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Linear operator defined by lambda function for certain analytic
functions
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Abstract

For analytic function f in the open unit disc U , a linear operator defined by lambda
function is introduced. The object of the present paper is to discuss some properties for
Iµ,sf(z) belonging to some classes by applying Jack’s lemma.
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1 Introduction and preliminaries

Let A denote the class of all analytic functions f of the form

f(z) = z +
∞∑

n=2

anzn (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.

Let us recall lambda function (4) defined by

λ(z, s) =
∞∑

n=0

zn

(2n + 1)s

(z ∈ U ; s ∈ C, when, |z| < 1; <(s) > 1, when, |z| = 1),

and let λ(−1)(z, s) be defined such that

λ(z, s) ∗ λ(−1)(z, s) =
1

(1− z)µ+1
, µ > −1.
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We now define (zλ(−1)(z, s)) as the following:

(zλ(z, s)) ∗ (zλ(−1)(z, s)) =
z

(1− z)µ+1

= z +
∞∑

n=2

(µ + 1)n−1

(n− 1)!
zn, µ > −1

and obtain the following linear operator:

Iµ,sf(z) = (zλ(−1)(z, s)) ∗ f(z)

where f ∈ A, z ∈ U , and

(zλ(−1)(z, s)) = z +
∞∑

n=2

(µ + 1)n−1(2n− 1)s

(n− 1)!
zn.

A simple computation, gives us

Iµ,sf(z) = z +
∞∑

n=2

(µ + 1)n−1(2n− 1)s

(n− 1)!
anzn . (2)

where (µ)n is the Pochhammer symbol defined by

(µ)n =
Γ(µ + n)

Γ(µ)
=

{
1, n = 0µ(µ + 1)...(µ + n− 1), n = {1, 2, 3, ...}.

In the following definition, we introduce a new class of analytic functions containing a linear

operator defined by lambda function of Eq. (2).

Definition 1.1 Let a function f ∈ A, then f ∈ Sµ,s if and only if

<{z(Iµ,sf(z))′

Iµ,sf(z)
} > α, z ∈ U, 0 ≤ α < 1. (3)

Let f and g be analytic in U . Then f is said to be subordinate to g if there exists an analytic

function w satisfying w(0) = 0 and |w(z)| < 1, such thatf(z) = g(w(z)), z ∈ U . We denote this

subordination as f(z) ≺ g(z) or (f ≺ g), z ∈ U .

The basic idea in proving our result is the following lemma due to Jack (1) (also, due to Miller

and Mocanu (2)).

Lemma 1.1 (1) Let ω(z) be analytic in U with ω(0) = 0. Then if |ω(z)| attains its maximum

value on the circle |z| = r at a point z0 ∈ U , then we have z0ω
′(z0) = kω(z0), where k ≥ 1 is a

real number.
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2 Main Results

In the present paper, we follow similar works done by Shiraishi and Owa (5) and Ochiai et al.

(3), we derive the following result:

Theorem 2.1 If f ∈ A satisfies

<{z(Iµ,sf(z))′

Iµ,sf(z)
} <

α− 3
2(α− 1)

, z ∈ U

for some α (−1 < α ≤ 0), then

Iµ,sf(z)
z

≺ 1 + αz

1− z
, z ∈ U.

This implies that

<{Iµ,sf(z)
z

} >
1− α

2
.

Proof. Let us define the function ω(z) by

Iµ,sf(z)
z

=
1− αω(z)
1− ω(z)

, (ω(z) 6= 1).

Clearly, ω(z) is analytic in U and ω(0) = 0. We want to prove that |ω(z)| < 1 in U . Since

z(Iµ,sf(z))′

Iµ,sf(z)
=
−αzω′(z)
1− αω(z)

+
zω′(z)

1− ω(z)
+ 1,

we see that

<{z(Iµ,sf(z))′

Iµ,sf(z)
} = <{−αzω′(z)

1− αω(z)
+

zω′(z)
1− ω(z)

