Revista Notas de Matemática Vol.7(2), No. 311, 2011, pp. 119-127 http://www.saber.ula.ve/notasdematematica Pre-prints Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes

Linear operator defined by lambda function for certain analytic functions

Afaf A. Ali Abubaker and Maslina Darus

Abstract

For analytic function f in the open unit disc U, a linear operator defined by lambda function is introduced. The object of the present paper is to discuss some properties for $I_{\mu,s}f(z)$ belonging to some classes by applying Jack's lemma.

key words. Jack's lemma, linear operator, analytic function, starlike functions.

AMS subject classifications. 30C45

1 Introduction and preliminaries

Let A denote the class of all analytic functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic in the open unit disk $U = \{z \in C : |z| < 1\}$.

Let us recall lambda function (4) defined by

$$\lambda(z,s) = \sum_{n=0}^{\infty} \frac{z^n}{(2n+1)^s}$$

 $(z \in U; s \in C, when, |z| < 1; \Re(s) > 1, when, |z| = 1),$

and let $\lambda^{(-1)}(z,s)$ be defined such that

$$\lambda(z,s) * \lambda^{(-1)}(z,s) = \frac{1}{(1-z)^{\mu+1}}, \ \mu > -1.$$

We now define $(z\lambda^{(-1)}(z,s))$ as the following:

$$(z\lambda(z,s)) * (z\lambda^{(-1)}(z,s)) = \frac{z}{(1-z)^{\mu+1}}$$
$$= z + \sum_{n=2}^{\infty} \frac{(\mu+1)_{n-1}}{(n-1)!} z^n, \quad \mu > -1$$

and obtain the following linear operator:

$$I_{\mu,s}f(z) = (z\lambda^{(-1)}(z,s)) * f(z)$$

where $f \in A, z \in U$, and

$$(z\lambda^{(-1)}(z,s)) = z + \sum_{n=2}^{\infty} \frac{(\mu+1)_{n-1}(2n-1)^s}{(n-1)!} z^n.$$

A simple computation, gives us

$$I_{\mu,s}f(z) = z + \sum_{n=2}^{\infty} \frac{(\mu+1)_{n-1}(2n-1)^s}{(n-1)!} a_n z^n \,.$$
⁽²⁾

where $(\mu)_n$ is the Pochhammer symbol defined by

$$(\mu)_n = \frac{\Gamma(\mu+n)}{\Gamma(\mu)} = \{ 1, n = 0\mu(\mu+1)\dots(\mu+n-1), n = \{1, 2, 3, \dots\}.$$

In the following definition, we introduce a new class of analytic functions containing a linear operator defined by lambda function of Eq. (2).

DEFINITION 1.1 Let a function $f \in A$, then $f \in S_{\mu,s}$ if and only if

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} > \alpha, \quad z \in U, \quad 0 \le \alpha < 1.$$

$$(3)$$

Let f and g be analytic in U. Then f is said to be subordinate to g if there exists an analytic function w satisfying w(0) = 0 and |w(z)| < 1, such that $f(z) = g(w(z)), z \in U$. We denote this subordination as $f(z) \prec g(z)$ or $(f \prec g), z \in U$.

The basic idea in proving our result is the following lemma due to Jack (1) (also, due to Miller and Mocanu (2)).

Lemma 1.1 (1) Let $\omega(z)$ be analytic in U with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle |z| = r at a point $z_0 \in U$, then we have $z_0\omega'(z_0) = k\omega(z_0)$, where $k \ge 1$ is a real number.

