACK). Each new ACK is taken as a
signal of non congestion and the sender can safely increase
the cwnd, so that the sender injects more data into the network
without waiting for a confirmation. In this proposal, we profit
from this semantic by splitting each regular ACKs in what we
call divacks (and preserve its validity at the same time). In a
regular scenario, TCP just ignores divacks, and middle-boxes
takes them as regular traffic and thus we propose our own
semantic for divacks without altering the regular interpretation
from the network.

A. The Transmission Control Protocol (TCP)

TCP allows a reliable transmission, congestion control
and reordering treatment. However, it does not provides a
guarantee on the transmission rate, and applications must
accept their fate rate found by the interaction of the TCP
with different bottlenecks. When sending data, a sender di-
vides the application messages into several segments, each of
which should correspond to a Sender Maximum Segment Size
(SMSS) determined during the connection establishment. Each
segment is marked with a sequence number to guarantee the
order and reliability of the transmission. Whenever the receiver
gets a segment, it sends an ACK to notify that data preceding
the received sequence number has been well received and can
be passed to the application and removed from the reception
buffer.

TCP uses some mechanisms to improve its performance and
to fairly share the bandwidth on the bottlenecks. Particularly,
the congestion window (cwnd) limits the number of segments
that a sender puts in-flight without receiving an ACK. When
a connection starts, TCP uses the algorithm slow start to
ramp-up the cwnd. Once TCP discovers the capacity of the
network, TCP changes the strategy to congestion avoidance to
carefully test for the available bandwidth and to fairly share
the bottleneck capacity. The objective of these mechanisms is
to control the amount of data that enter into the network.

TCP implements reliability and advances its cwnd as fol-
lows. TCP identifies each segment by a unique sequence
number for data segments, and an acknowledgement number
for ACKs. The sequence number serves as a mark for the
first byte transported by every segment. It could also show the
total number of bytes already transferred if subtracted to the
very first sequence number. On the other hand, the receiver
uses the ACK number to indicate to the sender the amount
of data already received. So when a receiver obtains segment
with a sequence number s transporting n bytes, it will send
an ACK numbered s + n + 1 indicating that it has correctly
received s+n bytes. This indication also means that a receiver
is waiting for the next segment containing the byte s+n+1.

Although a polemical feature [4], congestion control algo-
rithms of TCP deal with segments (and not bytes). These
algorithms increase the cwnd in terms of SMSS bytes for
every received ACK during the slow start phase. While in
congestion avoidance, TCP increases by 1/cwnd for every
received ACK that acknowledges new data, i.e., the cwnd
grows at the approximate rate of 1 SMSS per round trip time
(RTT) [5].



2

B. The ACK division

As described in previous section, TCP tracks the sending
and reception of bytes, but manages congestion in segments.
This characteristic allows varying the speed of the cwnd
growth as follows: as shown in Fig. 1, instead of sending a
single ACK for every received data packet, the receiver can
send several ACKs to the sender (referred as divacks from now
on), so that every divack confirms the reception of part of the
segment. We propose that this partial confirmation signals the
sender to put more packets in the network. Specifically, one
data packet for every divack received in slow start.

DATA 
1:144

8

DATA 
1449:

2896

DATA 
2897:

4344

DATA 
4345:

5792

DATA 
5793:

7240

DIVACK 1447DIVACK 1448ACK 1449

RTT

RECEIVER SENDER

Fig. 1. A transmission using divacks.

This technique, known also as Split ACK, has been reported
by Savage et al. [6] along with other possible modifications
to the ACK clocking. Every ACK produced in this way, is
perfectly valid because it acknowledges data that has been
received and not confirmed. Besides, divack has a different
effect on the cnwd growth depending on the congestion control
algorithm (i.e., slow start or congestion avoidance). However,
in slow start the growth effect results far more aggressive
than in congestion avoidance. Savage et al. have described this
kind of dynamic as a possible flaw of TCP, however Arcia-
Moret [7] discuss, based on an extensive simulation campaign
that a receiver abusing of this technique, would obtain an
opposite effect as that described by Savage et al, i.e., the TCP
performance could be rather impaired. And so our interest on
studying this technique in a Linux kernel serving as a base of
a tunable slow start for high delay networks.

