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Inclusion Properties of Certain Subclasses of Analytic Functions
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Abstract

The purpose of the present paper is to introduce several new classes of analytic functions
and investigate various inclusion properties of these classes. Some interesting applications of
integral operators are also considered.
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1 Introduction and preliminaries

Let A denote the class of analytic functions f in the open unit disk U = {z : |z| < 1} normalized

by f(0) = f ′(0)− 1 = 0. Thus each f ∈ A has a Taylor series representation

f(z) = z +
∞∑

k=2

akz
k· (1)

For two functions f and g analytic in U, we say that the function f is subordinate to g in U and

write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w(z) which (by definition) is analytic in U with

w(0) = 0 and |w(z)| < 1,

such that

f(z) = g(w(z)) z ∈ U.
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We denote by ΛS(ξ), ΛK(ξ) and ΛC(ξ, ρ) the subclasses of A consisting of all analytic functions

which are, respectively, starlike of order ξ, convex of order ξ and close-to-convex of order ρ and

type ξ in U [8, 12].

Let N be the class of all functions φ which are analytic and univalent in U and for which φ(U) is

convex with φ(0) = 1 and <φ(z) > 0 (z ∈ U).

Let f, g ∈ A where f and g is defined by

f(z) = z +
∞∑

k=2

akz
k, g(z) = z +

∞∑

k=2

bkz
k·

Then the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) = z +
∞∑

k=2

akbkz
k·

Making use of the subordination’s principle between analytic functions, we introduce the sub-

classes ΛS(ξ, φ), ΛK(ξ, φ) and ΛC(ξ, ρ, φ, ψ) of the class A for 0 ≤ ξ, ρ < 1 and φ, ψ ∈ N, which

are defined by

ΛS(ξ, φ) =

{
z ∈ A :

1
1− ξ

(
zf ′(z)
f(z)

− ξ

)
≺ φ(z), (z ∈ U)

}
,

ΛK(ξ, φ) =

{
z ∈ A :

1
1− ξ

({
1 +

zf ′′(z)
f ′(z)

}
− ξ

)
≺ φ(z), (z ∈ U)

}
,

and

ΛC(ξ, ρ, φ, ψ) =

{
z ∈ A : ∃g ∈ ΛS(ξ, φ) ∧ 1

1− ρ

(
zf ′(z)
g(z)

− ρ

)
≺ ψ(z), (z ∈ U)

}
·

For a function f ∈ A, authors have introduced the following differential operator in [7] such that

D0f(z) = f(z),

D1
λ(α, β, µ)f(z) = (

α− µ + β − λ

α + β
)f(z) + (

µ + λ

α + β
)zf ′(z),

D2
λ(α, β, µ)f(z) = D(D1

λ(α, β, µ)f(z)),
...

Dn
λ(α, β, µ)f(z) = D(Dn−1

λ (α, β, µ)f(z))· (2)
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If f is given by (1) then from (2) we have

Dn
λ(α, β, µ)f(z) = z +

∞∑

k=2

(α + (µ + λ)(k − 1) + β

α + β

)n
akz

k (3)

(f ∈ A,α, β, µ, λ ≥ 0, α + β 6= 0, n ∈ No)

By specializing the parameters of Dn
λ(α, β, µ)f(z) we get the following differential operators. If

we substitute

• β = 0, we get Dnf(z) = z +
∑∞

k=2(
α+(µ+λ)(k−1)

α )nakz
k

of differential operator given by Darus and Faisal [9].

• β = 1, µ = 0, we get Dnf(z) = z +
∑∞

k=2(
α+λ(k−1)+1

α+1 )nakz
k

of differential operator given by Aouf et al. [1].

• α = 1, β = o, and µ = 0, we get Dnf(z) = z +
∑∞

k=2(1 + λ(k − 1))nakz
k

of differential operator given by Al-Oboudi [2].

• α = 1, β = o, µ = 0 and λ = 1, we get Dnf(z) = z +
∑∞

k=2(i)
nakz

k

of Sălăgean’s differential operator [3].

• α = 1, β = 1, λ = 1 and µ = 0, we get Dnf(z) = z +
∑∞

k=2(
k+1
2 )nakz

k

of differential operator given by Uralegaddi and Somanatha [4].

• β = 1, λ = 1 and µ = 0, we get Dnf(z) = z +
∑∞

k=2(
k+α
α+1 )nakz

k

of differential operator given by Cho and Srivastava [5, 6].

