Revista Notas de Matemática
Vol.6(1), No. 289, 2010, pp.30-39
http://www.saber.ula.ve/notasdematematica
Pre-prints
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

On acceleration pole points in special Frenet and Bishop motions

Naser Masrouri and Yusuf Yayli

Abstract

A special motion by the form $Y=A X+C$ with one parameter has been given Hacisalihoglu [2,5] in Euclidean n-space. In this paper, we find a geometrical meaning for the determinant of the derivative matrices \dot{A}, \ddot{A} and \dddot{A} according to $\frac{\tau}{\kappa}$ or in Euclidean 3 -space The ratio of torsion and curvature is taken as a constant in our study. Then we search, in this case, the geometry of the $1^{\text {st }}$ and $2^{\text {nd }}$ order acceleration pole points and acceleration axodes in generalized helix curves that yields a necessary condition for the Frenet and Bishop Motions, to accelerate pole points, and compare these points in two motions.

key words. Frenet motion- Bishop motion- Acceleration pole points- General helix
AMS(MOS) subject classifications. 53A04, 53A17

1 Introduction

In Euclidean 3-space, Bottema and Bishop defined the Frenet and Bishop motions (see [3, 6]). Hacisalihoglu [5] also gives a necessary and enough condition for stationary direction of the Instantaneous Screw Axis (I.S.A) depending on $\operatorname{rank} \dot{A}$ and $\operatorname{rank} \ddot{A}$.

In this paper, we first find a geometrical meaning for $\operatorname{rank} \dot{A}$ and $\operatorname{rank} \ddot{A}$ to be 2 or 3 , then use this theorem for discussion of existence of $1^{\text {st }}$ and $2^{\text {nd }}$ acceleration pole points. The $1^{\text {st }}$ order velocity of a fixed point X is $\dot{Y}=\dot{A} X+\dot{C}$ and for the $2^{\text {nd }}$ and $3^{\text {rd }}$ order velocity of this point, give us $\ddot{Y}=\ddot{A} X+\ddot{C}$ and $\dddot{Y}=\dddot{A} X+\dddot{C}$ respectively. \dot{Y} is the sliding velocity and \ddot{Y} and \dddot{Y} are the $1^{\text {st }}$ and $2^{\text {nd }}$ sliding acceleration of the point X respectively. We will show that existence of the $1^{\text {st }}$ and $2^{\text {nd }}$ acceleration poles by the solution of the $\ddot{A} X+\ddot{C}=0, \dddot{A} X+\ddot{C}=0$ systems. The solution of these systems depend on rank \ddot{A} and $\operatorname{rank} \dddot{A}$.

2 Preliminaries

In one parameter motion of a body in Euclidean 3-space is generated by the transformation

$$
\left[\begin{array}{c}
Y \tag{1}\\
1
\end{array}\right]=\left[\begin{array}{cc}
A & C \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
1
\end{array}\right] \quad \text { or } \quad Y=A X+C
$$

Where $A \in S O(3)$ and X, Y, C are 3×1 real matrices and

$$
S O(3)=\left\{A \in R_{3}^{3} \mid A^{t}=A^{-1}, \quad \operatorname{det} A=1\right\} .
$$

A, C are C^{∞} functions of a real parameter t, X and Y corresponding to the position vectors of the same point X, with respect to the orthonormal coordinate systems of the moving space S and the fixed space S_{0}, respectively. At the initial time $t=t_{0}$ we consider the coordinate system of S_{0} and S are coincident. Denote by $\{T, N, B\}$ the moving Frenet frame and $\left\{T, N_{1}, N_{2}\right\}$ the moving Bishop frame along the regular curve $\alpha=\alpha(t)$ that are parameterized by arc-length parameter t, i.e,

$$
\langle\dot{\alpha}(t), \dot{\alpha}(t)\rangle=1 .
$$

The Frenet trihedron consists of the tangent T, the principle normal N and the binormal B, and the Bishop trihedron consists of the tangent T, the $1^{\text {st }}$ principle normal N_{1} and $2^{\text {nd }}$ principle normal N_{2}, which are three mutually orthogonal axes. Obviously, the geometry of this motions is completely defined by α. The Frenet formulas read

$$
\dot{T}=\kappa N, \dot{N}=-\kappa T+\tau B, \dot{B}=-\tau N
$$

and the Bishop formulas read

$$
\dot{T}=\kappa_{1} N_{1}+\kappa_{2} N_{2}, \dot{N}_{1}=-\kappa_{1} T, \dot{N}_{2}=-\kappa_{2} T .
$$

In the Frenet formulas, $\kappa>0$ being the curvature and τ the torsion of the curve α, so κ_{1}, κ_{2} are the $1^{\text {st }}$ and $2^{\text {nd }}$ curvatures in the Bishop motion, respectively.