2 Main Results

In the present paper, we follow similar works done by Shiraishi and Owa (5) and Ochiai et al. (3), we derive the following result:

Theorem 2.1 If $f \in A$ satisfies

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} < \frac{\alpha - 3}{2(\alpha - 1)}, \quad z \in U$$

for some α (-1 < $\alpha \leq 0$), then

$$\frac{I_{\mu,s}f(z)}{z}\prec \frac{1+\alpha z}{1-z}, \quad z\in U.$$

This implies that

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\} > \frac{1-\alpha}{2}.$$

Proof. Let us define the function $\omega(z)$ by

$$\frac{I_{\mu,s}f(z)}{z} = \frac{1 - \alpha \omega(z)}{1 - \omega(z)}, \quad (\omega(z) \neq 1).$$

Clearly, $\omega(z)$ is analytic in U and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in U. Since

$$\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)} = \frac{-\alpha z \omega'(z)}{1-\alpha \omega(z)} + \frac{z \omega'(z)}{1-\omega(z)} + 1,$$

we see that

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} = \Re\{\frac{-\alpha z\omega'(z)}{1-\alpha\omega(z)} + \frac{z\omega'(z)}{1-\omega(z)} + 1\}$$
$$< \frac{\alpha-3}{2(\alpha-1)} \quad (z \in U)$$

for $-1 < \alpha \leq 0$. If there exists a point $z_0 \in U$ such that

$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1,$$

then Lemma 1.1, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), k \ge 1$. Thus we have

$$\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)} = \frac{-\alpha z_0 \omega'(z_0)}{1 - \alpha \omega(z_0)} + \frac{z_0 \omega'(z_0)}{1 - \omega(z_0)} + 1$$
$$= 1 + \frac{k}{1 - e^{i\theta}} - \frac{k}{1 - \alpha e^{i\theta}}.$$

If follows that

$$\Re\{\frac{1}{1-\omega(z_0)}\} = \Re\{\frac{1}{1-e^{i\theta}}\} = \frac{1}{2}$$

and

$$\Re\{\frac{1}{1-\alpha\omega(z_0)}\} = \Re\{\frac{1}{1-\alpha e^{i\theta}}\} = \frac{1}{2} - \frac{1-\alpha^2}{2(1+\alpha^2 - 2\alpha\cos\theta)}.$$

Therefore, we have

$$\Re\{\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)}\} = 1 - \frac{k(\alpha^2 - 1)}{2(1 + \alpha^2 - 2\alpha\cos\theta)}.$$

This implies that, for $-1 < \alpha \leq 0$,

$$\Re\{\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)}\} \ge 1 + \frac{(1-\alpha^2)}{2(\alpha-1)^2}$$
$$= \frac{\alpha-3}{2(\alpha-1)}.$$

This contradicts the condition in the theorem. Then, there is no $z_0 \in U$ such that $|\omega(z_0)| = 1$ for all $z \in U$, that is

$$\frac{I_{\mu,s}f(z)}{z} \prec \frac{1+\alpha z}{1-z}, \qquad z \in U.$$

Furthermore, since

$$\omega(z) = \frac{\frac{I_{\mu,s}f(z)}{z} - 1}{\frac{I_{\mu,s}f(z)}{z} - \alpha}, \qquad z \in U$$

and $|\omega(z)| < 1$ $(z \in U)$, we conclude that

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\} > \frac{1-\alpha}{2}.$$

Taking $\alpha = 0$ in the theorem, we have the following corollary:

Corollary 2.1 If $f \in A$ satisfies

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} > \frac{3}{2}, \quad z \in U,$$

then

$$\frac{I_{\mu,s}f(z)}{z} \prec \frac{1}{1-z} \,, \qquad z \in U$$

and

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\} > \frac{1}{2}\,, \qquad z \in U.$$

122

Theorem 2.2 If $f \in A$ satisfies

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} > \frac{3\alpha - 1}{2(\alpha - 1)}, \quad z \in U,$$

for some α (-1 < $\alpha \leq 0$), then

$$\frac{z}{I_{\mu,s}f(z)} \prec \frac{1+z}{1-z}, \qquad z \in U,$$

and

$$\left|\frac{I_{\mu,s}f(z)}{z} - \frac{1}{1-\alpha}\right| < \frac{1}{1-\alpha}, \quad z \in U.$$

This implies that

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\} > 0, \qquad z \in U.$$

Proof. Let us define the function $\omega(z)$ by

$$\frac{z}{I_{\mu,s}f(z)} = \frac{1 - \alpha\omega(z)}{1 - \omega(z)}, \qquad \omega(z) \neq 1.$$
(4)

Then, we have that $\omega(z)$ is analytic in U and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in U.