Using divacks allows the TCP receiver to increase the
TCP sender cwnd faster than regular 1 ACK per packet or
1 ACK every other packet version of TCP. The receiver
thus, can control the cwnd growth rate through the arbitrary
sending of divacks up until a maximum of 1 divack per
byte in a segment. Using this frequency of divacks could
make the cwnd to send in just few burst a complete file
since this mechanism accentuates the well-known exponential
growth dynamic. Nevertheless, several other factors such as

the receiver window (rwnd), the available network bandwidth
or the core-networks buffer sizes also limits the speed of
transmissions.

The rest of the article is organized as follows. Section II
discuss the state of the art on the use and evaluation of divacks.
Section III describes the details for the implementation of
divacks in a Linux Kernel v2.6. Section IV discusses about
the TCP performance in a real testbed. Finally, in Section V
we conclude the paper.

II. APPLICATIONS FOR divacks

Several researchers have proposed to take advantage of
divacks to improve TCP performance in wireless links, without
having to modify the TCP sender. In such proposals, divacks
are produced in a controlled manner, in order to help the sender
in improving the recovering of the value of cwnd after it has
been unduly reduced.

Jin et al. [8] propose a method for coping with decreases in
cwnd due to wireless random losses, in a wired-cum-wireless
network configuration. They assume a TCP sender on a fixed
host (FH) in the wired part of the network, and a TCP receiver
on a host in the wireless part. The BS then sends a fixed
number of divacks to the FH when the retransmitted data
packet arrives. By means of simulations, the authors show
how cwnd rapidly recovers its size prior to the loss, thereby
improving TCP performance.

Matsushita et al. [9] use divacks to quickly adapt the cwnd
size after an upward vertical handover in a heterogeneous
wireless networks composed of a WAN service such as a 3G
cellular network and a IEEE 802.11g-based wireless LAN.
They assume that the mobile node is able to detect the
available bandwidth in the new access network with a higher
bandwidth-delay product (BDP). Once the node enters into the
new network, it sends divacks in order to rapidly increase cwnd
in congestion avoidance mode. This allows the TCP sender to
adapt faster to the new BDP and, therefore, to improve the
throughput.

Hasegawa et al. [10] developed a receiver-oriented, end-to-
end solution to recover from undue cwnd decreases caused by
wireless random losses, in a wired-cum-wireless network with
an asymmetric UMTS access link. Their proposal considers
three main aspects: a mechanism for differentiating between
wireless losses and congestion losses; controlling the duration
of the divack-generation interval; and controlling the divack
sending rate. Ideally, divacks would only be sent when wireless
losses take place. To control the duration of the ACK-division
period, they keep at the mobile node an estimate of the sender’s
cwnd size. So, when a random loss is detected, they send as
many divacks as needed to recover the cwnd achieved by the
sender just before the loss. Since sending divacks increases the
load on the uplink, they monitor the length of the upstream
queue at the mobile node. As long as this queue is empty when
a new data packet arrives, the number of divacks generated for
every incoming data packet is additively increased; otherwise,
n is decremented. The idea of this mechanism is to adapt the
divack rate to the available uplink bandwidth.

Arcia-Moret [7] presents an extensive simulation campaign
in ns-2, in which the divack mechanism is evaluated for



3

different transmission length and congestion scenarios. His
results suggest that divacks may not represent a systematic
harm to the network. The performance of a TCP connection
using divacks, depends on the number of divacks and the
level of congestion of the network. If the number of divacks
is high enough, the number of losses experienced by the
sender increase and therefore the TCP performance is likely
to decrease. On the other hand with an appropriate number of
divacks, the TCP performance improves.

Besides the research proposals described before, we are
aware of one implementation of divacks in a commercial prod-
uct. Cisco routers implement a so-called Rate Based Satellite
Control Protocol (RBSCP) [11], which was designed as a
solution for improving the performance of transport protocols
in wireless satellite links. With this solution, the router at
one end of the satellite link acts as a performance-enhancing
proxy (PEP) [12]. Among the mechanisms implemented by
the PEP, there is a divack-generation option: ACKs arriving
over the satellite link are divided by the PEP and sent over the
wired part of the network. The mechanism uses a conservative
default configuration (n = 4), but a network administrator may
statically set a different value of n ∈ {1, 2, ..., 32}.