The Bishop frame is an alternative approach to defining a moving frame that is well defined even when the curve is vanishing the second derivative. We can parallel transport an orthonormal frame along a curve simply by parallel transporting each component of the frame. The parallel transport frame is based on the observation that, while $T(t)$ for a given curve model is unique, we may choose any convenient arbitrary basis $\left(N_{1}(t), N_{2}(t)\right)$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $T(t)$ at each point. If the derivatives of $\left(N_{1}(t), N_{2}(t)\right)$ depend only on $T(t)$ and not each other we can make $N_{1}(t)$ and $N_{2}(t)$ vary smoothly throughout the path regardless of the curvature.

Therefore, we have the alternative frame equations:

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N}_{1} \\
\dot{N}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa_{1} & \kappa_{2} \\
-\kappa_{1} & 0 & 0 \\
-\kappa_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N_{1} \\
N_{2}
\end{array}\right]
$$

where

$$
\begin{equation*}
\kappa(t)=\sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}} \quad, \quad \theta(t)=\arctan \left(\frac{\kappa_{2}}{\kappa_{1}}\right) \quad, \quad \tau(t)=-\frac{d \theta(t)}{d t} \tag{2}
\end{equation*}
$$

[1,3,4] so that κ_{1} and κ_{2} effectively correspond to a Cartesian coordinate system for the polar coordinates κ, θ with $\theta=-\int \tau(t) d t$. The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ_{0}, which disappears from τ (and hence from the Frenet frame) due to the differentiation.

3 Acceleration Pole Points In Frenet Motion

Definition 3.1 The first derivation of (1), with respect to t, we have

$$
\dot{Y}=\dot{A} X+\dot{C}+A \dot{X}
$$

Where \dot{Y} is the absolute velocity, $\dot{A} X+\dot{C}$ is the sliding velocity and $A \dot{X}$ is the relative velocity of the point X. The solution vector X of the system $\dot{A} X+\dot{C}=0$ is the position vector of the point which may be considered as a fixed point of S_{0} and S at the same time t. These points are called instantaneous pole points at the time t. The sliding velocity of a fixed point X in moving space S is

$$
\begin{equation*}
\dot{Y}=\dot{A} X+\dot{C} \tag{3}
\end{equation*}
$$

and for the $\mathcal{2}^{\text {nd }}$ order velocity (or the $1^{\text {st }}$ order sliding acceleration) of this point, (3) gives us

$$
\begin{equation*}
\ddot{Y}=\ddot{A} X+\ddot{C} \tag{4}
\end{equation*}
$$

and for the $3^{r d}$ order velocity (or the $2^{n d}$ order sliding acceleration) of this point, (4) gives us

$$
\begin{equation*}
\dddot{Y}=\dddot{A} X+\dddot{C} \tag{5}
\end{equation*}
$$

By using the Frenet formulas and

$$
A=\left[\begin{array}{lll}
T & N & B
\end{array}\right], \quad \dot{A}=\left[\begin{array}{lll}
\dot{T} & \dot{N} & \dot{B}
\end{array}\right], \quad \ddot{A}=\left[\begin{array}{ccc}
\ddot{T} & \ddot{N} & \ddot{B}
\end{array}\right], \quad \dddot{A}=\left[\begin{array}{ccc}
\dddot{T} & \dddot{N} & \dddot{B}
\end{array}\right]
$$

we can give,

$$
\operatorname{det} \dot{A}=\left|\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right|=0
$$

Then the system $\dot{A} X+\dot{C}=0$, has not unique solution. So, the Frenet motion hasnnot pole point. From $\operatorname{det} \dot{A}=0$ and $\operatorname{det} \dot{A}=\left|\begin{array}{cc}0 & \kappa \\ -\kappa & 0\end{array}\right|=\kappa^{2} \neq 0$, we have $\operatorname{rank} A=2$.

