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Abstract

In this paper, we introduce the modular sequence spaces generated by Cesàro mean of
order one and give several properties relevant to algebraic and topological structures of these
spaces.
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1 Introduction

An Orlicz function is a function M : [0,∞) −→ [0,∞), which is continuous, non-decreasing and

convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) −→∞, as x −→∞.

If convexity of Orlicz function M is replaced by M(x+y) ≤ M(x)+M(y), then this function

is called a modulus function introduced by Nakano [6].

Lindenstrauss and Tzafriri [2] used the idea of Orlicz function to construct sequence space

`M = {x = (xk) ∈ w :
∞∑

k=1

M
( |xk|

ρ

)
< ∞, for some ρ > 0}.

The space `M becomes a Banach space, with the norm

‖x‖ = ‖(xk)‖ = inf{ρ > 0 :
∞∑

k=1

M
( |xk|

ρ

)
≤ 1}

which is called an Orlicz space. The space `M is closely related to the space `p which is an

Orlicz sequence space with M(x) = xp for 1 ≤ p < ∞. The study of Orlicz sequence spaces was
1
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initiated with a certain specific purpose in Banach space theory. Indeed, Lindberg got interested

in Orlicz spaces in connection with finding Banach spaces with symmetric Schauder bases having

complementary subspaces isomorphic to c0 or `p (1 ≤ p < ∞). Subsequently Lindenstrauss and

Tzafriri studied these Orlicz sequence spaces in more detail, and solved many important and

interesting structural problems in Banach spaces. Later on, different classes of sequence spaces

defined by Orlicz function were studied by many others.

Another generalization of Orlicz sequence spaces is due to Woo [10]. Let {Mk} be a sequence

of Orlicz functions. Define the vector space `{Mk} by

`{Mk} = {x = (xk) ∈ w :
∞∑

k=1

Mk

( |xk|
ρ

)
< ∞, for some ρ > 0}

and equip this space with the norm

‖x‖ = ‖(xk)‖ = inf{ρ > 0 :
∞∑

k=1

Mk

( |xk|
ρ

)
≤ 1}.

Then `{Mk} becomes a Banach space and is called a modular sequence space. The space

`{Mk} also generalizes the concept of modulared sequence space introduced earlier by Nakano

[7], who considered the space `{Mk} when Mk(x) = xαk , where 1 ≤ αk < ∞ for k ≥ 1.

An Orlicz function M is said to satisfy the ∆2-condition for all values of u, if there exists a

constant K > 0, such that M(2u) ≤ KM(u), (u ≥ 0) . The ∆2-condition is equivalent to the

satisfaction of inequality M(lu) ≤ KluM(u) for all values of u and for l > 1(See[4]).

The above ∆2-condition also implies M(lu) ≤ Kllog2 KM(u), for all u > 0, l > 1.

A BK-space (introduced by Zeller [11]) (X, ‖.‖) is a Banach space of complex sequences

x = (xk) in which the co-ordinate maps are continuous, that is |xn
k − xk| −→ 0, whenever

‖xn − x‖ −→ 0 as n −→∞, where xn = (xn
k), for all n ∈ N and x = (xk).

Let A denotes the set of all complex sequences which have only a finite number of non-zero

coordinates, λ denotes a BK-space of sequences x = (xk) which contains A. An element x = (xk)

of λ will be called sectionally convergent if

x(n) =
n∑

k=1

xkek −→ x, as n −→∞

where ek = (δki), where δkk = 1, δki = 0 for k 6= i

λ will be called AK-space if and only if each of its elements is sectionallly convergent.
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Let M = (Mk) be a sequence of Orlicz function and C = (cnk)∞n,k=0 be the Cesàro matrix of

order one with cnk = 1
n+1 if 0 ≤ k ≤ n and cnk = 0, otherwise. Then we define

`{Mk, C} =





x = (xk) ∈ w :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞, for some ρ > 0





.

2 Main Results

In this section we give the theorems that characterize the structure of the class of sequences

`{Mk, C}.

Theorem 1. `{Mk, C} is a linear space over the field C.

Proof. Let x, y ∈ `{Mk, C} and α, β ∈ C. Then there exists some ρ1 > 0 and ρ2 > 0 such that

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ1(k + 1)




< ∞ and
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
yj

∣∣∣∣∣
ρ2(k + 1)




< ∞.

