
 

 

 

 

Abstract— we propose a new perspective on the 

identification of linear dynamic system using structural 

similarity. The proposal consists in the meaningful exploration 

of each model, specifically behavior of the state variable.  

The decomposition of the behavior of a state variable in 

different modes of behavior of a system, each one has a 

different set of weights and shows different patterns of 

behavior. These weights are more significant than eigenvalue 

to develop a new technique for identifying linear system and 

invariants over time.  

 We use two methods based on different areas of knowledge 

such as linear algebra and statistics. This paper is a 

conceptual proof that enriches the implementation and 

validity not only from point of view algorithmic likewise physic 

mathematical. 

I. INTRODUCTION 

HIS document , we show how the behavior of any state 

variable in a linear system can be broken down into 

different modes of behavior, each being characterized by an 

eigenvalue. This paper is concerned with linear system, but 

it is hoped that it will enriched with new techniques for non 

linear systems.  The temporal trajectory of a state variable i  

1 1( ) ( ) ... ( ) ... ( )i i ij j in n ix t w m t w m t w m t u  (1) 

Where ( )ix t is the value of a state variable i in the 

instant t ; ijw is a constant term which represents the 

significance mode j to the variable i ; ijm  is the value of 

thj mode behavior in time t ; iu  is a constant term. The 

mode of behavior of a linear system is a function of the 

eigenvalue of the Jacobian matrix which characterized the 

system (Oagata 1990). 

If   the eigenvalue do not have an imaginary part, the part 

of the behavior mode is expressed by the first answer of the 
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last equation: 
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If the eigenvalues do not have an imaginary part, the part 

of the behavior mode is expressed by   the first answer of 

the last equation (2) and is characterized by growth 

exponential function if the real part of the eigenvalue is 

positive y decrease exponential function if the real part of 

the eigenvalue is negative. 

If an eigenvalue has an imaginary part that is different 

from zero, this means that the two eigenvalues are a 

conjugated pair (with the same real part) and together they 

generate the oscillating mode represented by the second 

expression of the last equation 13 .  

1 1( ) ( ) ... ( ) ... ( )i i ij j in n ix t w m t w m t w m t u
 

If the real part of the conjugated pair of eigenvalue is 

positive, an expanded oscillation mode is produced. If it is 

equal to zero a sustained oscillation mode is produced and if 

it is negative a dampened oscillation mode is produced. (See 

figure 1)  

 
 

 
Fig 1 Eigenvalue Placement in Complex plane    
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The breakdown of the temporary trajectory of state 

variable info behavior modes produces a useful set of 

diagnostics, not only to understand the sources of behavior 

of the variables, but also to identify the degree of interaction 

between system variables.  Furthermore, the significance of 

the behavior mode of variable ijw  can also be used as a way 

of identifying the elements the structure responsible for the 

observed behavior 12 . 

The aforesaid is articulated through the sensitivity 

valuation between the weight model and gain link model.  

The gain link between two variables is defined as the 

derived partial of the output variables with regards to the 

input variables 
a

ag
b

and also the elasticity of the 

weight for a gain is defined as the relationship between a 

fractional change in the weight and a fractional change in 

the gain, for example

w

w
g

g

. 

 

 

II. ANALYSIS OF THE EIGENVALUES OF LINEAL MODELS 

 

We can breakdown the temporal trajectories of a state 

variable info many behavior modes.  The temporal 

trajectories of a state variable are a mathematical function 

that specifies the value of the state variables in any instant 

of time. The departure point is the structure of the model, 

which in the case of linear models can be represented by the 

following compact matrix equation: 

( ) ( )t tx Gx b  (3) 

Where x the vector of the state variables is, x is the 

vector of the first derivatives of the state variable (rates).  

b Is a constant vector and G is the Jacobian matrix or gain 

matrix specified this  ij i

j

x

x
G


 . In linear system G is 

constant at least when the system is not lineal, where it is a 

function of the state variables and external entrance and 

consequently varies in time. G  Is a constant in linear 

systems with zero variables or external constant, with the 

exception of non linear systems 12  

If we differentiating equation (4) with respect to time we 

find the expression follow: 

( ) ( )t tx Gx   (4) 

Where x is the vector curvature (the vector of the second 

derivates of the state variables). The gain matrix G  relates 

the slope vector with the curvature vector in a standard 

space n- dimension in real. 