+ 1}

<
α− 3

2(α− 1)
( z ∈ U)

for −1 < α ≤ 0. If there exists a point z0 ∈ U such that

max
|z| ≤ |z0|

|ω(z)| = |ω(z0)| = 1,

then Lemma 1.1, gives us that ω(z0) = eiθ and z0ω
′(z0) = kω(z0), k ≥ 1. Thus we have

z0(Iµ,sf(z0))′

Iµ,sf(z0)
=
−αz0ω

′(z0)
1− αω(z0)

+
z0ω

′(z0)
1− ω(z0)

+ 1

= 1 +
k

1− eiθ
− k

1− αeiθ
.
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If follows that

<{ 1
1− ω(z0)

} = <{ 1
1− eiθ

} =
1
2

and

<{ 1
1− αω(z0)

} = <{ 1
1− αeiθ

} =
1
2
− 1− α2

2(1 + α2 − 2α cos θ)
.

Therefore, we have

<{z0(Iµ,sf(z0))′

Iµ,sf(z0)
} = 1− k(α2 − 1)

2(1 + α2 − 2α cos θ)
.

This implies that, for −1 < α ≤ 0,

<{z0(Iµ,sf(z0))′

Iµ,sf(z0)
} ≥ 1 +

(1− α2)
2(α− 1)2

=
α− 3

2(α− 1)
.

This contradicts the condition in the theorem. Then, there is no z0 ∈ U such that |ω(z0)| = 1 for

all z ∈ U , that is
Iµ,sf(z)

z
≺ 1 + αz

1− z
, z ∈ U.

Furthermore, since

ω(z) =
Iµ,sf(z)

z − 1
Iµ,sf(z)

z − α
, z ∈ U

and |ω(z)| < 1 (z ∈ U), we conclude that

<{Iµ,sf(z)
z

} >
1− α

2
.

Taking α = 0 in the theorem, we have the following corollary:

Corollary 2.1 If f ∈ A satisfies

<{z(Iµ,sf(z))′

Iµ,sf(z)
} >

3
2
, z ∈ U,

then
Iµ,sf(z)

z
≺ 1

1− z
, z ∈ U

and

<{Iµ,sf(z)
z

} >
1
2

, z ∈ U.
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Theorem 2.2 If f ∈ A satisfies

<{z(Iµ,sf(z))′

Iµ,sf(z)
} >

3α− 1
2(α− 1)

, z ∈ U,

for some α (−1 < α ≤ 0), then

z

Iµ,sf(z)
≺ 1 + z

1− z
, z ∈ U,

and ∣∣∣∣
Iµ,sf(z)

z
− 1

1− α

∣∣∣∣ <
1

1− α
, z ∈ U.

This implies that

<{Iµ,sf(z)
z

} > 0, z ∈ U.

Proof. Let us define the function ω(z) by

z

Iµ,sf(z)
=

1− αω(z)
1− ω(z)

, ω(z) 6= 1 . (4)

Then, we have that ω(z) is analytic in U and ω(0) = 0. We want to prove that |ω(z)| < 1 in U .

Differentiating Eq. (4) , we obtain

z(Iµ,sf(z))′

Iµ,sf(z)
=
−zω′(z)
1− ω(z)

+
αzω′(z)

1− αω(z)
+ 1

and, hence

<{z(Iµ,sf(z))′

Iµ,sf(z)
} = <{−zω′(z)

1− ω(z)
+

αzω′(z)
1− αω(z)

+ 1}

>
3α− 1

2(α− 1)
, z ∈ U,

for (−1 < α ≤ 0). If there exists a point (z0 ∈ U) such that Lemma 1.1, gives us that ω(z0) = eiθ

and z0ω
′(z0) = kω(z0), k ≥ 1. Thus we have

z0(Iµ,sf(z0))′

Iµ,sf(z0)
=
−z0ω

′(z0)
1− ω(z0)

+
αz0ω

′(z0)
1− αω(z0)

+ 1

= 1− k

1− eiθ
+

k

1− αeiθ
.

Therefore, we have

<{z0(Iµ,sf(z0))′

Iµ,sf(z0)
} = 1 +

k(α2 − 1)
2(1 + α2 − 2α cos θ)

.
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This implies that, for −1 < α ≤ 0,

<{z0(Iµ,sf(z0))′

Iµ,sf(z0)
} = 1− k(1− α2)

2(1 + α2 − 2α cos θ)
.