$3.11^{\text {st }}$ acceleration pole points in Frenet motion

The discussion of existence of the $1^{\text {st }}$ acceleration poles and the $1^{\text {st }}$ acceleration axodes is the discussion of the solution of the system

$$
\begin{equation*}
\ddot{A} X+\ddot{C}=0 \tag{6}
\end{equation*}
$$

The solution of the system of (6) depend on rank \ddot{A}.
If $\{T, N, B\}$ is an adapted Frenet frame, then we have

$$
\begin{aligned}
& \ddot{T}=-\kappa^{2} T+\dot{\kappa} N+\kappa \tau B \\
& \ddot{N}=-\dot{\kappa} T-\left(\kappa^{2}+\tau^{2}\right) N+\dot{\tau} B \\
& \ddot{B}=\kappa \tau T-\dot{\tau} N-\tau^{2} B
\end{aligned}
$$

So, we obtain

$$
\left[\begin{array}{c}
\ddot{T} \\
\ddot{N} \\
\ddot{B}
\end{array}\right]=\left[\begin{array}{ccc}
-\kappa^{2} & \dot{\kappa} & \kappa \tau \\
-\dot{\kappa} & -\left(\kappa^{2}+\tau^{2}\right) & \dot{\tau} \\
\kappa \tau & -\dot{\tau} & -\tau^{2}
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right] .
$$

By using $A=[T, N, B] \in S O(3)$, we get

$$
\operatorname{det} \ddot{A}=\left|\begin{array}{ccc}
-\kappa^{2} & \dot{\kappa} & \kappa \tau \tag{7}\\
-\dot{\kappa} & -\left(\kappa^{2}+\tau^{2}\right) & \dot{\tau} \\
\kappa \tau & -\dot{\tau} & -\tau^{2}
\end{array}\right|=-\left[\kappa^{2}\left(\frac{\tau}{\kappa}\right)\right]^{2}
$$

Obviously as a consequence of equation (7) we have the following:

$$
\operatorname{det} \ddot{A}=0 \Leftrightarrow \frac{\tau}{\kappa}=\text { constant }
$$

From this case we obtain that at any moment t, if the curve $\alpha(t)$ is a generalized helix then the solution systems of (6) are not unique in fixed space S_{0}. The Frenet motion $Y=A X+C$ has not the $1^{\text {st }}$ acceleration pole point. If $\operatorname{det} \ddot{A} \neq 0$ then $\alpha(t)$ is not general helix.
Thus we can give the following theorem:
Theorem 3.2 The curve $\alpha(t)$ is not general helix \Leftrightarrow in the moving space S, the Frenet motion has a $1^{\text {st }}$ acceleration pole point; $X=-(\ddot{A})^{-1} \ddot{C}$.

On the other hand, by means of $\operatorname{det} \ddot{A}=0$ we have that $\operatorname{rank} \ddot{A}<3$ and since

$$
\left|\begin{array}{cc}
-\kappa^{2} & \dot{\kappa} \\
-\dot{\kappa} & -\left(\kappa^{2}+\tau^{2}\right)
\end{array}\right|=\kappa^{4}+\kappa^{2} \tau^{2}+\dot{\kappa}^{2} \neq 0
$$

Such being the case, $\operatorname{rank} \ddot{A}=2$ then, the solution of (6) is a line, at every instant t.
Therefore as a consequence of theorem 3.4 [5], for $n=3$, we can write, the direction of the Instantaneous Screw Axis (ISA) is stationary.

Theorem 3.3 [5] If $A \in S O(n)$ and rank $\dot{A}=n-1$, then the direction of the I.S.A is stationary $\Leftrightarrow \operatorname{rank} \ddot{A}=n-1$.

Definition 3.4 As the instantaneous screw always intersect the principal normal at a right angle, its locus - the moving axode - is a special type of ruled surface called a Coned. The axode in the fixed space follows by the means of $Y=A X+C$.

To sum up, we have proved the following theorem:
Theorem 3.5 Structure of a Coned has a surface cylindrical \Leftrightarrow the Frenet motion $Y=A X+C$, has not the $1^{\text {st }}$ acceleration pole points.