Next, by using the operator Dn
λ(α, β, µ)f(z), we introduce the following subclasses of analytic

functions for 0 ≤ ξ, ρ < 1 and φ, ψ ∈ N:

ΛSn,λ
α,β(ξ, φ, µ) =

{
z ∈ A : Dn

λ(α, β, µ)f(z) ∈ ΛS(ξ, φ)

}
,

ΛKn,λ
α,β(ξ, φ, µ) =

{
z ∈ A : Dn

λ(α, β, µ)f(z) ∈ ΛK(ξ, φ)

}
,

ΛCn,λ
α,β(ξ, ρ, φ, ψ, µ) =

{
z ∈ A : Dn

λ(α, β, µ)f(z) ∈ ΛC(ξ, ρ, φ, ψ)

}
·
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We also note that

f(z) ∈ ΛKn,λ
α,β(ξ, φ, µ) ⇔ −zf ′(z) ∈ ΛSn,λ

α,β(ξ, φ, µ)· (4)

In particular, we set

ΛSn,λ
α,β(ξ;

1 + Az

1 + Bz
, µ) = ΛSn,λ

α,β(ξ;A, B, µ) (−1 < B < A ≤ 1)

and

ΛKn,λ
α,β(ξ;

1 + Az

1 + Bz
, µ) = ΛKn,λ

α,β(ξ; A,B, µ) (−1 < B < A ≤ 1)·

Next we will investigate various inclusion relationships as well as integral preserving properties

for the subclasses of analytic functions newly introduced above.

2 Inclusion Relationships Associated with Operator Dn
λ(α, β, µ)

First we will state the following lemma which we need for our main results.

Lemma 2.1. [10] Let φ be convex univalent in U with φ(0) = 1 and <{
κφ(z)+ν

}
> 0 (κ, ν ∈ C)·

If p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

κp(z) + ν
≺ φ(z) (z ∈ U),

implies

p(z) ≺ φ(z) (z ∈ U)·

Lemma 2.2. [11] Let φ be convex univalent in U and ω be analytic in U with <{
ω(z)

} ≥ 0. If

p is analytic in U with p(0) = φ(0), then

p(z) + ω(z)zp′(z) ≺ φ(z) (z ∈ U),

implies

p(z) ≺ φ(z) (z ∈ U)·

Theorem 2.3. If f ∈ A and φ ∈ N with <{
φ(z)

}
< ξ − 1 + α+β

µ+λ/1− ξ. Then

ΛSn+1,λ
α,β

(
ξ, φ, µ

)
⊂ ΛSn,λ

α,β

(
ξ, φ, µ

)
⊂ ΛSn−1,λ

α,β

(
ξ, φ, µ

)
·



70 Maslina Darus and Imran Faisal

Proof Let f(z) ∈ ΛSn+1,λ
α,β (ξ, φ, µ) and set

p(z) =
1

1− ξ

(
z(Dn

λ(α, β, µ)f(z))′

Dn
λ(α, β, µ)f(z)

− ξ

)
, (5)

where p is analytic in U with p(0) = 1. Simultaneously applying (3) and (5) we get

α + β

µ + λ

(
Dn+1

λ (α, β, µ)f(z)
Dn

λ(α, β, µ)f(z)

)
= −

(
1− α + β

µ + λ

)
+

(
ξ + (1− ξ)p(z)

)
(6)

By a simple calculation with (5) and (6), we obtain

1
1− ξ

(
−z(Dn+1

λ (α, β, µ)f(z))′

Dn+1
λ (α, β, µ)f(z)

− ξ

)
= p(z) +

zp′(z)

(1− ξ)p(z) + ξ − 1 + α+β
µ+λ

(z ∈ U) (7)

Since <{
φ(z)

}
< ξ − 1 + α+β

µ+λ/1− ξ implies <{
(1− ξ)p(z) + ξ − 1 + α+β

µ+λ

}
> 0 (z ∈ U)

Applying Lemma 2.1 to (7), it follows that f(z) ∈ ΛSn,λ
α,β(ξ, φ, µ)·

Theorem 2.4. If f ∈ A and φ ∈ N with <{
φ(z)

}
< ξ − 1 + α+β

µ+λ/1− ξ. Then

ΛKn+1,λ
α,β

(
ξ, φ, µ

)
⊂ ΛKn,λ

α,β

(
ξ, φ, µ

)
⊂ ΛKn−1,λ

α,β

(
ξ, φ, µ

)
·

Proof. Applying (4) and Theorem 2.3 we conclude that

f ∈ ΛKn+1,λ
α,β

(
ξ, φ, µ

)
⇒ −zf ′ΛSn+1,λ

α,β

(
ξ, φ, µ

)
⊂ ΛSn,λ

α,β

(
ξ, φ, µ

)
⇒

−zf ′ ∈ ΛSn,λ
α,β

(
ξ, φ, µ

)
⇔ f ∈ ΛKn,λ

α,β

(
ξ, φ, µ

)
·

Which proves Theorem 2.4.

