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Evolute curves of biharmonic curves in the special
three-dimensional φ-Ricci symmetric Para-Sasakian manifold P
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Abstract

In this paper, we study evolute curve of biharmonic curve in the special three-dimensional
φ−Ricci symmetric para-Sasakian manifold P. We characterize evolute curve of biharmonic
curve in terms of curvature and torsion of biharmonic curve in the special three-dimensional
φ−Ricci symmetric para-Sasakian manifold P. Finally, we find out explicit parametric equa-
tions of evolute curve of biharmonic curve.
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1 Introduction

In a different setting, Chen [5] defined biharmonic submanifolds M ⊂ En of the Euclidean space as

those with harmonic mean curvature vector field, that is ∆H = 0; where is the rough Laplacian,

and stated the following

Conjecture: Any biharmonic submanifold of the Euclidean space is harmonic, that is mini-

mal.

If the definition of biharmonic maps is applied to Riemannian immersions into Euclidean

space, the notion of Chen’s biharmonic submanifold is obtained, so the two definitions agree.

The non-existence theorems for the case of non-positive sectional curvature codomains, as

well as the

Generalized Chen’s conjecture: Biharmonic submanifolds of a manifold N with RiemN ≤
0 are minimal, encouraged the study of proper biharmonic submanifolds, that is submanifolds

such that the inclusion map is a biharmonic map, in spheres or another non-negatively curved

spaces [1, 2, 3, 5, 10].
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A smooth map φ : N −→ M is said to be biharmonic if it is a critical point of the bienergy

functional:

E2 (φ) =
∫

N

1
2
|T (φ)|2 dvh,

where T (φ) := tr∇φdφ is the tension field of φ

The Euler–Lagrange equation of the bienergy is given by T2(φ) = 0. Here the section T2(φ)

is defined by

T2(φ) = −∆φT (φ) + trR (T (φ), dφ) dφ, (1.1)

and called the bitension field of φ. Non-harmonic biharmonic maps are called proper biharmonic

maps.

In this paper, we study evolute curve of biharmonic curve in the special three-dimensional

φ−Ricci symmetric para-Sasakian manifold P. We characterize evolute curve of biharmonic curve

in terms of curvature and torsion of biharmonic curve in the special three-dimensional φ−Ricci
symmetric para-Sasakian manifold P. Finally, we find out explicit parametric equations of evolute

curve of biharmonic curve.

2 Special Three-Dimensional φ−Ricci Symmetric Para-Sasakian
Manifold P

An n-dimensional differentiable manifold M is said to admit an almost para-contact Riemannian

structure (φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is a

Riemannian metric on M such that

φξ = 0, η (ξ) = 1, g (X, ξ) = η (X) , (2.1)

φ2 (X) = X − η (X) ξ, (2.2)

g (φX, φY ) = g (X, Y )− η (X) η (Y ) , (2.3)

for any vector fields X, Y on M [1].

Definition 2.1. A para-Sasakian manifold M is said to be locally φ-symmetric if

φ2 ((∇W R) (X, Y ) Z) = 0,

for all vector fields X,Y, Z, W orthogonal to ξ [1].
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Definition 2.2. A para-Sasakian manifold M is said to be φ-symmetric if

φ2 ((∇W R) (X, Y ) Z) = 0,

for all vector fields X,Y, Z, W on M.

Definition 2.3. A para-Sasakian manifold M is said to be φ-Ricci symmetric if the Ricci

operator satisfies

φ2 ((∇XQ) (Y )) = 0,

for all vector fields X and Y on M and S(X, Y ) = g(QX,Y ).

If X, Y are orthogonal to ξ, then the manifold is said to be locally φ-Ricci symmetric.

We consider the three-dimensional manifold

P =
{(

x1, x2, x3
) ∈ R3 :

(
x1, x2, x3

) 6= (0, 0, 0)
}

,

where
(
x1, x2, x3

)
are the standard coordinates in R3. We choose the vector fields

e1 = ex1 ∂

∂x2
, e2 = ex1

(
∂

∂x2
− ∂

∂x3

)
, e3 = − ∂

∂x1
(2.4)

are linearly independent at each point of P. Let g be the Riemannian metric defined by

g (e1, e1) = g (e2, e2) = g (e3, e3) = 1,
g (e1, e2) = g (e2, e3) = g (e1, e3) = 0.