≤ 3α− 1
2(α− 1)

.

This contradicts the condition in the theorem. Hence, there is no z0 ∈ U such that |ω(z0)| = 1

for all z ∈ U , that is
z

Iµ,sf(z)
≺ 1 + z

1− z
, z ∈ U.

Furthermore, since

ω(z) =
1− Iµ,sf(z)

z

1− α
Iµ,sf(z)

z

, z ∈ U

and |ω(z)| < 1 (z ∈ U), we conclude that
∣∣∣∣
Iµ,sf(z)

z
− 1

1− α

∣∣∣∣ <
1

1− α
, z ∈ U

which implies that

<{Iµ,sf(z)
z

} > 0, z ∈ U,

we complete the proof of the theorem. By setting α = 0 in Theorem 2.2, we readily obtain the

following:

Corollary 2.2 If f ∈ A satisfies

<{z(Iµ,sf(z))′

Iµ,sf(z)
} >

1
2
, z ∈ U,

then
z

Iµ,sf(z)
≺ 1 + z

1− z
, z ∈ U

and ∣∣∣∣
Iµ,sf(z)

z
− 1

∣∣∣∣ < 1, z ∈ U.

Theorem 2.3 If f ∈ A satisfies

<{z(Iµ,sf(z))′

Iµ,sf(z)
} <

α(2− γ)− (2 + γ)
2(α− 1)

, z ∈ U,
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for some α (−1 < α ≤ 0) and 0 < γ ≤ 1, then

(
Iµ,sf(z)

z
)

1
γ ≺ 1 + αz

1− z
, z ∈ U

This implies that

<{Iµ,sf(z)
z

} 1
γ >

1− α

2
, z ∈ U.

Proof. Let us define the function ω(z) by

Iµ,sf(z)
z

= (
1− αω(z)
1− ω(z)

)γ , ω(z) 6= 1.

Clearly, ω(z) is analytic in U and ω(0) = 0. We want to prove that |ω(z)| < 1 in U . Since

z(Iµ,sf(z))′

Iµ,sf(z)
= γ(

zω′(z)
1− ω(z)

− αzω′(z)
1− αω(z)

) + 1

we see that

<{z(Iµ,sf(z))′

Iµ,sf(z)
} = <{γ(

zω′(z)
1− ω(z)

− αzω′(z)
1− αω(z)

) + 1}

<
α(2− γ)− (2 + γ)

2(α− 1)
, z ∈ U

for α (−1 < α ≤ 0) and 0 < γ ≤ 1. If there exists a point (z0 ∈ U) such that

max
|z| ≤ |z0|

|ω(z)| = |ω(z0)| = 1,

then Lemma 1.1, gives us that ω(z0) = eiθ and z0ω
′(z0) = kω(z0), k ≥ 1. Thus we have

z0(Iµ,sf(z0))′

Iµ,sf(z0)
= γ(

z0ω
′(z0)

1− ω(z0)
− αz0ω

′(z0)
1− αω(z0)

) + 1

= 1 +
k

1− eiθ
− k

1− αeiθ

Therefore, we have

<{z0(Iµ,sf(z0))′

Iµ,sf(z0)
} = 1 +

γk(1− α2)
2(1 + α2 − 2α cos θ)

.

This implies that, for α (−1 < α ≤ 0) and 0 < γ ≤ 1

<{z0(Iµ,sf(z0))′

Iµ,sf(z0)
} ≥ α(2− γ)− (2 + γ)

2(α− 1)
.
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This contradicts the condition in the theorem. Hence, there is no z0 ∈ U such that |ω(z0)| = 1

for all z ∈ U , that is

(
Iµ,sf(z)

z
)

1
γ ≺ 1− αz

1− z
, z ∈ U.

Furthermore, since

ω(z) =
( Iµ,sf(z)

z )
1
γ − 1

( Iµ,sf(z)
z )

1
γ − α

,

and |ω(z)| < 1 (z ∈ U), we conclude that

<{Iµ,sf(z)
z

} 1
γ >

1− α

2
, z ∈ U,

we complete the proof of the theorem.
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