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Special motions for spacelike curve in Minkowski 3-space

Naser Masrouri and Yusuf Yayli

Abstract

Existence of acceleration pole points in special Frenet and Bishop motions for spacelike
curve with a spacelike binormal in Minkowski 3-space E3

1 are dependence into that, the curve
α is not a general helix or planar. The ratio of torsion and curvature is by taking as a constant
or non constant in our study. Then we show that, if the ratio of curvatures is constant, then
there is not acceleration pole points of motion.

AMS subject classifications. Primary 53A04; 53A17

1 Preliminaries

Let R3 be the real vector space with its usual vector structure. The Minkowski 3-space is the

metric space E3
1 = (R3, 〈, 〉L), where the metric 〈, 〉L is given by

〈x, y〉L = x1y1 + x2y2 − x3y3 : x = (x1, x2, x3), y = (y1, y2, y3)

The metric 〈, 〉L is called the Lorentzian metric [4, 6].

A vector x ∈ E3
1 is called:

i) Spacelike if 〈x, x〉L > 0 or x = 0,

ii) Timelike if 〈x, x〉L < 0,

iii) Null (lightlike) if 〈x, x〉L = 0 and x 6= 0.

Denote by {T,N, B} the moving Frenet frame and the moving Bishop frame along the regular

curve α = α(t) that are parameterized by the length- arc parameter t The Frenet trihedron

consists of the tangent vector T , the principle normal vector N and the binormal vector B, and

the Bishop trihedron consists of the tangent vector T , the 1st principle normal vector N1 and

2nd principle normal vector N2, which are three mutually orthogonal axes.
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If α is a spacelike curve with a spacelike binormal, then this set of orthogonal unit vectors, known

as the Frenet- serret frame has the following properties:

Ṫ = κN, Ṅ = κT + τB, Ḃ = τN

〈T, T 〉L = 1, 〈N, N〉L = −1, 〈B, B〉L = 1

[1,5,6]. In this formulas, the normal vector is N = Ṫ
κ , where κ =

√
−〈Ṫ , Ṫ 〉L is the curvature

of α. The binormal vector is B = T ∧L N , which is a spacelike vector and the torsion of α is

τ = 〈Ṅ , B〉.
The Bishop frame is an alternative approach to defining a moving frame that is well defined

even when the spacelike curve with a spacelike binormal has vanishing second derivative. We can

parallel transport an orthonormal frame along a spacelike curve with a spacelike binormal simply

by parallel transporting each component of the frame. The parallel transport frame is based on

the observation that, while T (t) for a given spacelike curve with a spacelike binormal model is

unique, we may choose any convenient arbitrary basis (N1(t), N2(t)) for the remainder of the

frame, so long as it is in the normal plane perpendicular to T (t) at each point. If the derivatives

of (N1(t), N2(t)) depend only on T (t) and not each other we can make N1(t) and N2(t) vary

smoothly throughout the path regardless of the curvature. Therefore, we have the alternative

frame equations:

Ṫ = κ1N1 − κ2N2, Ṅ1 = κ1T, Ṅ2 = κ2T

〈T, T 〉L = 1, 〈N, N〉L = −1, 〈N2, N2〉L = 1

κ(t) =
√∣∣κ2

1 − κ2
2

∣∣, τ(t) =
dθ(t)
dt

, θ(t) = arctanh

(
κ2

κ1

)

[2,3]. So that κ1 and κ2 effectively correspond to a Cartesian coordinate system for the polar

coordinates κ, θ with θ =
∫

τ(t)dt. The orientation of the parallel transport frame includes the

arbitrary choice of integration constant θ0, which disappears from τ (and hence from the Frenet

frame) due to the differentiation.