Finally, Welzl and Normann [13] use divacks to investigate
the impact of bigger TCP Initial Window (IW) considering
the IW = 10 recently proposed by Google [14]. The issue
is whether different IW sizes, say 8 or 12 may also improve
the transmission. They base their experiments on short-lived
transactions to emulate web traffic. Since it is well-known that
this kind of traffic normally lives within the slow start phase
of TCP. Their experimental set is based on sending divacks
for IW of 3 or 4 found in common operating systems. And
so, by sending 3 divacks per data packet they obtain up until
12 data packets from a variety of web-servers. Tests over 600
web-servers show that big IW makes retransmissions increase.
Their implementation of divacks, although in a Linux platform,
uses libcap to generate divacks at application-level.

III. IMPLEMENTATION ON A LINUX KERNEL V2.6

One way of implementing this is by doing a loop in the
TCP code section for sending divacks in bursts. However, we
believe that different sending patterns impacts differently the
TCP performance. The sending divacks should reside in this
part of the code, since they will be interpreted as regular ACKs
at the data-sender. So, the code for the generation of control
ACKs (i.e., duplicated ACKs, SYN or FIN) should not be
touched, otherwise mechanisms like fast recovery could be
affected.

A. Congestion Window considerations

Fig. 2 shows the upper and lower limits for the starting
and ending of every segment. In the Figure, the value of
snd nxt in the sender, should match the value of rcv nxt at the
receiver. So, the receiver tracks the next incoming segment by
saving the next expected byte in rcv nxt. When the receiver
sends an ACK, its sequence number is set to rcv nxt. In this
way the receiver informs that every byte just before the one

announced in the ACK has been correctly received. Recall that
TCP implementation on Linux Kernels v2.6 ignore divacks1.

1449 2897 4345 5793
Sent segments and
not acknowledged
Not sent segments

2896 4344 5792 7240

snd_una snd_nxt

Fig. 2. The TCP congestion window. snd_nxt and snd_una at the sender.

On the other hand, sender snd nxt and snd una represent
the first byte of the next outgoing segment, and the first byte of
the oldest in-flight segment. We use these variables as divack
limits so that the sequence number of every divack keeps
between these two values. A divack should not be greater than
snd nxt because this segment has not been sent yet and should
not be less than snd una because these bytes have already
been acknowledged. Moreover, a regular TCP implementation
slides the cwnd when a full segment has been acknowledged,
generating an extra packet in the burst.

We implemented a kernel variable called sysctl tcp divack
to control the amount of divacks to send at any time.
sysctl tcp divack controls either the rate of divacks or the
deactivation of the mechanism. When experimenting with
Linux Kernel, it is very common to change parameters from
the console in run-time through sysctl interface. It allows
to control the sending of divacks by setting in the following
way:

• 0: Turns off the sending of divacks, it goes to the standard
mechanism of one ACK per segment.

• n: Divides the outgoing ACK in n + 1 parts, that is, n
divacks and the ending full-ACK to confirm the whole
segment.

Note that all bytes up until SMSS − 1 could be profited
with this technique. So, using the most aggressive strategy
implies to send SMSS − 1 divacks and the final full-ACK
to acknowledge every single byte of the segment. However,
recall that the effective increase in the TCP throughput will
depend on the congestion conditions [7].

B. Control ACKs versus data ACKs

ACKs has two fundamental rolls, either confirming the
reception of data packets (as explained in Section III-A) to
make the congestion window slide and grow, or controlling
different TCP sub-mechanisms (i.e., establishment or tear
down of a connection, data recovery, etc.). In the control case,
sending divacks would impair the transmission. For example,
since TCP is connection oriented, it is necessary to establish
a connection. At the beginning the receiver acknowledges
the connection-opening with a SYN+ACK. To end the data
transmission, the receiver and the sender interchange FIN
and ACK messages so that both extremes of the connection
liberate allocated resources. In both cases, ACKs have a
control semantic and divacks should not be used.

1Welzl and Norman [13] have found that a fair deal of OSs increase their
throughput when sending divacks in slow start



4

When there are losses, the receiver uses the so-called
duplicate ACKs to inform the sender that it should enter into
the recovery mode. After three duplicate ACKs, lost packets
are retransmitted before the expiration of the retransmission
timeout. The sending of divacks during this phase would
trigger spurious timeouts.