We consider ρ3 = max (2|α|ρ1, 2|β|ρ2). Since each Mk is non-decreasing and convex, we have

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(αxj + βyj)

∣∣∣∣∣
ρ3(k + 1)



≤

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(αxj)

∣∣∣∣∣
ρ3(k + 1)

+

∣∣∣∣∣
k∑

j=0
(βyj)

∣∣∣∣∣
ρ3(k + 1)




≤
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
2ρ1(k + 1)

+

∣∣∣∣∣
k∑

j=0
yj

∣∣∣∣∣
2ρ2(k + 1)




≤ 1
2

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ1(k + 1)




+
1
2

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
yj

∣∣∣∣∣
ρ2(k + 1)



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∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(αxj + βyj)

∣∣∣∣∣
ρ3(k + 1)




< ∞, for some ρ3 > 0.

This completes the proof.

Theorem 2. Let `{Mk, C} is a normed linear space normed by

‖x‖ = inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)



≤ 1





.

Proof. If x = θ, then it is obvious that ‖x‖ = 0. Conversely assume ‖x‖ = 0. Then using the

definition of norm, we have

inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)



≤ 1





= 0

This implies that for a given ε > 0, there exists some ρε (0 < ρε < ε) such that

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρε(k + 1)



≤ 1

It follows that

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρε(k + 1)



≤ 1, ∀ k ∈ N

Thus Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ε(k + 1)



≤ Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρε(k + 1)



≤ 1, ∀ k ∈ N

Suppose

ni∑
j=0

xj

ni + 1
6= 0, for some i. Let ε −→ 0 then

ni∑
j=0

xj

ε(ni + 1)
−→∞.
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It follows that Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ε(k + 1)



−→∞ as ε −→ 0 for some ni ∈ N.

This is a contradiction. Therefore
k∑

j=0
xj

k + 1
= 0, ∀ k ∈ N.

It follows that xk = 0 for all k ≥ 1. Hence x = θ. Now let x, y ∈ `{Mk, C} and let us choose

ρ1 > 0 and ρ2 > 0 such that

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ1(k + 1)



≤ 1 and

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
yj

∣∣∣∣∣
ρ2(k + 1)



≤ 1.

Let ρ = ρ1 + ρ2. Then we have

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xj + yj)

∣∣∣∣∣
ρ(k + 1)



≤

(
ρ1

ρ1 + ρ2

) ∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ1(k + 1)




+
(

ρ2

ρ1 + ρ2

) ∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
yj

∣∣∣∣∣
ρ2(k + 1)



≤ 1.

Hence ‖x + y‖ ≤ ‖x‖+ ‖y‖. Finally let λ be a given non-zero scalar, then we have

‖λx‖ = inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(λxj)

∣∣∣∣∣
ρ(k + 1)



≤ 1





= inf





(|λ|s) > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
s(k + 1)



≤ 1





, where s =
ρ

|λ| .

‖λx‖ = |λ| ‖x‖. This completes the proof.
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Proposition 3. Let M = (Mk) and T = (Tk) be sequences of Orlicz functions. Then we have

`{Mk, C} ∩ `{Tk, C} ⊂ `{Mk + Tk, C}.

Proof. The proof is easy, so omitted.

Theorem 4. Let M = (Mk) and T = (Tk) be sequences of Orlicz functions which satisfy

∆2-condition, then `{Mk, C} ⊆ `{Tk ◦Mk, C}.

Proof. Let x ∈ `{Mk, C} and ε > 0. We choose 0 < δ < 1 such that for each k, Tk(u) < k−s(s >

1) < ε for 0 ≤ u ≤ δ. We write

yk = Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




and consider
∞∑

k=0

Tk(yk) =
∑
1

Tk(yk)+
∑
2

Tk(yk) where the first summation is over yk ≤ δ and the

second summation over yk > δ. Now we have
∑
1

Tk(yk) < ∞. For yk > δ, we use the fact that

yk <
yk

δ
≤ 1 +

(yk

δ

)
.

Since for each Tk is non-decreasing and convex, it follows that

Tk(yk) < Tk

(
1 +

yk

δ

)
<

1
2
Tk(2) +

1
2
Tk

(
2
yk

δ

)
, for each k ∈ N.