The solution for a system of differential equations, 

specified by equation (4) gives the temporal trajectories of 

the system slope vector.  The eigenvalue model will be use 

to resolve slope differential equations (Luenberg, 1979) for 

the temporary trajectory. 

The n  Eigen values and their right eigenvectors 

associated to the gain matrix G are defined 

as  k k kGr r . 

 The case of absence means having different eigenvalue 

and thus the right eigenvectors are linearly independent 

(Luenberg 1979) and cross in the space of n-dimension
n . 

Consequently, the slope vector can be expressed as a linear 

combination of right eigenvectors as : 

 

1 1 2 2 ( ) ( ) ( ) ... ( )n nt t t tx r r r  (4) 

Where k the slope vector components are in the new 

system of coordinates and ir are the constant sets of 

eigenvectors.  The differential equation solution of (5) with 

respect to time produces the components k
 the curvature 

vectors in the new system of coordinates as: 

 

1 1 1 2 2 2 ( ) ( ) ( ) ... ( )n n nt t t tx r r r  (5) 

It is clear that only the determining factor of dynamic 

toward a particular coordinates, for example an eigenvector 

is the eigenvalue associated with the same coordinate. By 

substituting the solution for dynamic behavior of each k  

in the equation (5) a temporal trajectory of slope vectors is 

produced toward the dimension of own space, 

 
( )( )10 0

1 1   ( ) ( ) ... ( )
tt n

n nt t e t ex r r  (6) 

If we integrate the former equation of slope trajectories 

with respect to time (from  time to t time) and defining  
0

( )k
k

k
kw r  the following expression is obtained: 
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This decomposes the state trajectories into many forms of 

behavior, which are characterized by an eigenvalue. 

 



 

 

 

III. PARAMETRIC STRUCTURE OF THE DECOMPOSITION OF 

DYNAMIC SYSTEM BEHAVIOR 

 

In the first part of this document, a mathematical 

equation was developed for the state trajectory behavior of 

dynamic system (see equation 7). In this section, the origin 

of each component of the state trajectory will be 

identified 12 . 

In an interpretation of figure 2, the basic component is: 

The eigenvalue kλ , the right eigenvector kr   the initial 

values of the slopes kα and parameters. 

We notice the use of delay links to indicate eigenvalue, 

right eigenvectors and alphas controls of the future 

trajectories of the state variables 

 
Fig 2 Parametric Structure of Identification 

 

 

An analysis of the eigenvalue will be included as they can 

play an import role in modeling of behavior. For example, if 

was shown that a simple linear model with a positive 

feedback cycle can generate an exponential behavior 

decrease, rather than an exponential growth ; if the initial 

slope vector was orthogonal with the right eigenvector 

associated with el positive eigenvalue (Saleh and  Davinsen 

,2001). 

When observing the eigenvalues, we see that they only 

originate from the model structure; or more specifically 

from the gain matrix G . The gain matrix is used as a 

condensed representation of the structure of the model and 

was used in section I as a starting point for the state 

trajectory decomposition in different modes of behaviors. 