(2.5)

Let η be the 1-form defined by

η(Z) = g(Z, e3) for any Z ∈ χ(P).

Let be the (1,1) tensor field defined by

φ(e1) = e2, φ(e2) = e1, φ(e3) = 0. (2.6)

Then using the linearity of and g we have

η(e3) = 1, (2.7)

φ2(Z) = Z − η(Z)e3, (2.8)
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g (φZ, φW ) = g (Z, W )− η(Z)η(W ), (2.9)

for any Z, W ∈ χ(P). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost para-contact metric structure

on P.

Let ∇ be the Levi-Civita connection with respect to g. Then, we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The Riemannian connection ∇ of the metric g is given by

2g (∇XY, Z) = Xg (Y, Z) + Y g (Z, X)− Zg (X,Y )

−g (X, [Y, Z])− g (Y, [X, Z]) + g (Z, [X,Y ]) ,

which is known as Koszul’s formula.

Taking e3 = ξ and using the Koszul’s formula, we obtain

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

(2.10)

Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej , ek, el),

where the indices i, j, k and l take the values 1, 2 and 3.

R122 = −e1,, R133 = −e1,, R233 = −e2,

and

R1212 = R1313 = R2323 = 1. (2.11)

3 Biharmonic Curves in the Special Three-Dimensional φ−Ricci
Symmetric Para-Sasakian Manifold P

Biharmonic equation for the curve γ reduces to

∇3
TT−R (T,∇TT)T = 0, (3.1)

that is, γ is called a biharmonic curve if it is a solution of the equation (3.1).
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Let us consider biharmonicity of curves in the special three-dimensional φ−Ricci symmetric

para-Sasakian manifold P. Let {T,N,B} be the Frenet frame field along γ. Then, the Frenet

frame satisfies the following Frenet–Serret equations:

∇TT = κN,
∇TN = −κT + τB,
∇TB = −τN,

(3.2)

where κ is the curvature of γ and τ its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1,

g (T,N) = g (T,B) = g (N,B) = 0.

With respect to the orthonormal basis {e1, e2, e3}, we can write

T = T1e1 + T2e2 + T3e3,
N = N1e1 + N2e2 + N3e3,
B = T×N = B1e1 + B2e2 + B3e3.254

(3.3)

Theorem 3.1. γ : I −→ P is a biharmonic curve if and only if

κ = constant 6= 0,
κ2 + τ2 = 1,
τ = constant.

(3.4)

Proof. Using (3.1) and Frenet formulas (3.2), we have (3.4).

Theorem 3.2. All of biharmonic curves in the special three-dimensional φ−Ricci symmetric

para-Sasakian manifold P are helices.

4 Evolute Curve of Biharmonic Curve in the Special Three-Dimensional
φ−Ricci Symmetric Para-Sasakian Manifold P

Definition 4.1. Let unit speed curve γ : I −→ P and the curve β : I −→ P be given. For ∀s ∈ I,

the tangent at the point β(s) to the curve β passes through the tangent at the point γ(s) and

g (T∗ (s) ,T (s)) = 0. (4.1)

Then, β is called the evolute of the curve γ.
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Let the Frenet-Serret frames of the curves γ and β be {T,N,B} and {T∗,N∗,B∗}, respec-
tively.