Since each Tk satisfy ∆2-condition, we have

Tk(yk) <
1
2
K(

yk

δ
)Tk(2) +

1
2
K(

yk

δ
)Tk(2) = Kykδ

−1Tk(2)

Hence
∑

2

Tk(yk) ≤ max
(
1,

(
Kδ−1M(2)

)) ∞∑

k=0

yk < ∞

Thus
∞∑

k=0

Tk(yk) =
∑

1

Tk(yk) +
∑

2

Tk(yk) < ∞.

Hence x ∈ `{Tk ◦Mk, C}. This completes the proof.

Taking Mk(x) = x, for all x ∈ [0,∞) and k in N , in Theorem 4, we get the next Corollary.

Corollary 5. Let M = (Mk) be any sequence of Orlicz functions which satisfy ∆2-condition and

s > 1, then `{C} ⊆ `{Mk, C}.



A Generalization of Modular Sequence Spaces by Cesàro Mean of Order One 7

We will write f ≈ g for non-negative functions f and g whenever C1f ≤ g ≤ C2f for some

Cj > 0, j = 1, 2.

Proposition 6. Let M = (Mk) and T = (Tk) be sequences of Orlicz functions. If Mk ≈ Tk for

each k ∈ N , then `{Mk, C} = `{Tk, C}.

Proof. Proof is obvious.

Proposition 7. Let M = (Mk) be a sequence of Orlicz functions. If lim
t→0

Mk(t)
t > 0 and

lim
t→0

Mk(t)
t < ∞, for each k ∈ N , then `{Mk, C} = `{C}.

Proof. If the given conditions are satisfied, we have Mk(t) ≈ t for each k and the proof follows

from Proposition 6.

Theorem 8. `{Mk, C} is a Banach space normed by

‖x‖ = inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)



≤ 1





.

Proof. Let (xi) be a Cauchy sequence in `{Mk, C}. Let δ > 0 be fixed and r > 0 be such that

for a given 0 < ε < 1, ε
rδ > 0, and rδ ≥ 1. Then there exists a positive integer n0 such that

‖xs − xt‖ < ε
rδ , for all s, t ≥ n0

=⇒ inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xt
j)

∣∣∣∣∣
ρ(k + 1)



≤ 1





<
ε

rδ
, for all s, t ≥ n0.

Hence we have

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xt
j)

∣∣∣∣∣
‖xs − xt‖(k + 1)



≤ 1, for all s, t ≥ n0.

It follows that

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xt
j)

∣∣∣∣∣
‖xs − xt‖(k + 1)



≤ 1, for all s, t ≥ n0 and k ∈ N.
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For r > 0 with Mk

(
rδ
2

) ≥ 1, we have

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xt
j)

∣∣∣∣∣
‖xs − xt‖(k + 1)



≤ Mk

(
rδ

2

)
, for all s, t ≥ n0 and k ∈ N.

Since Mk is non-decreasing for each k ∈ N , we have
∣∣∣∣∣

k∑
j=0

(xs
j − xt

j)

∣∣∣∣∣
(k + 1)

≤ rδ

2
.
ε

rδ
=

ε

2

Hence it follows that (xs
k) is a Cauchy sequence in C for each k ∈ N . But C is complete and so

(xs
k) is converges in C for each k ∈ N . Let lim

s→∞xs
k = xk exists for each k ∈ N . Now we have for

all s, t ≥ n0.

inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xt
j)

∣∣∣∣∣
ρ(k + 1)



≤ 1





< ε

Then we have

lim
t→∞





inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xt
j)

∣∣∣∣∣
ρ(k + 1)



≤ 1









< ε, for all s ≥ n0.

Using the continuity of Orlicz functions, we have

inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − lim
t→∞xt

j)

∣∣∣∣∣
ρ(k + 1)



≤ 1





< ε, for all s ≥ n0.

This implies that

inf





ρ > 0 :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
(xs

j − xj)

∣∣∣∣∣
ρ



≤ 1





< ε, for all s ≥ n0.

It follows that (xs−x) ∈ `{Mk, C}. Since (xs) ∈ `{Mk, C} and `{Mk, C} is a linear space, so we

have x = xs − (xs − x) ∈ `{Mk, C}. This completes the proof.
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It is easy to see that ‖xi‖ −→ 0 implies that xi
k −→ 0 for each i ≥ 1. Hence we have the

following Proposition.