$3.22^{\text {nd }}$ acceleration pole points in Frenet motion

The discussion of existence of the $2^{\text {nd }}$ acceleration pole points and the $2^{\text {nd }}$ acceleration axodes is the discussion of the solution of the system

$$
\begin{equation*}
\ddot{A} X+\ddot{C}=0 \tag{8}
\end{equation*}
$$

If T, N and B is an adapted Frenet frame, then we have;

$$
\begin{aligned}
& \dddot{T}=(-3 \kappa \dot{\kappa}) T-\left(\kappa^{3}+\kappa \tau^{2}-\ddot{\kappa}\right) N+(\kappa \dot{\tau}+2 \dot{\kappa} \tau) B \\
& \dddot{N}=\left(\kappa^{3}+\kappa \tau^{2}-\ddot{\kappa}\right) T-3(\kappa \dot{\kappa}+\tau \dot{\tau}) N-\left(\tau^{3}+\kappa^{2} \tau-\ddot{\tau}\right) B \\
& \dddot{B}=(2 \kappa \dot{\tau}+\dot{\kappa} \tau) T+\left(\tau^{3}+\kappa^{2} \tau-\ddot{\tau}\right) N-(3 \tau \dot{\tau}) B
\end{aligned}
$$

So, we obtain

$$
\left[\begin{array}{c}
\dddot{T} \\
\dddot{N} \\
\dddot{B}
\end{array}\right]=\left[\begin{array}{ccc}
(-3 \kappa \dot{\kappa}) & -\left(\kappa^{3}+\kappa \tau^{2}-\ddot{\kappa}\right) & (\kappa \dot{\tau}+2 \dot{\kappa} \tau) \\
\left(\kappa^{3}+\kappa \tau^{2}-\ddot{\kappa}\right) & -3(\kappa \dot{\kappa}+\tau \dot{\tau}) & -\left(\tau^{3}+\kappa^{2} \tau-\ddot{\tau}\right) \\
(2 \kappa \dot{\tau}+\dot{\kappa} \tau) & \left(\tau^{3}+\kappa^{2} \tau-\ddot{\tau}\right) & -(3 \tau \dot{\tau})
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right] .
$$

By using $\operatorname{det} A=1$, we get

$$
\begin{align*}
\operatorname{det} \dddot{A} & =3 \kappa^{2}\left(\frac{\tau}{\kappa}\right)\left[2(\kappa \dot{\kappa}+\tau \dot{\tau})(\kappa \dot{\tau}-\dot{\kappa} \tau)-\left(\kappa^{2}+\tau^{2}\right)(\kappa \ddot{\tau}-\ddot{\kappa} \tau)\right] \\
& +3\left[\kappa^{2}\left(\frac{\tau}{\kappa}\right)\right](\dot{\kappa} \ddot{\tau}-\ddot{\kappa} \dot{\tau}) \tag{9}
\end{align*}
$$

As a consequence of equation of (8) we have the following:
$\left(\frac{\tau}{\kappa}=\right.$ constant $) \Rightarrow\left(\frac{\tau}{\kappa}\right)^{\cdot}=0,\left(\frac{\dot{\tau}}{\dot{\kappa}}\right)^{\cdot}=0 \Rightarrow \operatorname{det} \dddot{A}=0$ From this case we obtain, at any time t, the curve $\alpha(t)$ is a generalized helix, and the solution of system (8) are not unique and in fixed space S_{0}, the Frenet motion $Y=A X+C$ has not the $2^{\text {nd }}$ acceleration pole point.
Now we can give the following theorem:
Theorem 3.6 $\forall t$ the curve $\alpha(t)$ is a generalized helix \Rightarrow in fixed space S_{0} the Frenet motion has not a $2^{\text {nd }}$ acceleration pole point.