Theorem 4.2. Let γ : I −→ P be a unit speed biharmonic curve and β its evolute curve on

P. Then, the parametric equations of β are

x1
β (s) = −s cosϕ + 1

κ2 (−sin2 ϕ

2
s2 + C1s + C2)

+
1
κ2

tan (τs + ζ) sin ϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) e−
sin2 ϕ

2
s2+C1s+C2

. (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

− 1
κ2

tan (τs + ζ) sin ϕe−s cos ϕ+C1 sin [ks + C] e−
sin2 ϕ

2
s2+C1s+C2((k sinϕ sin [ks + C]

+ cos ϕ sinϕ cos [ks + C]) + (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])) + C1,

x2
β (s) = − sin3 ϕ

κ2 − sin4 ϕ
e−s cos ϕ+C1([k+ cosϕ] cos [ks + C] + [−k+ cosϕ] sin [ks + C])

+
1
κ2

e
−

sin2 ϕ

2
s2+C1s+C2

(k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+
1
κ2

e
−

sin2 ϕ

2
s2+C1s+C2

(−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

− 1
κ2

tan (τs + ζ) (−sin2 ϕ

2
s2 + C1s + C2) sin ϕe−s cos ϕ+C1 sin [ks + C]

+
1
κ2

tan (τs + ζ) cos ϕe−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]) + C2,

x3
β (s) = − sin3 ϕ

κ2 − sin4 ϕ
e−s cos ϕ+C1(− cosϕ cos [ks + C] + [ks + C] sin [ks + C])

− 1
κ2

e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

+
1
κ2

tan (τs + ζ) cos ϕe−
sin2 ϕ

2
s2+C1s+C2((k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+ (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]))

+
1
κ2

tan (τs + ζ) sin ϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) (−sin2 ϕ

2
s2 + C1s + C2) + C3,

(4.2)

where C, C1, C2, C1, C2, C3 are constants of integration and k =
√

κ2−sin2 ϕ
sin ϕ .

Proof. Since γ is biharmonic, γ is a helix. So, without loss of generality, we take the axis of

γ is parallel to the vector e3. Then,

g (T, e3) = T3 = cosϕ, (4.3)

where ϕ is constant angle.
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The tangent of the curve β at the point β(s) is the line constructed by the vector T∗(s) .

The curve β(s) may be given as

β(s) = γ(s) + λN (s) + µB (s) . (4.4)

If we take the derivative (4.4), then we have

β′(s) = (1− λκ)T (s) +
(
λ′ − µτ

)
N (s) +

(
λτ + µ′

)
B (s) . (4.5)

Since the curve β is evolute of the curve γ, g (T∗ (s) ,T (s)) = 0. Then, we get

λ =
1
κ

. (4.6)

Using (4.5) and (4.6), we have

β′(s) =
(
λ′ − µτ

)
N (s) +

(
λτ + µ′

)
B (s) . (4.7)

From the (4.4) and (4.7), the vector field β′ is parallel to the vector field β − γ . Then, we

have

τ =
µλ′ − µ′λ
µ2 + λ2

=
[
arctan

(
−µ

λ

)]′
= constant.

If we take the integral the last equation, we get

arctan
(
−µ

λ

)
= τs + ζ, (4.8)

where ζ is a constant of integration.

From (4.8), we obtain

µ = −1
κ

tan (τs + ζ) . (4.9)

The tangent vector can be written in the following form

T = T1e1 + T2e2 + T3e3. (4.10)

On the other hand the tangent vector T is a unit vector, so the following condition is satisfied

T 2
1 + T 2

2 = 1− cos2 ϕ. (4.11)
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Noting that cos2 ϕ + sin2 ϕ = 1, we have

T 2
1 + T 2

2 = sin2 ϕ. (4.12)

The general solution of (4.12) can be written in the following form

T1 = sinϕ cosµ,
T2 = sinϕ sinµ,

(4.13)

where µ is an arbitrary function of s.

So, substituting the components T1, T2 and T3 in the equation (4.7), we have the following

equation

T = sin ϕ cosµe1 + sin ϕ sinµe2 + cosϕe3. (4.14)

Since |∇TT| = κ, we obtain

µ =

√
κ2 − sin2 ϕ

sinϕ
s + C, (4.15)

where C ∈ R.
Thus (4.14) and (4.15), imply

T = sin ϕ cos [ks + C] e1 + sin ϕ sin [ks + C] e2 + cos ϕe3,

where k =
√

κ2−sin2 ϕ
sin ϕ .