Taking

φ(z) =
1 + Az

1 + Bz
, (−1 < B < A ≤ 1)

in Theorems 2.3 and 2.4, we have the following corollary:

Corollary:2.5. Let (1 + A)/(1 + B) < ξ − 1 + α+β
µ+λ/1− ξ for −1 < B < A ≤ 1, then

ΛSn+1,λ
α,β

(
ξ, A,B, µ

)
⊂ ΛSn,λ

α,β

(
ξ, A,B, µ

)
⊂ ΛSn−1,λ

α,β

(
ξ,A, B, µ

)
·
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ΛKn+1,λ
α,β

(
ξ, A,B, µ

)
⊂ Σ1K

n,λ
α,β

(
ξ, A,B, µ

)
⊂ ΛKn−1,λ

α,β

(
ξ, A, B, µ

)
·

Theorem 2.6. If f ∈ A and φ, ψ ∈ N, 0 ≤ ξ, ρ < 1 with <{
φ(z)

}
< ξ − 1 + α+β

µ+λ/1− ξ. Then

ΛCn+1,λ
α,β (ξ, ρ, φ, ψ, µ) ⊂ ΛCn,λ

α,β(ξ, ρ, φ, ψ, µ) ⊂ ΛCn−1,λ
α,β (ξ, ρ, φ, ψ, µ)·

Proof. To prove the inclusion, let f(z) ∈ ΛCn+1,λ
α,β (ξ, ρ, φ, ψ, µ) then by definition there exist a

function g(z) ∈ ΛSn+1,λ
α,β

(
ξ, φ, µ

)
such that

1
1− ρ

(
z(Dn+1

λ (α, β, µ)f(z))′

Dn+1
λ (α, β, µ)g(z)

− ρ

)
≺ ψ(z) (z ∈ U)·

We suppose that

p(z) =
1

1− ρ

(
z(Dn

λ(α, β, µ)f(z))′

Dn
λ(α, β, µ)g(z)

− ρ

)
(8)

where p is analytic in U with p(0) = 1. Using the following equation

(
α + β

µ + λ
)(Dn+1

λ (α, β, µ)f(z)) = z(Dn
λ(α, β, µ)f(z))′ − (1− α + β

µ + λ
)(Dn

λ(α, β, µ)f(z)),

we get

1
1− ρ

(
z(Dn+1

λ (α, β, µ)f(z))′

Dn+1
λ (α, β, µ)g(z)

− ρ

)
=

1
1− ρ

( z(Dn
λ(α,β,µ)zf ′(z))′

Dn
λ(α,β,µ)g(z) + (α+β

µ+λ − 1)( z(Dn
λ(α,β,µ)f(z))′

Dn
λ(α,β,µ)g(z) )

z(Dn
λ(α,β,µ)g(z))′

Dn
λ(α,β,µ)g(z) + (α+β

µ+λ − 1)
− ρ

)
· (9)

Since g(z) ∈ ΛSn+1,λ
α,β

(
ξ, φ, µ

)
⊂ ΛSn,λ

α,β

(
ξ, φ, µ

)
, by using Theorem 2.3, we set

q(z) =
1

1− ξ

(
z(Dn

λ(α, β, µ)g(z))′

Dn
λ(α, β, µ)g(z)

− ξ

)
· (10)

Then, by virtue of (8), (9) and (10), we get

1
1− ρ

(
z(Dn+1

λ (α, β, µ)f(z))′

Dn+1
λ (α, β, µ)g(z)

− ρ

)
= p(z) +

zp′(z)

(1− ξ)q(z) + ξ − 1 + α+β
µ+λ

· (11)
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Since ξ > 0 and q ≺ φ in U with assumption for φ, ψ ∈ N and <{
(1− ξ)q(z) + ξ− 1 + α+β

µ+λ

}
> 0·

Hence, by taking

ω(z) =
1

(1− ξ)q(z) + ξ − 1 + α+β
µ+λ

and and applying Lemma 2.2, we can show that p ≺ ψ in U, so that f(z) ∈ ΛCn,λ
α,β(ξ, ρ, φ, ψ, µ)·

Hence proved.