Furthermore , it can be observed that in linear models , 

the gain matrix  G , depends on the parameters of the 

model (constant in the model) , although , for each 

eigenvalue  it is possible to formulate the eigenvalues 

(depend variable) and the parameters of the model 

(independent variable) however for simplification instead of 

formulating a simple complicated function , relating an 

eigenvalue with all the parameters of the model, it is 

possible to develop many mathematical functions , where 

each function relates an eigenvalue to a single 

parameter 1 .  In our investigation we used Matlab 

Toolbox to automate the aforementioned process. Where 

x the vector of the state variables is, x is the vector of the 

first derivatives of the state variable (rates).  b Is a constant 

vector and G is the Jacobian matrix or gain matrix 

specified this  ij i

j

x

x
G


 . In linear system G is constant 

at least when the system is not lineal, where it is a function 

of the state variables and external entrance and 

consequently varies in time. G  Is a constant in linear 

systems with zero variables or external constant, with the 

exception of non linear systems 12  

 

Similarly, the eigenvector only originates from the gain 

matrix. It is possible to formulate mathematical functions 

relating any eigenvector (dependent variable) for any 

parameter (independent variables). 

The initial value of each alpha (for example
0

k ) 

represents the initial slope vector projection along the 

specific right eigenvector (for example a specific coordinate 

in own space).  For example, the initial value of the alpha 

are depend in the initial value of net rates (values at the 

beginning of the simulation) and the right eigenvectors. To 

sum up, for each component in state trajectory (equation 7) 

it is possible to formulate mathematical functions relating 

the component with any parameter.  This means that a 

compound mathematical function can be developed relating 

the future values in any given moment in time, of a state 

variable (dependent variable) with any parameters 

(independent variable). The partial differentiation in any 

moment in time of this compound function with respect to 

the parameter produces the future value sensitivity (of the 

state variable) with this parameter. 

The state of transition of the dynamic system in the 

internal space and the mapping from the space of internal 

states to the space of observations is modeled by the 

following linear equations: 
( ) ( ) ( )

1

1

i i i

t t t

t t t

x F x g w

y Hx v
 

 

Where 
( )iF  is a transition matrix; 

( )ig  is a bias vector. 

H  Is a transition matrix that defines the lineal projection 

from a space of internal state to the observation space, 

Notice that each dynamic system has,
( )iF  

( )ig y 
( )i

tw  

individually.  It is assumed that each 
( )iw  is noise identifier 



 

 

 

and v  has normal distribution 
( )0,

t

i

xN Q and 

0,yN R  respectively. 

The classes of dynamic systems can be categorized by the 

eigenvalue of the transition matrix which determines 

answers of the input zero of the system. In other words, 

these eigenvalues determine the general behavior of patterns 

(trajectories) with temporary variation in the space of states. 

A. Decomposition of Eigenvalue Starting From The 

Gain Matrix 

The general class of dynamic pattern (corresponding to 

trajectories at point in the states space) of a linear 

dynamical system can be described by the eigenvalues of the 

gain matrix. For the concentration of the temporal evolution 

of states in dynamical system, it can be assumed that the 

bias and the noise process are zero in equation 1, using the 

decomposition of the eigenvalue of the gain matrix; we 

arrive at the following equations 6  
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1 1 1  ,..., ,..., ,...,n n nG E E e e diag e e  (7) 

The state in time t can be resolved with initial conditions 

0x  as follows:  

1

0 0

1

0

1

  

    

T
t

t

n
T t

p p p

p

x F x E E x

E E x e
 (8) 

Where p and pe are the corresponding eigenvalue and 

eigenvector. The weight value p is determined from the 

initial state 0x by the determination on the complex plane 

as:  

 

1

1 0,...,
T

n E x  (9) 

From here, the general patterns of a system can be 

categorized by using the position of the Eigen values (poles) 

1,..., n on the complex plane. The determination of the 

oscillatory state is determined by its argument values 

(angles), according to the following rules: 

Oscillation if at least one eigenvalue is negative or 

complex 

No oscillating if all the eigenvalue are real numbers. 

The absolute value of the eigenvalue determines the state 

of convergence or divergence of the form: 

Diverge if at last one the eigenvalue is above one.   

Converge if all the absolute values of the eigenvalue are 

less than one. 