2 Introduction

In one parameter motion of a body in Lorentz-Minkowski 3-space is generated by the trans-

formation

f : E3
1 −→ E3

1
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X −→ f(X) = Y = AX + C (1)

Where A ∈ SO1(3) and X, Y, C are 3× 1 real matrices and

SO1(3) =



A ∈ R3

3

∣∣∣ detA = 1, AtεA = ε, ε =




1 0 0
0 1 0
0 0 −1








A, C are C∞ functions of a real parameter t,X and Y corresponding to the position vectors

of the same point X, with respect to the orthonormal coordinate systems of the moving space H

and the fixed space H0, respectively. At the initial time t = t0 we consider the coordinate system

of H0 and H are coincident [2,6].

In the special Frenet and Bishop motions, A matrix is [T N B] and [T N1 N2] respectively.

In this paper, we first find a geometrical meaning for det Ȧ, det Ä and detA
···
. The 1st order

velocity of a fixed point X is Ẏ = ȦX + Ċ and for the 2nd and 3rd order velocity of this point,

give us Ÿ = ÄX + C̈ and Y
···

= A
···

X + C
···

respectively.

Ẏ is the sliding velocity and Ÿ and Y
···

are the 1st and 2nd sliding acceleration of the point X

respectively. We will show that existence of the 1st and 2nd acceleration pole points by the

solution of the ÄX + C̈ = 0 and A
···

X + C
···

= 0 systems. The solution of these systems depend

on det Ä and detA
···
.

3 Acceleration Pole Points In Frenet Motion

Definition 3.1 The first derivation of (1), with respect to t, we have

Ẏ = ȦX + Ċ + AẊ

Where Ẏ is the absolute velocity, ȦX + Ċ is the sliding velocity and AẊ is the relative velocity

of the point X. The solution vector X of the system ȦX + Ċ = 0 is the position vector of the

point which may be considered as a fixed point of H0 and H at the same time t. These points are

called instantaneous pole points at the time t. The sliding velocity of a fixed point X in moving

space H is

Ẏ = ȦX + Ċ (2)

and for the 2nd order velocity (or the 1st order sliding acceleration) of this point, (2) gives us

Ÿ = ÄX + C̈ (3)



60 Naser Masrouri and Yusuf Yayli

and for the 3rd order velocity (or the 2nd sliding acceleration) of this point, (3) gives us

Y
···

= A
···

X + C
···

(4)

By using the Frenet formulas and

A =
[

T N B
]
, Ȧ =

[
Ṫ Ṅ Ḃ

]
, Ä =

[
T̈ N̈ B̈

]
, A

···
=

[
T
···

N
···

B
··· ]

we can give,



Ṫ

Ṅ

Ḃ


 =




0 κ 0
κ 0 τ
0 τ 0







T
N
B


 ,

det Ȧ =

∣∣∣∣∣∣

0 κ 0
κ 0 τ
0 τ 0

∣∣∣∣∣∣
.det A = 0.

Then the system ȦX + Ċ = 0 has not unique solution. So, the Frenet motion has not pole point.

3.1 1st acceleration pole points in Frenet motion

The discussion of existence of the 1st acceleration poles and the 1st acceleration axodes is

the discussion of the solution of the system

ÄX + C̈ = 0 (5)

The solution of the system of (5) depends on det Ä.

Theorem 3.2 The Spacelike curve with a spacelike binormal α(t) is not general helix; iff the

Frenet motion has a 1st acceleration pole point in the moving space H; X = −(Ä)−1C̈.

Proof. If {T, N, B} is an adapted Frenet frame, then we have

T̈ = κ2T + κ̇N + κτB

N̈ = κ̇T + (κ2 + τ2)N + τ̇N

B̈ = κτT + τ̇N + τ2B

So, we obtain



T̈

N̈

B̈


 =




κ2 κ̇ κτ
κ̇ (κ2 + τ2) τ̇
κτ τ̇ τ2







T
N
B


 .
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By using A = [T N B] ∈ SO1(3), we get

det Ä =

∣∣∣∣∣∣

κ2 κ̇ κτ
κ̇ (κ2 + τ2) τ̇
κτ τ̇ τ2

∣∣∣∣∣∣
= −

[
κ2

(τ

κ

)·]2
(6)

Obviously as a consequence of equation (6) we have the following:

det Ä = 0 ⇔ τ

κ
= constant

From this case we obtain that at any moment t, if the curve α(t) is a generalized helix then the

solution systems of (5) are not unique in fixed space H0. The Frenet motion Y = AX + C has

not the 1st acceleration pole point. If det Ä 6= 0 then α(t) is not general helix and Frenet motion

has a 1st acceleration pole point, X = −(Ä)−1C̈.