Using (2.4) in above equation, we obtain

T = (− cosϕ, sinϕex1
(sin [ks + C] + cos [ks + C]) , sinϕex1

sin [ks + C]). (4.16)

From third component of T, we have

dx1

ds
= − cosϕ,

dx2

ds
= sinϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) ,

dx3

ds
= C1 sinϕe−s cos ϕ+C1 cos [ks + C] .
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By direct calculations, we have

x1 (s) = −s cosϕ + C1,

x2 (s) = C2 − sin3 ϕ

κ2 − sin4 ϕ
e−s cos ϕ+C1([k+ cosϕ] cos [ks + C]

+ [−k+ cosϕ] sin [ks + C]),

x3 (s) = C3 − sin3 ϕ

κ2 − sin4 ϕ
e−s cos ϕ+C1(− cosϕ cos [ks + C]

+ [ks + C] sin [ks + C]),

(4.17)

where C1, C2, C3 are constants of integration.

Using (4.10), we have

∇TT =
(
T ′1 + T1T3

)
e1 +

(
T ′2 + T2T3

)
e2 +

(
T ′3 −

(
T 2

1 − T 2
2

))
e3. (4.18)

From (3.1) and (5.11), we get

∇TT = sinϕ (−k sin [ks + C] + cosϕ cos [ks + C]) e1

+ sinϕ (k cos [s + C] + cosϕ sin [ks + C]) e2

− sin2 ϕe3,

(4.19)

where k =
√

κ2−sin2 ϕ
sin ϕ .

We substitute (4.9) and (4.6) into (4.4), we get

β(s) = γ(s) +
1
κ
N (s)− 1

κ
tan (τs + ζ)B (s) . (4.20)

By the use of Frenet formulas (4.2), we get

N =
1
κ
∇TT

=
1
κ

[(k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C]) e1

+(−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]) e2

− sin2 ϕe3].

(4.21)

Substituting (2.4) in (4.21), we have

N =
1
κ

(−sin2 ϕ

2
s2 + C1s + C2.

.e−
sin2 ϕ

2
s2+C1s+C2 (k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

−e−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]))

(4.22)
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where C1, C2 are constants of integration.

T = (− cosϕ, sinϕex1
(sin [ks + C] + cos [ks + C]) , sinϕex1

sin [ks + C]). (4.23)

Noting that T×N = B, we have

B =
1
κ

(− sinϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) e−
sin2 ϕ

2
s2+C1s+C2

. (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

− sinϕe−s cos ϕ+C1 sin [ks + C] e−
sin2 ϕ

2
s2+C1s+C2((k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+ (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]))

.(− sin2 ϕ
2 s2 + C1s + C2) sin ϕe−s cos ϕ+C1 sin [ks + C]

− cosϕe−
sin2 ϕ

2
s2+C1s+C2 (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C])

− cosϕe−
sin2 ϕ

2
s2+C1s+C2((k sinϕ sin [ks + C] + cosϕ sinϕ cos [ks + C])

+ (−k sinϕ cos [ks + C] + cosϕ sinϕ sin [ks + C]))

− sinϕe−s cos ϕ+C1 (sin [ks + C] + cos [ks + C]) (− sin2 ϕ
2 s2 + C1s + C2).

(4.24)

Finally, we substitute (4.12), (4.17) and (4.24) into (4.20), we get (4.2). The proof is com-

pleted.

Corollary 4.3. Let γ : I −→ P be a unit speed biharmonic curve and β its evolute curve on

P. Then, the parametric equations of γ are
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x1 (s) = −s cosϕ + C1,

x2 (s) = C2 − sin3 ϕ

κ2 − sin4 ϕ
e−s cos ϕ+C1([k+ cosϕ] cos [ks + C]

+ [−k+ cosϕ] sin [ks + C]),

x3 (s) = C3 − sin3 ϕ

κ2 − sin4 ϕ
e−s cos ϕ+C1(− cosϕ cos [ks + C]

+ [ks + C] sin [ks + C]),

(4.25)

where C1, C2, C3 are constants of integration.
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