Differentiating Eq. (4), we obtain

$$\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)} = \frac{-z\omega'(z)}{1-\omega(z)} + \frac{\alpha z\omega'(z)}{1-\alpha\omega(z)} + 1$$

and, hence

$$\begin{aligned} \Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} &= \Re\{\frac{-z\omega'(z)}{1-\omega(z)} + \frac{\alpha z\omega'(z)}{1-\alpha\omega(z)} + 1\}\\ &> \frac{3\alpha - 1}{2(\alpha - 1)}, \quad z \in U, \end{aligned}$$

for $(-1 < \alpha \le 0)$. If there exists a point $(z_0 \in U)$ such that Lemma 1.1, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), k \ge 1$. Thus we have

$$\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)} = \frac{-z_0\omega'(z_0)}{1-\omega(z_0)} + \frac{\alpha z_0\omega'(z_0)}{1-\alpha\omega(z_0)} + 1$$
$$= 1 - \frac{k}{1-e^{i\theta}} + \frac{k}{1-\alpha e^{i\theta}}.$$

Therefore, we have

$$\Re\{\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)}\} = 1 + \frac{k(\alpha^2 - 1)}{2(1 + \alpha^2 - 2\alpha\cos\theta)}.$$

This implies that, for $-1 < \alpha \leq 0$,

$$\Re\{\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)}\} = 1 - \frac{k(1-\alpha^2)}{2(1+\alpha^2 - 2\alpha\cos\theta)}.$$
$$\leq \frac{3\alpha - 1}{2(\alpha - 1)}.$$

This contradicts the condition in the theorem. Hence, there is no $z_0 \in U$ such that $|\omega(z_0)| = 1$ for all $z \in U$, that is

$$\frac{z}{I_{\mu,s}f(z)} \prec \frac{1+z}{1-z}, \qquad z \in U.$$

Furthermore, since

$$\omega(z) = \frac{1 - \frac{I_{\mu,s}f(z)}{z}}{1 - \alpha \frac{I_{\mu,s}f(z)}{z}}, \qquad z \in U$$

and $|\omega(z)| < 1$ $(z \in U)$, we conclude that

$$\left|\frac{I_{\mu,s}f(z)}{z} - \frac{1}{1-\alpha}\right| < \frac{1}{1-\alpha}, \quad z \in U$$

which implies that

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\}>0, \qquad z\in U,$$

we complete the proof of the theorem. By setting $\alpha = 0$ in Theorem 2.2, we readily obtain the following:

Corollary 2.2 If $f \in A$ satisfies

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} > \frac{1}{2}, \quad z \in U,$$

then

$$\frac{z}{I_{\mu,s}f(z)} \prec \frac{1+z}{1-z}, \qquad z \in U$$

and

$$\left|\frac{I_{\mu,s}f(z)}{z} - 1\right| < 1, \quad z \in U.$$

Theorem 2.3 If $f \in A$ satisfies

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} < \frac{\alpha(2-\gamma) - (2+\gamma)}{2(\alpha-1)}, \quad z \in U,$$

124

for some $\alpha (-1 < \alpha \leq 0)$ and $0 < \gamma \leq 1$, then

$$(\frac{I_{\mu,s}f(z)}{z})^{\frac{1}{\gamma}}\prec \ \frac{1+\alpha z}{1-z}\,,\qquad z\in U$$

This implies that

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\}^{\frac{1}{\gamma}} > \frac{1-\alpha}{2}, \qquad z \in U.$$

