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Abstract

The purpose of this paper is to obtain sufficient conditions for the existence of unique
fixed point of T'—zamficescu operators in complete metric spaces.

1 Introduction

Reciently, A. Beiranvand, S. Moradi, M. Omid and H. Pazadeh [1], introduced the notions of
T—Banach contraction and T'—contractive mapping, and then they extended the Banach con-
traction principle, (see [2]) and Edelstein’s fixed point theorem [3|, S. Moradi [4] introduced the
T—Kannan contractive mapping and extended the Kannan’s fixed point theorem [5]. Inspired
and motived by the above said facts, the authors have introduced the motions of T'—chatterjea

contractive mapping [6] and the T—operator of Banach [8§].

The purpose of this paper is to study the existence of fixed points for mapping S defined on

a complete metric space such that is a T'—zamfirescu operator.

2 Preliminaries

In the first, we recall some definitions.

Definition 2.1 (/1)

Let (M,d) be a metric space and T, S : M — M be two functions. A mappings S is said to
be T—Banach contraction, (TB-Contraction), if there is a € [0,1) such that

d(TSz,TSy) < ad(Tx,Ty) (2.1)

for all x,y € M.
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If we take T'= Id = Identity in (2.1) then we obtain the definition of Banach’s contraction.

Definition 2.2 (/2])

Let (M,d) be a metric space and T,S : M — M be two functions. We say that S is a
T—Kannan contraction, (TK - Contraction), if there is b € [0,1/2) such that

d(TSz,TSy) < bld(Tx,TSz)+ d(Ty,TSy)] (2.2)

for all x,y € M.

If we take T' = Id then we get the definition given by Kannan [5].

Definition 2.3  (/6])

Let (M,d) be a metric space and T,S : M — M be two mappings. We say that S is a
T— Chatterjea contraction, (TC - Contraction), if there is ¢ € [0,1/2) such that

d(TSxz,TSy) < c[d(Tx,TSy) + d(Ty, TSx)] (2.3)

for all x,y € M.

If we take T = Id then we obtain the chatterjea’s definition [9].

Definition 2.4 (/7])

Let (M,d) be a metric space and T, S : M — M be two mappings. The function S is called
a T'—zamfirescu operator, (TZ - operator), if and only if there are real numbers, 0 < a <1, 0 <

b, ¢ < 1/2 such that for all z,y € M at least one condition is true:

TZy.—d(TSz,TSy) < ad(Txz,Ty)
TZy. —d(TSx, TSy) < bld(Tz,TSz)+d(Ty,TSy)] (2.4)
TZ3. —d(TSz, TSy) < c[dTz,TSy)+ d(Ty,TSx)]

If we take T' = Id then we obtain the zamfirescu’s definition [10].
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Lemma 2.5 Let (M,d) be a metric space and T, S : M — M be two functions. Is S is a TZ -
operator then there is 0 < § < 1 such that

d(T Sz, TSy) < dd(Tz,Ty) + 20d(Tx, TSx) (2.5)

for all x,y € M.

Proof: If Sis a TZ - operator then at least one of (T'Z1), (T Zs) or (T'Zs) is true. If (T'Zy)
holds then

d(TSz,TSy) < bld(Tz,TSx)+d(Ty,TSy)]

< bd(Tz,TSz) +d(Ty,Tx) + d(Tx,TSx) + d(T' Sz, Ty)]
since 0 < b < 1/2 we obtain

2
d(TSxz,TSy) < %_bd(T@, Ty) + 1—_bbd(T:L", TSx) (2.6)

If (T'Z3) holds, then similarly we get

2
d(TSz, TSy) < éd(Tm,Ty) + 1—_Ccd(Ta:,Tsx) (2.7)

Therefore by denoting,

b c
d=max<a, ——, ——
{ 1-0 1—6}

we have 0 < 4§ < 1 and for all x,y € M the following inequality

d(Tsz, TSy) < dd(Tx,Ty) + 20d(Tx, TSx) (2.8)

holds. O

In a similar “maner” we obtain

d(TSz, TSy) < dd(Tx,Ty) + 26d(Tx,TSy) (2.9)

holds for all z,y € M.
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Example 2.6 1. Let M = [1,00) C R be with the metric induced by R : d(x,y) = |v —y|. We
1
consider the functions T, S : M — M defined by Tx = p +1, Sz =2z, x € M. Then

1.1.- It is clear that S is not a Banach contraction.

1.2.- S is TB - Contraction because:

1 1
d(T Sz, TSy) = ]TSx—TSy]:‘——i-l———l'
2x 2y
111 1 111 1 1
= - |—-——|==|-—1—==1|==|Tx = Ty| < ad(Tz, T

where a = 1/2 < 1.

2. Let M = [0,1] C R be with the metric induced by R : d(z,y) = |z — y|. We consider the
functions T, S : M — M defined by Tz = 2* and Sz = %, x € M. Then

2.1.- It is clear that S is a Banach contraction.

