Revista Notas de Matemática Vol.5(1), No. 274, 2009, pp.64-71 http://www.saber.ula.ve/notasdematematica/ Comisión de Publicaciones Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes

Some results on T-zamfirescu operators

José R. Morales and Edixon Rojas

Abstract

The purpose of this paper is to obtain sufficient conditions for the existence of unique fixed point of T-zamficescu operators in complete metric spaces.

1 Introduction

Reciently, A. Beiranvand, S. Moradi, M. Omid and H. Pazadeh [1], introduced the notions of T-Banach contraction and T-contractive mapping, and then they extended the Banach contraction principle, (see [2]) and Edelstein's fixed point theorem [3], S. Moradi [4] introduced the T-Kannan contractive mapping and extended the Kannan's fixed point theorem [5]. Inspired and motived by the above said facts, the authors have introduced the motions of T-chatterjea contractive mapping [6] and the T-operator of Banach [8].

The purpose of this paper is to study the existence of fixed points for mapping S defined on a complete metric space such that is a T-zamfirescu operator.

2 Preliminaries

In the first, we recall some definitions.

Definition 2.1 (/1/)

Let (M, d) be a metric space and $T, S : M \longrightarrow M$ be two functions. A mappings S is said to be T-Banach contraction, (TB-Contraction), if there is $a \in [0, 1)$ such that

$$d(TSx, TSy) \le ad(Tx, Ty) \tag{2.1}$$

for all $x, y \in M$.

If we take T = Id = Identity in (2.1) then we obtain the definition of Banach's contraction.

Definition 2.2 (|2|)

Let (M,d) be a metric space and $T, S : M \longrightarrow M$ be two functions. We say that S is a T-Kannan contraction, (TK - Contraction), if there is $b \in [0, 1/2)$ such that

$$d(TSx, TSy) \le b[d(Tx, TSx) + d(Ty, TSy)]$$

$$(2.2)$$

for all $x, y \in M$.

If we take T = Id then we get the definition given by Kannan [5].

Definition 2.3 ([6])

Let (M,d) be a metric space and $T, S : M \longrightarrow M$ be two mappings. We say that S is a T-Chatterjea contraction, (TC - Contraction), if there is $c \in [0, 1/2)$ such that

$$d(TSx, TSy) \le c[d(Tx, TSy) + d(Ty, TSx)]$$

$$(2.3)$$

for all $x, y \in M$.

If we take T = Id then we obtain the chatterjea's definition [9].

Definition 2.4 ([7])

Let (M,d) be a metric space and $T, S : M \longrightarrow M$ be two mappings. The function S is called a T-zamfirescu operator, (TZ - operator), if and only if there are real numbers, $0 \le a < 1, 0 \le b$, c < 1/2 such that for all $x, y \in M$ at least one condition is true:

$$TZ_{1} - d(TSx, TSy) \leq ad(Tx, Ty)$$

$$TZ_{2} - d(TSx, TSy) \leq b[d(Tx, TSx) + d(Ty, TSy)]$$

$$TZ_{3} - d(TSx, TSy) \leq c[d(Tx, TSy) + d(Ty, TSx)]$$

$$(2.4)$$

If we take T = Id then we obtain the zamfirescu's definition [10].

Lemma 2.5 Let (M,d) be a metric space and $T, S : M \longrightarrow M$ be two functions. Is S is a TZ - operator then there is $0 \le \delta < 1$ such that

$$d(TSx, TSy) \le \delta d(Tx, Ty) + 2\delta d(Tx, TSx)$$
(2.5)

for all $x, y \in M$.