Let now see example of non-planar curves.
Example: The helix $\alpha(t)=(t, \cosh t, \sinh t)$, this curve is a Euclidean helix.
$\dot{\alpha}=(1, \sinh t, \cosh t)$
$\ddot{\alpha}=(0, \cosh t, \sinh t)$
$\ddot{\alpha}(t)=(0, \sinh t, \cosh t)$
$\langle\dot{\alpha}(t), \dot{\alpha}(t)\rangle=1+\cosh 2 t=2 \cos ^{2} h t \neq 1$
$\|\dot{\alpha}\|=\sqrt{1+\cosh 2 t}=\sqrt{2} \cosh t$
$\dot{\alpha} \wedge \ddot{\alpha}=\left|\begin{array}{ccc}i & j & k \\ 1 & \sinh t & \cosh t \\ 0 & \cosh t & \sinh t\end{array}\right|=(-1,-\sinh t, \cosh t)$
$\|\dot{\alpha} \wedge \ddot{\alpha}\|=\sqrt{2} \cosh t$
$\operatorname{det}(\dot{\alpha}, \ddot{\alpha}, \cdots)=\left|\begin{array}{lll}1 & \sinh t & \cosh t \\ 0 & \cosh t & \sinh t \\ 0 & \sinh t & \cosh t\end{array}\right|=1$
$T=\frac{\dot{\alpha}}{\|\dot{\alpha}\|}=\left(\frac{1}{\sqrt{2} \cosh t}, \frac{\sinh t}{\sqrt{2} \cosh t}, \frac{1}{\sqrt{2}}\right)$
$B=\frac{\dot{\alpha} \wedge \ddot{\alpha}}{\|\dot{\alpha} \wedge \ddot{\alpha}\|}=\left(\frac{-1}{\sqrt{2} \cosh t}, \frac{-\sinh t}{\sqrt{2} \cosh t}, \frac{1}{\sqrt{2}}\right)$
$N=B \wedge T=\left(\frac{-\sinh t}{\cosh t}, \frac{1}{\cosh t}, 0\right)$
$\kappa=\frac{\|\dot{\alpha} \wedge \ddot{\alpha}\|}{\|\dot{\alpha}\|^{3}}=\frac{1}{2 \cos ^{2} h t}$
$\tau=\frac{\operatorname{det}(\dot{\alpha}, \ddot{\alpha}, \ddot{\alpha})}{\|\dot{\alpha} \wedge \ddot{\alpha}\|^{2}}=\frac{1}{2 \cos ^{2} h t}$
$\frac{\tau}{\kappa}=1=$ constrant $\Rightarrow\left(\frac{\tau}{\kappa}\right)=0$
$A=\left[\begin{array}{lll}T & N & B\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2} \cosh t} & \frac{-\sinh t}{\cosh t} & \frac{-1}{\sqrt{2} \cosh t} \\ \frac{\sinh t}{\sqrt{2} \cosh t} & \frac{1}{\cosh t} & \frac{-\sinh t}{\sqrt{2} \cosh t} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}\right]$
$\operatorname{det} A=1$
$\operatorname{det} \dot{A}=\operatorname{det}(\dot{T}, \dot{N}, \dot{B})=0$
$\operatorname{det} \ddot{A}=\operatorname{det}(\ddot{T}, \ddot{N}, \ddot{B})=\left(\kappa^{2}\left(\frac{\tau}{\kappa}\right)\right)^{2}=0$
$9 \Rightarrow \operatorname{det} \dddot{A}=0$
$\vec{\omega}=(\tau, 0, \kappa)=\tau T+\kappa B$
$=\frac{1}{2 \cos ^{2} h t}\left(\frac{1}{\sqrt{2} \cosh t}, \frac{\sinh t}{\sqrt{2} \cosh t}, \frac{1}{\sqrt{2}}\right)+\frac{1}{2 \cos ^{2} h t}\left(\frac{-1}{\sqrt{2} \cosh t}, \frac{-\sinh t}{\sqrt{2} \cosh t}, \frac{1}{\sqrt{2}}\right)$
$\vec{\omega}=\sqrt{2} \kappa(0,0,1)$
$\operatorname{rank} \dot{A}=\operatorname{rank} \ddot{A}=2 \Rightarrow$ The direction of the I.S.A is stationary. The conclusion is (Fig.3.1): the instantaneous screw axis intersects ω, it is parallel to the plane $O_{x z}$; the components of ω are $(\tau, 0, \kappa)$ and that of the translation vector $(0,0,1)$.

Fig 3.1

4 Acceleration Pole Points In Bishop Motion

By using the Bishop formulas and

$$
\begin{array}{lll}
A=\left[\begin{array}{lll}
T & N_{1} & N_{2}
\end{array}\right], & \dot{A}=\left[\begin{array}{lll}
\dot{T} & \dot{N}_{1} & \dot{N}_{2}
\end{array}\right], \\
\ddot{A}=\left[\begin{array}{lll}
\ddot{T} & \ddot{N}_{1} & \ddot{N}_{2}
\end{array}\right], & \dddot{A}=\left[\begin{array}{ccc}
\dddot{T} & N_{1} & N_{2}
\end{array}\right]
\end{array}
$$

we can give,

$$
\operatorname{det} \dot{A}=\left[\begin{array}{ccc}
0 & \kappa_{1} & \kappa_{2} \\
-\kappa_{1} & 0 & 0 \\
-\kappa_{2} & 0 & 0
\end{array}\right]=0
$$

Then the system $\dot{A} X+\dot{C}=0$ has not unique solution. So, the Bishop motion has not pole point. From $\operatorname{det} \dot{A}=0$ and $\left|\begin{array}{cc}0 & \kappa_{1} \\ -\kappa_{1} & 0\end{array}\right|=\kappa_{1}^{2} \neq 0$, we have $\operatorname{rank} A=2$.