The system can generate pattern due to temporal 

variation if and only if 1  1p for p n ; this pattern 

converges at zero. (In control terms it is said that the system 

is stable) 

The system can generate monotonic or cyclical patterns if 

the imaginary part of the eigenvalue is different to zero. 

 

A.  Identification Through The Estimation of The Gain 

Matrix 

The identification of the system with no restrictions is 

conditioned a ranges temporal ,b e are represented by the 

dynamic linear system iD , thus the transition matrix can be 

estimated 
( )iF and the bias vector 

( )ig of the 

sequence
( ) ( ),...,i i

b ex x  of internal states.  This problem of 

parameter estimation becomes a problem of minimization of 

error prediction 6 . 

This error prediction vector can be determined using the 

discrete equations for dynamical linear system and after 

having estimated the matrix of 
( )iF  the bias vector

( )ig . 

The formulation is as follows: 

 

( ) ( ) ( ) ( )

1

i i i i

t t tx F x g  (10) 

Thus, the sum of the norms of the squares of all of the 

error vectors in the range ,b e  becomes:  

2
2

2 ( ) ( ) ( )

1

1 1

e e
i i i

t t t

t b t b

e x F x g      (11) 

 

Finally, the optimum values of 
( )iF and 

( )ig  can be 

estimated by solving the following problem of least 

minimums square as: 

(i) ( )

2e
(* ) (* )

t
F ,

t=b+1

, arg  min min e
i

i i

g
F g   (12) 

IV. DEFINITION OF THE PROBLEM 

The principal motivation of this work is to develop some 

methods or techniques which allow the study of complex 

systems, in the sense of finding their underling structure or 

structural similarity with known systems. 

This enables us to look for data structures and their 

classification into categories in such way that the similarity 

between structures of the same category is high and the 

different categories of similarity values low. Traditional 



 

 

 

approaches to system analysis –e.g. trying to find a 

mathematical model that describes  output as a function of 

state variable and due to the fact that  input perform poorly 

when dealing with complex systems. 

This may be due to their nonlinear, time-varying nature 

or to uncertainty in the available measurement 1 . We can 

approach the analysis of dynamic systems in two different 

ways: the first is based on the existence of a state measuring 

mechanism in the form of a mathematical model; In the 

absence of such a measuring mechanism, we must resort to 

some perceptual mechanism, that allows us to perceive the 

underling structure of the system, based on the behavior of 

the dynamic system.  

The similarity measure is one the possible perceptual 

mechanism that can be used to analyze such systems. One 

of the motivations of this dissertation is to discover ways to 

use structural similarity as mechanics to study dynamic 

systems.  

The classic methods of recognition of patterns should be 

tuned to consider desirable problems from the dynamic 

point of view, that is to say the process of objects are 

described with sequences of temporary observations. 

In the design of dynamic systems and analysis in the 

domain of time, the concept of states of a system is used; a 

dynamic system is usually modeled by a system of 

differential equations.  

To obtain dynamic systems by differential equations that 

represent the relationship between the input 

variables
1 2( ), ( ),..., ( )pu t u t u t  and the output 

variables
0 1( ), ( ),..., ( )qy t y t y t , the intermediate variables 

receive the name of state variables 1 2( ), ( ),..., ( )nx t y t x t . A 

set of state variables in any instant determines the state of 

the system at this time 13 . 

If the current state of a system and the value of the 

variables are given for 0t t , the behavior of the system can 

be described clearly. The state of the systems is a set of real 

numbers in such a way that the knowledge of these numbers 

and the values of the input variables provide the future state  

( ) ( ) ( )

1 0

( ) ( )*

1 1

*i i i

i i

G X X

u m G m

 

  

of the system and the values of the output variables by the 

equations that describe the dynamics of the system. The 

state variables determine the future behavior of the system 

when the current state of the system and the values of the 

input variables are known. The multidimensional space of 

observation induced by the state variables receives the name 

of space of states.  