Proof. Let us define the function $\omega(z)$ by

$$\frac{I_{\mu,s}f(z)}{z} = \left(\frac{1-\alpha\omega(z)}{1-\omega(z)}\right)^{\gamma}, \qquad \omega(z) \neq 1.$$

Clearly, $\omega(z)$ is analytic in U and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in U. Since

$$\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)} = \gamma(\frac{z\omega'(z)}{1-\omega(z)} - \frac{\alpha z\omega'(z)}{1-\alpha\omega(z)}) + 1$$

we see that

$$\Re\{\frac{z(I_{\mu,s}f(z))'}{I_{\mu,s}f(z)}\} = \Re\{\gamma(\frac{z\omega'(z)}{1-\omega(z)} - \frac{\alpha z\omega'(z)}{1-\alpha\omega(z)}) + 1\} \\ < \frac{\alpha(2-\gamma) - (2+\gamma)}{2(\alpha-1)}, \quad z \in U$$

for $\alpha (-1 < \alpha \le 0)$ and $0 < \gamma \le 1$. If there exists a point $(z_0 \in U)$ such that

$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1,$$

then Lemma 1.1, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), k \ge 1$. Thus we have

$$\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)} = \gamma(\frac{z_0\omega'(z_0)}{1-\omega(z_0)} - \frac{\alpha z_0\omega'(z_0)}{1-\alpha\omega(z_0)}) + 1$$
$$= 1 + \frac{k}{1-e^{i\theta}} - \frac{k}{1-\alpha e^{i\theta}}$$

Therefore, we have

$$\Re\{\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)}\} = 1 + \frac{\gamma k(1-\alpha^2)}{2(1+\alpha^2 - 2\alpha\cos\theta)}.$$

This implies that, for $\alpha (-1 < \alpha \le 0)$ and $0 < \gamma \le 1$

$$\Re\{\frac{z_0(I_{\mu,s}f(z_0))'}{I_{\mu,s}f(z_0)}\} \ge \frac{\alpha(2-\gamma) - (2+\gamma)}{2(\alpha-1)}.$$

This contradicts the condition in the theorem. Hence, there is no $z_0 \in U$ such that $|\omega(z_0)| = 1$ for all $z \in U$, that is

$$\left(\frac{I_{\mu,s}f(z)}{z}\right)^{\frac{1}{\gamma}} \prec \frac{1-\alpha z}{1-z} , \qquad z \in U.$$

Furthermore, since

$$\omega(z) = \frac{\left(\frac{I_{\mu,s}f(z)}{z}\right)^{\frac{1}{\gamma}} - 1}{\left(\frac{I_{\mu,s}f(z)}{z}\right)^{\frac{1}{\gamma}} - \alpha},$$

and $|\omega(z)| < 1$ ($z \in U$), we conclude that

$$\Re\{\frac{I_{\mu,s}f(z)}{z}\}^{\frac{1}{\gamma}} > \frac{1-\alpha}{2}, \qquad z \in U,$$

we complete the proof of the theorem.

Acknowledgment

The work presented here was fully supported by UKM-ST-06-FRGS0244-2010.

References

- [1] JACK I. S., Functions starlike and convex of order α , J. London Math. Soc., 1(1971), 469–474.
- [2] MILLER S. S. AND MOCANU P. T., Second-order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
- [3] OCHIAI K., OWA S. AND ACU M., Applications of Jack's lemma for certain subclasses of analytic functions, General mathematics, 13(2005), 73-82.
- [4] SPANIER, J. AND OLDHAM, K. B., The Zeta numbers and related functions, Ch. 3 in An Atlas of Functions. Washington, DC:Hemisphere, (1987), 25-33.
- [5] SHIRAISHI H. AND OWA S., Starlikeness and convexity for analytic Functions concerned With JackŠs lemma, Int. J. Open Problems Compt. Math., 2(2009), 37-47.

Afaf A. Ali Abubaker and Maslina Darus*

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia e-mail: m.afaf48@yahoo.com e-mail: *maslina@ukm.my (Corresponding author)