$4.1 \quad 1^{\text {st }}$ acceleration pole points in Bishop motion

If $\left\{T, N_{1}, N_{2}\right\}$ is an adapted Bishop frame, then we have

$$
\begin{aligned}
& \ddot{T}=-\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) T+\dot{\kappa}_{1} N_{1}+\dot{\kappa}_{2} N_{2} \\
& \ddot{N}_{1}=-\dot{\kappa}_{1} T-\kappa_{1}^{2} N_{1}-\kappa_{1} \kappa_{2} N_{2} \\
& \ddot{N}_{2}=-\dot{\kappa}_{2} T-\kappa_{1} \kappa_{2} N_{1}-\kappa_{2}^{2} N_{2}
\end{aligned}
$$

So, we obtain

$$
\left[\begin{array}{c}
\ddot{T} \\
\ddot{N}_{1} \\
\ddot{N}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) & \dot{\kappa}_{1} & \dot{\kappa}_{2} \\
-\dot{\kappa}_{1} & -\kappa_{1}^{2} & -\kappa_{1} \kappa_{2} \\
-\dot{\kappa}_{2} & -\kappa_{1} \kappa_{2} & -\kappa_{2}^{2}
\end{array}\right]\left[\begin{array}{c}
T \\
N_{1} \\
N_{2}
\end{array}\right]
$$

By using $A=\left[\begin{array}{lll}T & N_{1} & N_{2}\end{array}\right]$, we get

$$
\operatorname{det} \ddot{A}=\left|\begin{array}{ccc}
-\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) & \dot{\kappa}_{1} & \dot{\kappa}_{2} \tag{10}\\
-\dot{\kappa}_{1} & -\kappa_{1}^{2} & -\kappa_{1} \kappa_{2} \\
-\dot{\kappa_{2}} & -\kappa_{1} \kappa_{2} & -\kappa_{2}^{2}
\end{array}\right|=-\left[\kappa_{1}^{2}\left(\frac{\kappa_{2}}{\kappa_{1}}\right)\right]^{2}
$$

By using equations 2 we have,

$$
\begin{align*}
\kappa^{2}=\kappa_{1}^{2}+\kappa_{2}^{2} & \\
\frac{\kappa_{2}}{\kappa_{1}}=\tan (\theta) & \Rightarrow\left(\frac{\kappa_{2}}{\kappa_{1}}\right)=\left(1+\tan ^{2}(\theta)\right) \frac{d \theta}{d t} \\
& \Rightarrow\left(\frac{\kappa_{2}}{\kappa_{1}}\right)=\left(1+\frac{\kappa_{2}^{2}}{\kappa_{1}^{2}}\right) \frac{d \theta}{d t}=-\left(\frac{\kappa_{1}^{2}+\kappa_{2}^{2}}{\kappa_{1}^{2}}\right) \tau \\
& \Rightarrow\left(\frac{\kappa_{2}}{\kappa_{1}}\right)=-\left(\frac{\kappa^{2}}{\kappa_{1}^{2}}\right) \tau \\
& \Rightarrow \kappa_{1}^{2}\left(\frac{\kappa_{2}}{\kappa_{1}}\right)=-\kappa^{2} \tau \tag{11}
\end{align*}
$$

Obviously as a consequence of equations (10) and (11) we have the following:

$$
\begin{equation*}
\operatorname{det} \ddot{A}=-\kappa^{4} \tau^{2} \tag{12}
\end{equation*}
$$