The solution of a system of differential equations can be 

represented by a vector ( )tx  that corresponds to a point in 

the state space in an instant of time t . This point moves in 

the space of states like steps of time. The appearance or the 

way to this point in the space of states is known like as 

trajectory of the system.  

For an initial state and   end state given an infinite 

number of input vectors exist that correspond to trajectories 

with start and end points.   On the other hand, through a 

point on the state space only one trajectory passes.  

Considering dynamic systems in the control theory, a lot 

of attention has been paid to adaptive control 1 . The main 

reason to introduce this area of investigation is to obtain 

controllers whose parameters can adapt to the changes in 

the dynamic process dynamic to perturbation characteristic. 

 

V. RESULTS 

There is an identification method know as identification 

of dynamic system with no restriction in the eigenvalue 

which allows us to estimate the gain matrix starting from an 

interval ,b e  that represents a behavior mode of the state 

trajectory , specified by 
( )ix  . Taking the discrete equation 

form for dynamic system 1i ix Gx u , we begin our 

method with the following expressions: 

 
( ) ( ) ( ) ( ) ( )

0 0 1 0

( ) ( ) ( ) ( ) ( )

1 1 1 1

,...,

,...,

i i i i i

b e

i i i i i

b e

X x m x m

X x m x m



  (13) 

Where 
( )

0

im  and 
( )

1

im are the middle value of columns in 

( )

0

iX  and 
( )

1

iX respectively and which are formulated in 

this way:  
1

( ) ( )

0

( ) ( )

1

1

1

1

1

1

e
i i

t

t b

e
i i

t

t b

m x
l

m x
l

 (14) 

The gain matrix and the bias term can be calculated, for 

each interval in the state trajectory in the follow form: 
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Where 
( )

0

iX a Moore Penrose 2  is generalized inverse 

(Moore Penrose pseudo inverse) of
( )

0

iX  the inverse matrix 

X can be defined as: 

2

2

1
2

0

1
2

0

lim

lim

T T

T T

X X XX I

XX I X

 (15) 



 

 

 

Where I is the unit matrix and is real value different 

to zero 6 . 

In summary, one can say that the method appears to be 

very useful for both accurate identification of distinct 

behavior modes and for quickly identifying coherent pieces 

of structures involved a structural similarity.  

The behavior of fermented process can be divided in 

phases, which are also indicated in figures 6, 7: a period of 

exponential growth, balancing growth, exponential decline 

and balancing decline. 

The first example describes   identification of the highly 

nonlinear pressure dynamic in a laboratory of fermentation    

13 . The fermentation process under consideration 

consists of a 40 l tank containing 25 l of water.    At the 

bottom of tank, air is fed into the water at a specified 

constant flow rate. The air pressure above the water 

level ( )y t  is controlled by a one valve ( )u t . Nonlinearities 

are both due to the valve characteristic y the air 

compression curve. The two data sequence used for 

identification is shown in Figure 3. 

 

 
     Fig 3 State Variables and Smooth Variables    

 

The number of clusters and the location of cluster center 

at moment in time constitute the cluster structure.  If in the 

course of time the number clusters and the locations of 

clusters centers vary, then one has to deal with the dynamic 

cluster structure. 

 Its temporal development is represented by trajectories of 

the cluster centers in the feature space (Figure 5).  Changes 

in the cluster structure correspond to change of a state, or 

behavior, of a system under study and will also be referred 

to a structural change. 

   

 

 
Fig 4 Changes in the Cluster Structure 

Consider this dynamic complex system that can assume 

different state in the course of time. Each state of the system 

at moment time represents an object for classifications .as 

state, a dynamic system is describe by curvature and slope 

variables characterizing its dynamic behavioral.  Each 

object dynamic is a temporal sequence of observations and 

described by discrete function of time is called a trajectory 

on an object. Thus , based in the form of trajectories was 

chosen as a criterion of similarity between trajectories , then 

five clusters of dynamic objects can be distinguished (Figure 

5)  the labels are : red, green, blue cyan , magenta.    