2.2.- S is not a K—contraction since

d(Sz,50) = |Sz—S0| =3
dz,S2) = |o =S| =3
d(0,50) = o.
Therefore,
d(Tw,50) = 5 =lo—Sa|+0- 50|

= d(z, Sz) + d(0, S0).

2.3.- S is a TK - contraction because:

22 2
d(TSz, TSy) = |T'Sx—TSy|l= iy
1
< 3 []Ta: —TSz|+ |y — TSy]]

<d(T:E, TSz) + d(y, TSy)> .

wl
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2.4.- In a similar maner we see that S is a TC - Contraction.

3. Let M = [0,1] be with the metric induced by R : d(z,y) = |x —y|. We consider the functions
T,S:M — M defined by Tx = \/z and Sz = 2%, x € M. Then

3.1.- It is clear that S is not a Banach contraction.

3.2.- S satisfies the condition (2.8) with 6 € (1/3,1) since

d(TSx,TSy) = |T'Sx — TSy| = |z — y| < d|lz — y| + 2d|x — y|

Definition 2.7 (/1))
Let (M,d) be a metric space and T : M — M.

1. The function T is said sequentially convergent if we have, for every sequence (yy), if T (yn)

is convergent then (y,) is also convergent.

2. The function T is said subsequentially convergent if we have, for every sequence (yn), if

T(yy) is convergent then (y,) has a convergent subsequence.

3 Main results

We introduce the following, let (M, d) be a metric space, xg € M and T,S : M — M two
mappings. The sequence (T'x,) C M defined by

Txni1 =TSz, =TS xg, n=0,1,... (3.10)
is called the T'—Picard iteration associated to S.

Theorem 3.1 Let (M,d) be a complete metric space and T, S : M — M be two mappings such
that T is continuous, one to one and subsequentially convergent. If S is a TZ - operator then S
has a unique fized point. Moreover, if T is sequentially convergent then for every xog € M the

T— Picard iteration associated to S, (T'S™xg) converges to T'(zg), where zq is the fized point of S.

Proof: Since S is a TZ - operator then by lemma 2.5 there is 0 < 6 < 1/3 < 1 such that
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d(TSz, TSy) < dd(Tx,Ty) + 26d(Tx, T Sx) (3.11)

for all z,y € M.

Now let (T'z,) C M the T—Picard iteration associated to S defined by (3.11) and zg € M
arbitrary. Then

d(TS" M ag, TS x0) < hd(TS"xo, TS™ 1) (3.12)

]

where h:1—25

< 1. Therefore, for all n,

d(TS™ ag, TS o) < h"d(TSxo, Txo) (3.13)
From (3.13) we get
lim d(TS™" ay, TS o) =0 (3.14)

Now, for m,n € N with m > n, we have

d(TS™zo, TS"zo) < (h"+ ...+ K™ 1)d(TSzo, Txo)

R (3.15)
< T hd(TSxo,Txo)
From (3.15) we obtain,
lim d(TS™xo, TS"x0) =0 (3.16)
n,Mm—00
and hence (T'S™xy) C M is a Cauchy sequence in M and thus there is yg € M such that
lim TSz = yo (3.17)

n—oo

since T is subsequentially convergent, (S™z() has a convergent subsequence, so there is a zg € M

such that
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lim S™ xo = 2o (3.18)

k—oo

Now, using the continuity of 7" and (3.18) we have,

Ilir% TS™xg =Tz (3.19)

From (3.17) and (3.19) we obtain yg = T'zp. So

d(TSz,T2) < d(TS2,TS"Mag) + d(TS" W, TS"W )

+ (TSR Tz) — 0, (k — o0).
Therefore, d(T'Szy, Tzy) = 0. Since T" is one to one Szy = zp so S has a fixed point.
Since (3.11) holds and 7' is one to one, S has a unique fixed point.

Finally, if T' is sequentially convergent, by replacing (h) with (n;) we conclude that

lim S™xg = 2z and lim T'S"xg = T'zg.

n—~00 n—~0o0

O

If we take T' = Id then we obtain the zamfirescu’s fixed point [10]. Since the T'—Kannan’s
and T'—Chatterjea’s contractive conditions are both included in the class of TZ - operators, by

theorem 3.1, we obtain inmediately the following results,

Corollary 3.2 Let (M,d) be a complete metric space and T, S : M — M be two mappings such
that T' is continuous, one to one and subsequentially convergent. If S is TK - contraction then
S has a unique fized point, said zg € M. Moreover, if T is sequentially convergent then for every
xg € M, (S™xg) converges to zy and T'S"xry — Tzy. If we take T = Id we get the Kannan’s
fized point theorem [5].

Corollary 3.3 Let (M,d) be a complete metric space and T, S : M — M be two mappings such
that T' is continuous, one to one and subsequentially convergent. If S is TC - contraction then
S has a unique fived point, said zyg € M. Moreover, if T is sequentially convergent then for every

xg € M, (S™xg) converges to zy and T'S™xog — Tz.

If we take T' = Id we obtain the chtterjea’s fixed point theorem [9].
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