C. The ACK division algorithm

The divack mechanism has been implemented in a Linux OS
V2.6.35.7. In Table I we show an algorithm to create and send
divacks. This algorithm takes as an input the sequence number
of an ACK and stores it into last_byte as a reference
for assigning divacks numbers. The receiver can send divacks
within a loop that repeats as many times as the number n
of divacks to send. The first divack will have as a sequence
number last_byte - n, and the following n − 1 divacks
will have a sequence number increased by 1 (line 12), i.e.,
each one will confirm a new single byte. Finally, when the
loop ends, at line 16 a full-ACK is sent confirming the whole
segment. This full-ACK also signals for the next byte to receive
with the sequence number last byte. Recall that when the
divack mechanism is deactivated (sysctl tcp divack = 0),
the sequence number of the regular ACK will not be modified
and the loop will not take place, therefore sending just the
regular ACK (leaving TCP with the standard behaviour).

TABLE I
divack ALGORITHM AT THE RECEIVER.

1 /* check: ACK answer to a data segment */
2 I f (TCP_segment has data && TCP_segment is

not corrupt) then
3 /* Save the regular ACK number */
4 last_byte = TCP_segment.rcv_nxt
5 /* ACK seqno in snd_nxt and snd_una */
6 TCP_segment.rcv_nxt -=

sysctl_tcp_divack
7

8 While (TCP_segment.rcv_nxt < last_byte)
9 /* divack with a new seqno */

10 form_and_send_ack(TCP_segment)
11 /* next divack number inc by 1 */
12 TCP_segment.rcv_nxt++
13 End While
14

15 /* send full-ACK */
16 send_ack(TCP_segment)
17 End I f

IV. EXPERIMENTATION IN A TESTBED

The algorithm explained in Table. I has been implemented
following the details of Section III-B. Recall that we call n
the number of divacks that will be sent for every data packet,
that is, the value of the sysctl tcp divack.

Fig. 3 shows the topology of the testbed. The cloud em-
ulates a variable delay implemented by a computer running
netem, a network emulator that allows to introduce Wide
Area Network properties [15]. This computer dispose of a

couple of networks interface cards (NICs) to buffer, delay, and
loss packets through an highly configurable API. The access
network corresponds to an 802.11 access point. We decided to
add an 802.11 access to show the ping-pong effect as observed
in [16] for low end-to-end delay.

Fig. 4 shows a screen capture of a Wireshark trace of a
TCP transfer using the divack mechanism, with n = 3 and
a roundtrip time of 250ms for data transmission, emulated
with netem. Note that the handshaking has not been affected,
ACKs have been divided in four valid ACKs and the receiver
performs the three-way handshake and then it completes the
opening of the connection with a single control ACK. After
the reception of the first segment it is possible to observe the
divacks technique behaviour, in this case with n = 3 the first
divack confirms up until the byte 1446 obtained as snd nxt−
n. Then, the following 2 divacks acknowledge a new byte
each time, up until the final full-ACK that confirms the whole
segment. Note within the algorithm in Table I at Line 4, that
the full-ACK number is snd nxt.

A. Dynamics of the Congestion Window in Slow Start

Using tcp probe it is possible to capture the changes inside
the kernel on the cwnd, and observe the cwnd dynamic when
divacks arrive. Fig. 5 shows a comparison of the cwnd growth
when activating the divack mechanism with regular sending of
one ACK per data packet and divacks with n = 15. This test
corresponds to the netem emulating an RTT of 250ms (easily
observable within the figure). The divack burst effect at the
receiver is clearly appreciated, it provokes a greater increase
of the cwnd compared with the regular ACK frequency. The
divack-cwnd grows 4 times more in half the time.

In Fig. 6 we observe the effect of the acceleration of the
cwnd growth and the consequent greater throughput (as also
shown in Fig. 10). In Table II, there is a summary of the total
number of segment transfer per RTT, considering two different
scenarios, regular TCP and divacks with n = 15. At the end
of every RTT, the receiver obtains a greater data burst after
the first sending with IW = 3. For the first RTT, in both
cases TCP effectuates the 3-way-handshake, and after 250 ms

Receiver Sender
DATA

ACKs
AP 802.11

Fig. 3. Testbed for different end-to-end delay emulation.

Three-way
Handshake

First
data
packet
Divacks
FullACK

Fig. 4. Wireshark trace of TCP using 3 (three) divacks.