3.2 2nd acceleration pole points in Frenet motion

The discussion of existence of the 2nd acceleration pole points and the 2nd acceleration axodes

is the discussion of the solution of the system

A
···

X + C
···

= 0 (7)

Theorem 3.3 If the spacelike curve with a spacelike binormal curve α(t) is a generalized helix;

then the Frenet motion has not a 2nd acceleration pole point in fixed space H0.

Proof. If T, N and B is an adapted Frenet frame, then we have;

T
···

= (3κκ̇)T + (κ3 + κτ2 + κ̈)N + (κτ̇ + 2κ̇τ)B

N
···

= (κ3 + κτ2 + κ̈)T + 3(κκ̇ + τ τ̇)N + (τ3 + κ2τ + τ̈)B

B
···

= (2κτ̇ + κ̇τ)T + (τ3 + κ2τ + τ̈)N + (3τ τ̇)B

So, we obtain



T
···

N
···

B
···


 =




(3κκ̇) (κ3 + κτ2 + κ̈) (κτ̇ + 2κ̇τ)
(κ3 + κτ2 + κ̈) 3(κκ̇ + τ τ̇) (τ3 + κ2τ + τ̈)

(2κτ̇ + κ̇τ) (τ3 + κ2τ + τ̈) (3τ τ̇)







T
N
B


 .

By using det A = 1, we get

det A
···

= 3κ2
(τ

κ

)· [
−2κ2

(τ

κ

)·
(κκ̇ + τ τ̇)(κτ̇ − κ̇τ) + (κ2 + τ2)(κτ̈ − κ̈τ)

]
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− 3κ̇2

(
τ̇

κ̇

)·
(κτ̈ − κ̈τ) (8)

As a consequence of equation of (7) we have the following:

Because α(t) is a general helix, then we can write

(τ

κ

)·
= 0 and

(
τ̇

κ̇

)·
= 0

Thus detA
···
.

From this case we obtain, at any time t, the curve α(t) is a generalized helix, and the solution of

system (7) are not unique and in fixed space H0, the Frenet motion Y = AX + C has not the

2nd acceleration pole point.

4 Acceleration Pole Points In Bishop Motion

By using the Bishop formulas and

A =
[

T N1 N2

]
, Ȧ =

[
Ṫ Ṅ1 Ṅ2

]
,

Ä =
[

T̈ N̈1 N̈2

]
, A

···
=

[
T
···

N
···
1 N

···
2

]

we can give,



Ṫ

Ṅ1

Ṅ2


 =




0 κ1 −κ2

κ1 0 0
κ2 0 0







T
N1

N2


 ,

det Ȧ =

∣∣∣∣∣∣

0 κ1 −κ2

κ1 0 0
κ2 0 0

∣∣∣∣∣∣
= 0.

Then the system ȦX + Ċ = 0 has not unique solution. So, the Bishop motion has not pole point.