3 Integral-Preserving Properties

In this section, we present several integral-preserving properties for the subclass of analytic func-

tion defined above. We first recall a familiar integral operator Lc(f) defined by

Lc(f) =
c + 1
zc

∫ z

0
tc−1f(t)dt, (c > −1; f ∈ A)· (12)

which satisfies the following relationship:

z(Θn
1,λ(α, β, µ)Lcf(z))′ = (c + 1)(Θn

1,λ(α, β, µ)f(z))− (c)(Θn
1,λ(α, β, µ)Lcf(z))· (13)

Theorem:3.1. Let c > −1 and φ ∈ N with <{
φ(z)

}
< c + ξ/1 − ξ. If f(z) ∈ ΛSn,λ

α,β

(
ξ, φ, µ

)

then Lc(f) ∈ ΛSn,λ
α,β

(
ξ, φ, µ

)
·

Proof. Let f(z) ∈ ΛSn,λ
α,β

(
ξ, φ, µ

)
and set

p(z) =
1

1− ξ

(
z(Dn

λ(α, β, µ)Lcf(z))′

Dn
λ(α, β, µ)Lcf(z)

− ξ

)
· (14)

where p is analytic in U with p(0) = 1. Using (13) and (14) we have

(c + 1)
z(Dn

λ(α, β, µ)f(z))
Dn

λ(α, β, µ)Lcf(z)
= (c) + ξ + (1− ξ)p(z)· (15)

Then, by virtue of (13), (14) and (15), we get

1
1− ξ

(
z(Dn

λ(α, β, µ)f(z))′

Dn
λ(α, β, µ)f(z)

− ξ

)
= p(z) +

zp′(z)
(1− ξ)p(z) + c + ξ

· (16)
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Applying Lemma 2.1 to (16), we conclude that Lc(f) ∈ ΛSn,λ
α,β

(
ξ, φ, µ

)
· Similarly applying (4)

and Theorem 3.1, we have the following result:

Theorem:3.2. Let c > −1 and φ ∈ N with <{
φ(z)

}
< c + ξ/1 − ξ. If f(z) ∈ ΛKn,λ

α,β

(
ξ, φ, µ

)

then Lc(f) ∈ ΛKn,λ
α,β

(
ξ, φ, µ

)
·

Theorem:3.3. Let c > −1, φ, ψ ∈ N and 0 ≤ ξ, ρ < 1 with <{
φ(z)

}
< c + ξ/1 − ξ. If

f(z) ∈ ΛCn,λ
α,β(ξ, ρ, φ, ψ, µ) then Lc(f) ∈ ΛCn,λ

α,β(ξ, ρ, φ, ψ, µ)·

Proof. Let f(z) ∈ ΛCn,λ
α,β(ξ, ρ, φ, ψ, µ) so by definition there exist a function g(z) ∈ ΛSn,λ

α,β

(
ξ, φ, µ

)

such that

1
1− ρ

(
z(Dn

λ(α, β, µ)f(z))′

Dn
λ(α, β, µ)g(z)

− ρ

)
≺ ψ(z) (z ∈ U)·

We set

p(z) =
1

1− ρ

(
z(Dn

λ(α, β, µ)Lcf(z))′

Dn
λ(α, β, µ)Lcg(z)

− ρ

)
(17)

where p is analytic in U with p(0) = 1. Using (13) we get

(
z(Dn

λ(α, β, µ)f(z))′

Dn
λ(α, β, µ)g(z)

)
=

z(Dn
λ(α,β,µ)Lc,p(zf ′(z))′

Dn
λ(α,β,µ)Lc,pg(z) + (c) (Dn

λ(α,β,µ)Lc(zf ′(z))

Dn
λ(α,β,µ)Lc,pg(z)

z(Dn
λ(α,β,µ)Lc,p(g(z))′

Dn
λ(α,β,µ)Lc,pg(z) + c

· (18)

Since g(z) ∈ ΛSn,λ
α,β

(
ξ, φ, µ

)
implies Lcg ∈ ΛSn,λ

α,β

(
ξ, φ, µ

)
, by using Theorem 3.1, we have

q(z) =
1

1− ξ

(
z(Dn

λ(α, β, µ)Lcg(z))′

Dn
λ(α, β, µ)Lcg(z)

− ξ

)
. (19)

Then, by virtue of (17), (18) and (19), we get

1
1− ρ

(
z(Dn

λ(α, β, µ)f(z))′

Dn
λ(α, β, µ)g(z)

− ρ

)
= p(z) +

zp′(z)
(1− ξ)q(z) + ξ + c

·

Hence by using Lemma 2.2, we can show that p ≺ ψ in U, so that Lc(f) ∈ ΛCn,λ
α,β(ξ, ρ, φ, ψ, µ)·

Hence proved.
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