Proposition 9. The space `{Mk, C} is a BK-space.

Now we study the AK-characteristic of the space `{Mk, C}. Before that we give a new

definition and prove some results those will be required.

Definition 10. For any sequence of Orlicz functions M = (Mk), we define

h{Mk, C} =





x = (xk) ∈ w :
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞, for every ρ > 0





.

Clearly h{Mk, C} is a subspace of `{Mk, C}. The topology of h{Mk, C} is the one it inherits from
‖.‖.

Proposition 11. Let M = (Mk) be a sequence of Orlicz functions which satisfy ∆2-condition

then `{Mk, C} = h{Mk, C}.

Proof. It is enough to prove that `{Mk, C} ⊆ h{Mk, C}. Let x ∈ `{Mk, C}, then for some ρ > 0,

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞

Choose an arbitrary η > 0. If ρ ≤ η then

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
η(k + 1)




<
∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞

Let now η < ρ and put l = ρ
η > 1. Since each Mk satisfies the ∆2-condition, there exists constants

Kk such that

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
η(k + 1)



≤

∞∑

k=0

Kk

(
ρ

η

)log2Kk

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)



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Let S = supk

(
ρ
η

)log2Kk

. Then for every η > 0

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
η(k + 1)



≤ S

∞∑

k=0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞

This completes the proof.

Proposition 12. h{Mk, C} is an AK-space.

Proof. Let x ∈ h{Mk, C}. Then for each ε, 0 < ε < 1, we can find an s0 such that

∑

k≥s0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ε(k + 1)



≤ 1

Hence for s ≥ s0,

‖x− x(s)‖ = inf





ρ > 0 :
∑

k≥s+1

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)



≤ 1





≤ inf





ρ > 0 :
∑

k≥s

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)



≤ 1





< ε.

Thus we can conclude that h{Mk, C} is an AK-space.

Combining Proposition 9 and Proposition 11, we have the following Theorem.

Theorem 13. Let M = (Mk) be a sequence of Orlicz functions which satisfy ∆2-condition, then

x ∈ `{Mk, C} is an AK-space.

Proposition 14. The space h{Mk, C} is a closed subspace of `{Mk, C}.
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Proof. Let {xs} be a sequence in h{Mk, C} such that ‖xs − x‖ −→ 0, where x ∈ `{Mk, C}. To

complete the proof we need to show that x ∈ h{Mk, C}, i.e.,

∑

k≥0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞, for every ρ > 0.

To ρ > 0 there corresponds an l such that ‖xl − x‖ ≤ ρ
2 . Then using convexity of each Mk,

∑

k≥0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




=
∑

k≥0

Mk




2

∣∣∣∣∣
k∑

j=0
xl

j

∣∣∣∣∣− 2

(∣∣∣∣∣
k∑

j=0
xl

j

∣∣∣∣∣−
∣∣∣∣∣

k∑
j=0

xj

∣∣∣∣∣

)

2ρ(k + 1)




≤ 1
2

∑

k≥0

Mk




2

∣∣∣∣∣
k∑

j=0
xl

j

∣∣∣∣∣
ρ(k + 1)




+
1
2

∑

k≥0

Mk




2

∣∣∣∣∣
k∑

j=0
(xl

j − xj)

∣∣∣∣∣
ρ(k + 1)




≤ 1
2

∑

k≥0

Mk




2

∣∣∣∣∣
k∑

j=0
xl

j

∣∣∣∣∣
ρ(k + 1)




+
1
2

∑

k≥0

Mk




2

∣∣∣∣∣
k∑

j=0
(xl

j − xj)

∣∣∣∣∣
‖xl − x‖(k + 1)




Now from Theorem 9, using definition of norm ‖.‖, we have

∑

k≥0

Mk




2

∣∣∣∣∣
k∑

j=0
(xl

j − xj)

∣∣∣∣∣
‖xl − x‖(k + 1)



≤ 1

It follows that

∑

k≥0

Mk




∣∣∣∣∣
k∑

j=0
xj

∣∣∣∣∣
ρ(k + 1)




< ∞, for every ρ > 0.

Thus x ∈ h{Mk, C}.

Hence we have the following Corollary.

Corollary 15. The space h{Mk, C} is a BK-space.
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