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Abstract

In this paper, we study inextensible flows of developable surfaces associated with focal
curves of spacelike curves with timelike binormal in Minkowski 3-space E3

1. We show that if
flow of this developable surface is inextensible then we characterize this surface in terms of
curvatures of spacelike curve in Minkowski 3-space E3

1.
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1 Preliminaries

By the 20th century, researchers discovered the bridge between theory of relativity and Lorentzian

manifolds in the sense of differential geometry. Since, they adapted the geometrical models to

relativistic motion of charged particles. Consequently, the theory of the curves has been one of

the most fascinating topic for such modeling process. As it stands, the Frenet-Serret formalism

of a relativistic motion describes the dynamics of the charged particles.

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the standard flat metric

given by

g = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1.

Since g is an indefinite metric, recall that a vector v ∈ E3
1 can have one of three Lorentzian

causal characters: it can be spacelike if g (v, v) > 0 or v = 0, timelike if g (v, v) < 0 and null

(lightlike) if g (v, v) = 0 and v 6= 0. Similarly, an arbitrary curve γ = γ (s) in E3
1 can locally be

spacelike, timelike or null (lightlike), if all of its velocity vectors γ′ (s) are respectively spacelike,
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timelike or null (lightlike), if all of its velocity vectors γ′ (s) are, respectively, spacelike, timelike

or null (lightlike), respectively.

Minkowski space is originally from the relativity in Physics. In fact, a timelike curve corre-

sponds to the path of an observer moving at less than the speed of light, a null curves correspond

to moving at the speed of light and a spacelike curves to moving faster than light.

Denote by {T,N,B} the moving Frenet–Serret frame along the curve γ in the space E3. For

an arbitrary curve γ with first and second curvature, κ and τ in the space E3
1, the following

Frenet–Serret formulae is given

∇TT = κN

∇TN = −κT + τB

∇TB = τN,

where

g (T,T) = 1, g (N,N) = 1, g (B,B) = −1,

g (T,N) = g (T,B) = g (N,B) = 0.

2 Inextensible Flows of Developable Surfaces Associated with Fo-
cal Curve of Spacelike Curve with Timelike Binormal in the E3

1

For a unit speed curve γ, the curve consisting of the centers of the osculating spheres of γ is called

the parametrized focal curve of γ. The hyperplanes normal to γ at a point consist of the set of

centers of all spheres tangent to γ at that point. Hence the center of the osculating spheres at

that point lies in such a normal plane. Therefore, denoting the focal curve by Cγ , we can write

Cγ(s) = (γ + c1T + c2N)(s), (3.1)

where the coefficients c1, c2 are smooth functions of the parameter of the curve γ, called the first

and second focal curvatures of γ, respectively. Further, the focal curvatures c1, c2 are defined by

c1 =
1
κ

, c2 = −c′1
τ

, κ 6= 0, τ 6= 0. (3.2)
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On the other hand, a ruled surface in E3
1 is (locally) the map X(γ,δ) : I × R→ E3

1 defined by

X(γ,δ) (s, u) = γ (s) + uδ (s) , (3.3)

where γ : I −→ E3
1, δ : I −→ E3

1\{0} are smooth mappings and I is an open interval. We call

the base curve and the director curve. The straight lines u → γ (s) + uδ (s) are called rulings of

X(γ,δ).

Definition 3.1. A smooth surface X(γ,δ) is called a developable surface if its Gaussian

curvature K vanishes everywhere on the surface.

Definition 3.2. Let γ : I −→ E3
1 be a unit speed curve. We define the following developable

surface

X(Cγ ,γ′) (s, u) = Cγ(s) + uγ′ (s) , (3.4)

where Cγ(s) is focal curve.

Definition 3.3. (see [8]) A surface evolution X(s, u, t) and its flow
∂X

∂t
are said to be

inextensible if its first fundamental form {E, F,G} satisfies

∂E

∂t
=

∂F

∂t
=

∂G

∂t
= 0. (3.5)

This definition states that the surface X(s, u, t) is, for all time t, the isometric image of the

original surface X(s, u, t0) defined at some initial time t0. For a developable surface, X(s, u, t)

can be physically pictured as the parametrization of a waving flag. For a given surface that is

rigid, there exists no nontrivial inextensible evolution.

Definition 3.4. We can define the following one-parameter family of developable ruled

surface

X (s, u, t) = Cγ (s, t) + uγ′ (s, t) . (3.6)

Theorem 3.5. Let X is the developable surface associated with focal curve in E3
1, then

∂X

∂t
is inextensible then
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[
2
∂c1

∂s
+ uκ

] [
2

∂2c1

∂s∂t
+ u

∂κ

∂t

]
=

[(τ

κ

)
+

∂c2

∂s

] [
∂

∂t

(τ

κ

)
+

∂2c2

∂s∂t

]
. (3.7)

Proof. Assume that X (s, u, t) be a one-parameter family of developable surface. We show

that
∂X

∂t
is inextensible.