As a consequence of equation of (12) we have the following:

$$
\operatorname{det} \ddot{A}=0 \Leftrightarrow \tau=0
$$

From this case we obtain, the solution systems of (6) are not unique in fixed space S_{0} if and only if, at any time t, the curve $\alpha(t)$ is a plane. So that, the Bishop motion $Y=A X+C$ has not the $1^{\text {st }}$ acceleration pole point.
If $\operatorname{det} \ddot{A} \neq 0$ then $\alpha(t)$ is not plane. Thus we can give the following theorem:
Theorem 4.1 $\forall t$, the curve $\alpha(t)$ is not plane in the moving space $S \Leftrightarrow$ the Bishop motion has a $1^{\text {st }}$ acceleration pole point; $X=-(\ddot{A})^{-1} \ddot{C}$,

On the other hand, by means of $\operatorname{det} \ddot{A}=0$ we have that $\operatorname{rank} \ddot{A}<3$ and since

$$
\left|\begin{array}{cc}
-\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) & \dot{\kappa}_{1} \\
-\dot{\kappa}_{1} & -\kappa_{1}^{2}
\end{array}\right|=\kappa_{1}^{4}+\kappa_{1}^{2} \kappa_{2}^{2}+\kappa_{1}^{2}>0
$$

Such being the case, $\operatorname{rank} \ddot{A}=2$ then, the solution of (6) is a line, at every instant t.
Therefore as a consequence of theorem 3.4 [5], for $n=3$, we can write, the direction of the Instantaneous Screw Axis (ISA) is stationary. To sum up, we have proved the following theorem:

Theorem 4.2 Structure of a Coned has a surface cylindrical \Leftrightarrow the Bishop motion $Y=A X+C$, has not the $1^{\text {st }}$ acceleration pole points.

$4.22^{\text {nd }}$ acceleration pole points in Bishop motion

If T, N_{1} and N_{2} is an adapted Bishop frame, then we have;

$$
\begin{align*}
& \dddot{T}=-3\left(\kappa_{1} \dot{\kappa}_{1}+\kappa_{2} \dot{\kappa}_{2}\right) T-\left(\kappa_{1}^{3}+\kappa_{1} \kappa_{2}^{2}-\ddot{\kappa}_{1}\right) N_{1}-\left(\kappa_{2}^{3}+\kappa_{1}^{2} \kappa_{2}-\ddot{\kappa}_{2}\right) N_{2} \\
& \ldots N_{1}
\end{align*}=\left(\kappa_{1}^{3}+\kappa_{1} \kappa_{2}^{2}-\ddot{\kappa}_{1}\right) T-\left(3 \kappa_{1} \dot{\kappa}_{1}\right) N_{1}-\left(\kappa_{1} \dot{\kappa}_{2}+2 \dot{\kappa}_{1} \kappa_{2}\right) N_{2} .
$$

As a consequence of equation of (13) we have the following:

$$
\tau=0 \Rightarrow \operatorname{det} \dddot{A}=0
$$

From this case we obtain, if at any time t, the curve $\alpha(t)$ is a plane, then the solution of system (8) are not unique in fixed space S_{0} and the Bishop motion $Y=A X+C$ has not the 2 nd acceleration pole point.
Now we can give the following theorem:
Theorem $4.3 \forall t$, the curve $\alpha(t)$ is a plane \Leftrightarrow in fixed space S_{0}, the Bishop motion hasnot a $2^{\text {nd }}$ acceleration pole point.

References

[1] A.Gray: Modern Differential Geometry.Cre pres, 1998.
[2] Barrett O'Neill, Elementary Differential Geometry, Academic Press, New York, 1966.
[3] Bishop, L.R: There is More Than One Way to Frame a Curve. Amer.Math .Monthly (1975), Vol.82, Issue 3, 246-251.
[4] Hanson A.J., Ma, H., Parallel Transport Approach to Streamline Visualization, Ice Transactions on Visualization and Computer Graphics (June 1995) Vol I, No. 2.
[5] H.H.Hilmi Hacisalihoglu, On the geometry of motion in the Euclidean n-space, Communications de la faculte des sciences de l'universite d'ankara,Vol 23, pp 95-108, 1974.
[6] O.Bottema and B.Roth: Theoretical kinematics. North Holland Publ.com, 1979.

Naser Masrouri

Department of Mathematics,
Islamic Azad University Shabestar Branch, Shabestar, Iran
e-mail: n.masrouri@iaushab.ac.ir

Yusuf Yayli

Ankara University, Faculty of Science
Department of Mathematics
06100, Tandoğan, Ankara, Turkey
e-mail: yayli@science.ankara.edu.tr