Proof: If S is a TZ - operator then at least one of (TZ_1) , (TZ_2) or (TZ_3) is true. If (TZ_2) holds then

$$d(TSx, TSy) \leq b[d(Tx, TSx) + d(Ty, TSy)]$$

$$\leq b[d(Tx, TSx) + d(Ty, Tx) + d(Tx, TSx) + d(TSx, Ty)]$$

since $0 \le b < 1/2$ we obtain

$$d(TSx, TSy) \le \frac{b}{1-b}d(Tx, Ty) + \frac{2b}{1-b}d(Tx, TSx)$$
(2.6)

If (TZ_3) holds, then similarly we get

$$d(TSx, TSy) \le \frac{c}{1-c}d(Tx, Ty) + \frac{2c}{1-c}d(Tx, Tsx)$$
(2.7)

Therefore by denoting,

$$\delta = \max\left\{a, \frac{b}{1-b}, \frac{c}{1-c}\right\}$$

we have $0 \le \delta < 1$ and for all $x, y \in M$ the following inequality

$$d(Tsx, TSy) \le \delta d(Tx, Ty) + 2\delta d(Tx, TSx)$$
(2.8)

holds.

In a similar "maner" we obtain

$$d(TSx, TSy) \le \delta d(Tx, Ty) + 2\delta d(Tx, TSy)$$
(2.9)

holds for all $x, y \in M$.

- **Example 2.6** 1. Let $M = [1, \infty) \subset \mathbb{R}$ be with the metric induced by $\mathbb{R} : d(x, y) = |x y|$. We consider the functions $T, S : M \longrightarrow M$ defined by $Tx = \frac{1}{x} + 1$, Sx = 2x, $x \in M$. Then
 - **1.1.-** It is clear that S is not a Banach contraction.
 - **1.2.-** S is TB Contraction because:

$$d(TSx, TSy) = |TSx - TSy| = \left|\frac{1}{2x} + 1 - \frac{1}{2y} - 1\right|$$
$$= \frac{1}{2}\left|\frac{1}{x} - \frac{1}{y}\right| = \frac{1}{2}\left|\frac{1}{x} - 1 - \frac{1}{y} - 1\right| = \frac{1}{2}|Tx - Ty| \le ad(Tx, Ty)$$
where $a = 1/2 < 1$.

- 2. Let $M = [0,1] \subset \mathbb{R}$ be with the metric induced by $\mathbb{R} : d(x,y) = |x-y|$. We consider the functions $T, S : M \longrightarrow M$ defined by $Tx = x^2$ and $Sx = \frac{x}{2}$, $x \in M$. Then
 - **2.1.-** It is clear that S is a Banach contraction.
 - **2.2.-** S is not a K-contraction since

$$d(Sx, S0) = |Sx - S0| = \frac{x}{2}$$
$$d(x, Sx) = |x - Sx| = \frac{x}{2}$$
$$d(0, S0) = 0.$$

Therefore,

$$d(Tx, S0) = \frac{x}{2} = |x - Sx| + |0 - S0|$$
$$= d(x, Sx) + d(0, S0).$$

2.3.- S is a TK - contraction because:

$$d(TSx, TSy) = |TSx - TSy| = \left|\frac{x^2}{4} - \frac{y^2}{4}\right|$$
$$\leq \frac{1}{3} \left[|Tx - TSx| + |y - TSy|\right]$$
$$= \frac{1}{3} \left(d(Tx, TSx) + d(y, TSy)\right)$$

2.4.- In a similar maner we see that S is a TC - Contraction.

- 3. Let M = [0,1] be with the metric induced by $\mathbb{R} : d(x,y) = |x-y|$. We consider the functions $T, S : M \longrightarrow M$ defined by $Tx = \sqrt{x}$ and $Sx = x^2$, $x \in M$. Then
 - **3.1.-** It is clear that S is not a Banach contraction.
 - **3.2.-** S satisfies the condition (2.8) with $\delta \in (1/3, 1)$ since

$$d(TSx, TSy) = |TSx - TSy| = |x - y| \le \delta |x - y| + 2\delta |x - y|$$

Definition 2.7 ([1])

Let (M, d) be a metric space and $T: M \longrightarrow M$.

- 1. The function T is said sequentially convergent if we have, for every sequence (y_n) , if $T(y_n)$ is convergent then (y_n) is also convergent.
- 2. The function T is said subsequentially convergent if we have, for every sequence (y_n) , if $T(y_n)$ is convergent then (y_n) has a convergent subsequence.