5

0 0.5 1 1.5 2
Time (s)

0

500

1000

1500

2000
cw

nd
 (S

M
SS

)

Regular 1-ACK per packet
15 divacks 

Fig. 5. cwnd dynamic using n=15 and n=0 (regular ACK frequency),
RTT=250 ms and 990 KB file transfer.

(during the second RTT), in both cases, receivers obtain 3
segments. From this point on the difference in the amount
of received packets increases as indicated by the number of
divacks. The divack receiver finishes the transfer at the fourth
RTT while the regular TCP needs 6 additional RTTs to finish
the transfer.

0.5 1 1.5 2 2.5 3
Time (s)

0

200000

400000

600000

800000

1x106

by
te

s 
re

ce
iv

ed

Regular 1-ACK per packet
15 divacks

Fig. 6. Download process of 990 KB using n=15 and n=0. Both cases with
250 ms of RTT (trace at the receiver).

Note that there is a noticeable difference on the cwnd size
showed in Fig. 5 and the amount segments in the two bursts
shown in Fig. 6 for the divack flow. During the time period
from 0.55 s and 0.9 s in Fig. 5 there is a slow-down on
the TCP throughput for the divack flow. However, this is
comparable to the throughput of the regular TCP (compare
the slopes of both regular and divack flow withint the same
figure). This dynamic obeys the ping-pong effect reported in
[16] in which the competition for the 802.11 shared access
to the media, limits the TCP throughput. There may also be
other factors that can limit the TCP throughput such as the
rwnd size, the available bandwidth or middle buffers sizes.
So, with n = 15 we have obtained a 60% time save in the
download. Observe also that the greater the end-to-end delay,
the higher the increase obtained with divacks.

TABLE II
RECEIVED SEGMENTS PER RTT.

RTT Regular TCP (pkts) divacks n=15 (pkts)
1 0 (handshaking) 0 (handshaking)
2 IW = 3 IW = 3
3 6 51
4 12 673
5 24 –
7 48 –
8 96 –
9 147 –

10 238 –
11 152 –

Total 727 727

B. Performance Evaluation

We show the TCP performance while varying the RTT,
the number of divacks and the file size. In general, for
downloading tests for several file sizes we obtained better
performance for long RTTs. We can also observe that there
is a maximum improvement that depends on the file size and
the RTT. For example for a 198KB file (Fig. 8), the maximum
improvement is around 80 ms one-way delay whereas for
990KB file, it is around 250 ms (Fig. 10). Moreover, for the
case of 250 ms we have obtained savings in the download
mean time of 49,3% for files of 99 KB, 58,6% for files of 198
KB (Fig. 8 and Fig. 7) and 64,9% for files of 990 KB (Fig. 10
and Fig. 9).

0 50 100 150 200 250
RTT (ms)

0.5

1

1.5

2

2.5

Tr
an

sf
er

 T
im

e 
(s

)

Regular TCP
3 divacks
9 divacks
15 divacks

Fig. 7. Download time for 198 KB files with different delays.

As shown in Fig. 8 and Fig. 10, there is a crossing-point
between the reference performance curve using 1 ACK per
data packet and the group of divacks’ curves. This corresponds
to the minimum delay for experiencing a gain. Remark that this
minimum delay increases for larger file sizes. This is due to
the contention time spent by divacks and data packets (i.e., the
so-called ping-pong effect [16] 2). This phenomena has also
been observed in [16] in congestion avoidance. So it justifies
the interest on using divacks for short time-periods when there
is a shared media along the path.

Finally, remark that before the minimum delay, divacks im-
pairs data transmission. There are some packet level dynamics
that attenuate the effect of divacks. For example, in Fig. 9

2The divacks and the data packet contend alternatively for the share media
at the 802.11 access network.



6

0 50 100 150 200 250
RTT (ms)

0

5

10

15

20

25

 T
hr

ou
gh

pu
t f

or
 S

in
gl

e 
Tr

an
sf

er
 (M

bp
s)

Regular TCP
3 divacks
9 divacks
15 divacks

crossing 
point

Fig. 8. Throughput comparison of file transfers of 198 KB with different
delays.

0 50 100 150 200 250
RTT (ms)

0.5

1

1.5

2

2.5

Tr
an

sf
er

 T
im

e 
(s

)

Regular TCP
3 divacks
9 divacks
15 divacks

Fig. 9. Download time for 990 KB files with different delays.

using 9 divacks reports a smaller gain than 3 divacks. This
is due to the effect of the contention for the media, which is
intensified for certain quantities of divacks.