4.1 1st acceleration pole points in Bishop motion

Theorem 4.1 The spacelike curve with a spacelike binormal α(t) is not planar in the moving

space H iff The Bishop motion has a 1st acceleration pole point; X = −(Ä)−1C̈,
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Proof. If {T, N1, N2} is an adapted Bishop frame, then we have

T̈ = (κ2
1 − κ2

2)T + κ̇1N1 − κ̇2N2

N̈1 = κ̇1T + κ2
1N1 − κ1κ2N2

N̈2 = κ̇2T + κ1κ2N1 − κ2
2N2

So, we obtain



T̈

N̈1

N̈2


 =




(κ2
1 − κ2

2) κ̇1 −κ̇2

κ̇1 κ2
1 −κ1κ2

κ̇2 κ1κ2 −κ2
2







T
N1

N2




By using A =
[

T N1 N2

]
, we get

det Ä =

∣∣∣∣∣∣

(κ2
1 − κ2

2) κ̇1 −κ̇2

κ̇1 κ2
1 −κ1κ2

κ̇2 κ1κ2 −κ2
2

∣∣∣∣∣∣
=

[
κ2

1

(
κ2

κ1

)·]2

(9)

By using equations:

κ(t) =
√
|κ2

1 − κ2
2|, τ(t) =

dθ(t)
dt

, θ(t) = arctanh

(
κ2

κ1

)

we have,

κ2 =
∣∣κ2

1 − κ2
2

∣∣
κ2

κ1
= tanhθ ⇒

(
κ2

κ1

)·
= (1− tan2 hθ)

dθ

dt

⇒
(

κ2

κ1

)·
=

(
1− κ2

2

κ2
1

)
τ =

(
κ2

1 − κ2
2

κ2
1

)
τ

⇒
(

κ2

κ1

)·
= ±

(
κ2

κ2
1

)
τ

⇒ κ2
1

(
κ2

κ1

)·
= ±κ2τ (10)

Obviously as a consequence of equations (9) and (10) we have the following:

det Ä = κ4τ2 (11)

As a consequence of equation of (11) we have the following:

det Ä = 0 ⇔ τ = 0

From this case we obtain, the solution systems of (5) are not unique in fixed space H0 if and only

if, at any time t, the curve α(t) is a plane. So that, the Bishop motion Y = AX + C has not the

1st acceleration pole point.

If det Ä 6= 0 then α(t) is not plane.
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4.2 2nd acceleration pole points in Bishop motion

Theorem 4.2 The spacelike curve with a spacelike binormal α(t) is a plane ⇒ in fixed space H0,

the Bishop motion has not a 2nd acceleration pole point.

Proof. If T, N1 and N2 is an adapted Bishop frame, then we have;

T
···

= 3(κ1κ̇1 − κ2κ̇2)T + (κ3
1 − κ1κ

2
2 + κ̈1)N1 + (κ3

2 − κ2
1κ2 − κ̈2)N2

N
···
1 = (κ3

1 − κ1κ
2
2 + κ̈1)T + (3κ1κ̇1)N1 − (κ1κ̇2 + 2κ̇1κ2)N2

N
···
2 = (−κ3

2 + κ2
1κ2 + κ̈2)T + (κ2κ̇1 + 2κ̇2κ1)N1 − (3κ2κ̇2)N2


T
···

N
···
1

N
···
2


 =




3(κ1κ̇1 − κ2κ̇2) (κ3
1 − κ1κ

2
2 + κ̈1) (κ3

2 − κ2
1κ2 − κ̈2)

(κ3
1 − κ1κ

2
2 + κ̈1) (3κ1κ̇1) −(κ1κ̇2 + 2κ̇1κ2)

(−κ3
2 + κ2

1κ2 + κ̈2) (κ2κ̇1 + 2κ̇2κ1) −(3κ2κ̇2)







T
N1

N2




det A
···

= det(T
···

, N
···

, B
···

)

= 3(2κκ̇τ + κ2τ̇)
(
−κ4τ + κ̇2

1

(
κ̇2

κ̇1

)·)
+ 6κ5κ̇τ2 (12)

As a consequence of equation of (12) we have the following:

τ = 0 ⇒ detA
···

= 0

From this case we obtain, if at any time t, the curve α(t) is a plane, then the solution of system

(7) are not unique in fixed space H0 and the Bishop motion Y = AX + C has not the 2nd

acceleration pole point.
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