Xs (s, u, t) =
∂Cγ (s, t)

∂s
+ u

∂γ′ (s, t)
∂s

=
(

2
∂c1

∂s
+ uκ

)
N +

(
τ

κ
+

∂c2

∂s

)
B

Xu (s, u, t) = γ′ (s, t) .

(3.8)

If we compute first fundamental form {E, F, G}, we have

E = 〈Xs, Xs〉 =
(

2
∂c1

∂s
+ uκ

)2

−
(

τ

κ
+

∂c2

∂s

)2

,

F = 〈Xs, Xu〉 = 0,
G = 〈Xu, Xu〉 = 1.

(3.9)

Moreover, from above equations, it results that
∂E

∂t
=

[
2
∂c1

∂s
+ uκ

]
∂

∂t

[
2
∂c1

∂s
+ uκ

]
(3.10)

−
[
τ

κ
+

∂c2

∂s

]
∂

∂t

[
τ

κ
+

∂c2

∂s

]
= 0,

and

∂F

∂t
= 0, (3.11)

∂G

∂t
= 0.

Then, taking into account (3.10), we have (3.7). Thus, we complete the proof of the theorem.

Corollary 3.6. If γ is a spacelike general helix with timelike binormal in E3
1, then the flow

of
∂X

∂t
is inextensible.

[
2
∂c1

∂s
+ u

τ

ρ

] [
2

∂2c1

∂s∂t
+

u

ρ

∂τ

∂t

]
−

[
ρ +

∂c2

∂s

]
∂2c2

∂s∂t
= 0, (3.12)
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where ρ = τ
κ .

Theorem 3.7. Let X is the developable surface associated with focal curve in E3
1 . If flow

of this developable surface is inextensible then this surface is minimal if and only if
(

2
∂2c1

∂s2
+ u

∂κ

∂s
+ τ

(
f +

∂c2

∂s

)) (
τ

κ
+

∂c2

∂s

)
(3.13)

+
[(

2
∂c1

∂s
+ uκ

)
τ +

(
∂f

∂s
+

∂2c2

∂s2

)](
2
∂c1

∂s
+ uκ

)
= 0,

where

f =
(

2
∂c1

∂s
+ uκ

)
, g =

(
τ

κ
+

∂c2

∂s

)
.

Proof. Assume that X (s, u, t) = Cγ (s, t)+uγ′ (s, t) be a one-parameter family of developable

ruled surface.

Firstly, we suppose

f =
(

2
∂c1

∂s
+ uκ

)
, g =

(
τ

κ
+

∂c2

∂s

)
. (3.14)

Then, we use above equations and the system (3.8), we obtain

Xss (s, u, t) = −κft +
(

∂f

∂s
+

∂c2

∂s

)
n1 +

(
fτ +

∂g

∂s

)
n2,

Xsu (s, u, t) = κn1,

Xuu (s, u, t) = 0.

On the other hand, the normal of surface is

~n =
Xs ×Xu

‖Xs ×Xu‖ .

If we use above equations, then components of second fundamental form of developable surface
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are

h11 =

(
2∂2c1

∂s2 + u∂κ
∂s + τ

(
f + ∂c2

∂s

))(
τ
κ + ∂c2

∂s

)
√
−

(
2∂c1

∂s + uκ
)2

+
(

τ
κ + ∂c2

∂s

)2

+

[(
2∂c1

∂s + uκ
)

τ +
(

∂f
∂s + ∂2c2

∂s2

)](
2∂c1

∂s + uκ
)

√
−

(
2∂c1

∂s + uκ
)2

+
(

τ
κ + ∂c2

∂s

)2
,

h12 =
τ + κ∂2c2

∂s2√
−

(
2∂c1

∂s + uκ
)2

+
(

τ
κ + ∂c2

∂s

)2
,

h22 = 0.

Also, components of metric

g11 =
(

2
∂c1

∂s
+ uκ

)2

−
(

τ

κ
+

∂c2

∂s

)2

,

g12 = 0,

g22 = 1.

So, the mean curvature of one-parameter family of developable surface X (s, u, t) is

H = ∓

(
2∂2c1

∂s2 + u∂κ
∂s + τ

(
f + ∂c2

∂s

)) (
τ
κ + ∂c2

∂s

)

2
((

τ
κ + ∂c2

∂s

)2
−

(
2∂c1

∂s + uκ
)2

) 3
2

±

[(
2∂c1

∂s + uκ
)

τ +
(

∂f
∂s + ∂2c2

∂s2

)] (
2∂c1

∂s + uκ
)

2
((

τ
κ + ∂c2

∂s

)2
−

(
2∂c1

∂s + uκ
)2

) 3
2

.

This developable surface is minimal if and only if
(

2
∂2c1

∂s2
+ u

∂κ

∂s
+ τ

(
f +

∂c2

∂s

)) (
τ

κ
+

∂c2

∂s

)

+
[(

2
∂c1

∂s
+ uκ

)
τ +

(
∂f

∂s
+

∂2c2

∂s2

)](
2
∂c1

∂s
+ uκ

)
= 0,

which proves the theorem.
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