V. CONCLUSIONS

In this article we have discussed the impact of divacks in
TCP slow start and its implementation in a Linux operating
system. We have observed that divacks accelerate the growth
of the congestion window at a rate proportional to the number
of divacks. This property has been shown useful in scenarios
such as recovery from random losses, spurious timeouts or
handovers. Moreover, the acceleration on the congestion win-
dow growth exploits faster the available bandwidth. However,
the effect of divacks is better appreciated in networks with
high delay; such as satellite networks, for which data packets
experience delays from 400 ms to 800 ms. Thus, we believe
that we could improve the initial ramp-up of the congestion
window in long-delay networks.

We have also observed that for large number of divacks
(e.g., 15 or more) TCP performance may be limited by
companion mechanisms. Large number of divacks provoke
large bursts of data parckets, thus there are other factors that
limit the performance improvement: inappropriate setting of
TCP announced window (rwnd), short intermediate or final
buffer space, or half-duplex links along the path.

As a future direction we are designing a mechanism to
adapt transmission speed in terms congestion and the desired

0 50 100 150 200 250
RTT (ms)

0

5

10

15

20

25

 T
hr

ou
gh

pu
t f

or
 S

in
gl

e 
Tr

an
sf

er
 (M

bp
s)

Regular TCP
3 divacks
9 divacks
15 divacks

crossing 
point

Fig. 10. Throughput comparison of file transfers of 990 KB with different
delays.

performance. We will also study the effect of divacks on the
user experience when doing web surfing.

REFERENCES

[1] D. Liu, M. Allman, S. Jin, and L. Wang, “Congestion control without
a startup phase,” Fifth International Workshop on Protocols for FAST
Long-Distance Networks (PFLDnet ’07), 2007.

[2] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” Experimental RFC 4782, IETF, Jan. 2007.

[3] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions,” RFC 3135, 2001.

[4] M. Welzl. (2006, March) [e2e] Since we’re already learning TCP
fundamentals..., Message ID: ”http://www.postel.org/pipermail/end2end-
interest/2006-March/005806.html”.

[5] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC
5681, October 2009.

[6] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Conges-
tion Control with a Misbehaving Receiver,” ACM SIGCOMM Computer
Communications Review, 1999.

[7] A. Arcia-Moret, “Modifying the TCP Acknowledgement Mechanism:
Evaluation and Appication to Wires and Wireless Networks,” Ph.D.
dissertation, Institut TELECOM/TELECOM Bretagne, Rennes, France,
December 2009.

[8] K. Jin, K. Kim, and J. Lee, “Spack: Rapid recovery of the tcp
performance using split-ack in mobile communication environments,”
in Proc. IEEE TENCON, Cheju,South Korea, Sep. 1999, pp. 761–764.

[9] Y. Matsushita, T. Matsuda, and M. Yamamoto, “Tcp congestion control
with ack-pacing for vertical handover,” in Proc. IEEE WCNC, New
Orleans, Mar. 2005, pp. 1497–1502.

[10] G. Hasegawa, M. Nakata, and H. Nakano, “Receiver-based ack splitting
mechanism for tcp over wired/wireless heterogeneous networks,” in
IEICE Transactions on Communications, vol. E90-B(5), May 2007, pp.
1132–1141.

[11] Cisco IOS Release 12.3(7)T, New Feature Documentation–Rate Based
Satellite Control Protocol, Cisco Systems, 2010.

[12] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance enhancing proxies intended to mitigate link-related degradations,”
Informational RFC 3135, IETF, Jun. 2001.

[13] M. Welzl and R. Normann, “A client-side split-ACK tool for TCP Slow
Start investigation,” in Computing, Networking and Communications
(ICNC), 2012 International Conference on, 30 2012-feb. 2 2012, pp.
804–808.

[14] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing TCP’s initial
congestion window,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 3,
pp. 26–33, Jun. 2010.

[15] (2011) netem. Linux Fundation. [Online]. Available in:
www.linuxfoundation.org/collaborate/workgroups/networking/netem

[16] A. Arcia-Moret, D. Ros, and N. Montavont, “Auto-protection of 802.11
networks from TCP ACK division,” in CONEXT ’08: Proceedings of
the 2008 ACM CoNEXT Conference. Madrid, Spain: ACM, 2008, pp.
1–2.