 

 

    

Fig 5 Dynamic Clustering in Feature Space 

 

In the following example the structural features of the 

system of fermentation will be examined which may have 

critical behaviors.  

Comparing system dynamic during different periods of 

operation, (Figure 6 and 7)   different cluster of system can 

be distinguished: for example, in the first instant of time, 

instant of time, in both trajectories is assigned to a red 

green; in an instant of time later, in the first trajectories is 



 

 

 

assigned to a cyan cluster and in the second trajectory is 

assigned to the red cluster. Hence, the dynamic of this 

situation shows itself in changing cluster structure and in 

the transition of dynamic object represented by trajectories 

between clusters. 

 

   

 
Fig 6 Temporal Behavior of   Pressure Clusters  

 

 

The purpose of decomposing of a fermentation system is 

satisfied by the dynamic clustering results as shows in the 

following figure 

 

 

 
Fig 7 Dynamic Clustering in Gas Flow System 

 

 

This dynamic clustering reveals a decomposition of the 

extended dynamic oscillatory system in increasing and 

decreasing asymptotic behavior corresponding to first with 

negative feedback. 

The previous statement whilst being true serves as a basis 

to know the system structure through a lineal combination 

of behavior modes specified by the values of the real and 

complex eigenvalue, as show in the following graphs: 

Using eigenvalue analysis, however, it is possible to 

characterize the behavior with more precision. Figure 8, 9 

shows modes specified by the values of the real and 

imaginary part of the system eigenvalue over time. 

.   
Fig 8   Eigenvalue in the System of Fermentation  

 

 

Now, we will illustrate the behavior of the other segments 

which allows their mode of behavior to be established based 

on whether their eigenvalue are real or imaginary. 

 

 
Fig 9 Eigenvalue in the Complex Plane 

 

In these last result of the identification method using 

linear algebra an increasing exponential behavior is 

observed, similar to that of a first order system with positive 

feedback and an oscillatory behavior characterized by its 

two eigenvalue with complex value. 

Identification results using statistics methods like 

principal component analysis (PCA) 11  will inform us 

about the behavior of system, its component and the R 

distribution of its eigenvalues for the fermented system. In 

figure 10 this result can see.  



 

 

 

 

  
Fig 10   Grid of Eigenvalue for Principal Segment the Fermentation 

System  

The PCA the light colors represent occurrences of high 

negative values and the dark colors represent occurrences of 

high positive values 11 . Thus, areas with a similar tone 

mean that their coefficient has similar values. 
  

 
  

VI. CONCLUSION 

 

The previous results need to part from explicit data taken 

from real world abstraction methods and transformed into 

structural features  through geometric descriptors for 

example structural similarity. 

The features space considered is a space of slope values 

vs. curvature values as established in equation 3.  Once the 

feature vector is specified, which is no more than the 

curvature and slope vector from trajectories of states 

variable of dynamic system. These values are inputs for the 

process of dynamic clustering Castañeda Colina (DCCC) 

which partition the primary state variable trajectories into 

their respective behaviors. This allows get the segment to be 

mapped in temporal space for the identification process no 

restrict. 

All of the values of state variables   need to be considered 

in this features space to estimate the gain matrix, Moore 

Penrose method is used accompanied by a regularization 

coefficient, the matrix factors being curvature vector and 

slopes vector of the state variables. 

Once the matrix has been estimated , if is the input in the 

process known as Gershgorin΄s circle methods , which 

enables the position of the eigenvalue to be found  ,it 

process  becomes  a clustering process of the eigenvalue.    

Furthermore, by using the statistic method know as 

principal component analysis the behavior of the eigenvalue 

can be illustrated for each mode of behavior. 

We consider that our model is transparent and a detailed 

analysis will prove this, although we know that numerous 

techniques which are more or less effective are know in the 

academic foundations of systems identification. 
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