3 Main results

We introduce the following, let (M, d) be a metric space, $x_0 \in M$ and $T, S : M \longrightarrow M$ two mappings. The sequence $(Tx_n) \subset M$ defined by

$$Tx_{n+1} = TSx_n = TS^n x_0, \qquad n = 0, 1, \dots$$
 (3.10)

is called the T-Picard iteration associated to S.

Theorem 3.1 Let (M, d) be a complete metric space and $T, S : M \longrightarrow M$ be two mappings such that T is continuous, one to one and subsequentially convergent. If S is a TZ - operator then Shas a unique fixed point. Moreover, if T is sequentially convergent then for every $x_0 \in M$ the T-Picard iteration associated to S, $(TS^n x_0)$ converges to $T(z_0)$, where z_0 is the fixed point of S.

Proof: Since S is a TZ - operator then by lemma 2.5 there is $0 < \delta < 1/3 < 1$ such that

$$d(TSx, TSy) \le \delta d(Tx, Ty) + 2\delta d(Tx, TSx)$$
(3.11)

for all $x, y \in M$.

Now let $(Tx_n) \subset M$ the *T*-Picard iteration associated to *S* defined by (3.11) and $x_0 \in M$ arbitrary. Then

$$d(TS^{n+1}x_0, TS^n x_0) \le hd(TS^n x_0, TS^{n-1} x_0)$$
(3.12)

where $h = \frac{\delta}{1 - 2\delta} < 1$. Therefore, for all n,

$$d(TS^{n+1}x_0, TS^n x_0) \le h^n d(TSx_0, Tx_0)$$
(3.13)

From (3.13) we get

$$\lim_{n \to \infty} d(TS^{n+1}x_0, TS^n x_0) = 0$$
(3.14)

Now, for $m, n \in \mathbb{N}$ with m > n, we have

$$d(TS^{m}x_{0}, TS^{n}x_{0}) \leq (h^{n} + \ldots + h^{m-1})d(TSx_{0}, Tx_{0})$$

$$\leq \frac{h^{n}}{1-h}d(TSx_{0}, Tx_{0})$$
(3.15)

From (3.15) we obtain,

$$\lim_{n,m \to \infty} d(TS^m x_0, TS^n x_0) = 0$$
(3.16)

and hence $(TS^n x_0) \subset M$ is a Cauchy sequence in M and thus there is $y_0 \in M$ such that

$$\lim_{n \to \infty} TS^n x_0 = y_0 \tag{3.17}$$

since T is subsequentially convergent, $(S^n x_0)$ has a convergent subsequence, so there is a $z_0 \in M$ such that

$$\lim_{k \to \infty} S^{n_k} x_0 = z_0 \tag{3.18}$$

Now, using the continuity of T and (3.18) we have,

$$\lim_{k \to 0} TS^{n_k} x_0 = Tz_0 \tag{3.19}$$

From (3.17) and (3.19) we obtain $y_0 = Tz_0$. So

1

$$d(TSz_0, Tz_0) \leq d(TSz_0, TS^{n(k)}x_0) + d(TS^{n(k)}x_0, TS^{n(k)+1}x_0) + d(TS^{n(k)+1}x_0, Tz_0) \longrightarrow 0, \quad (k \to \infty).$$

Therefore, $d(TSz_0, Tz_0) = 0$. Since T is one to one $Sz_0 = z_0$ so S has a fixed point.

Since (3.11) holds and T is one to one, S has a unique fixed point.

Finally, if T is sequentially convergent, by replacing (h) with (n_k) we conclude that

$$\lim_{n \to \infty} S^n x_0 = z_0 \quad \text{and} \quad \lim_{n \to \infty} T S^n x_0 = T z_0.$$

If we take T = Id then we obtain the zamfirescu's fixed point [10]. Since the T-Kannan's and T-Chatterjea's contractive conditions are both included in the class of TZ - operators, by theorem 3.1, we obtain inmediately the following results,

Corollary 3.2 Let (M, d) be a complete metric space and $T, S : M \longrightarrow M$ be two mappings such that T is continuous, one to one and subsequentially convergent. If S is TK - contraction then S has a unique fixed point, said $z_0 \in M$. Moreover, if T is sequentially convergent then for every $x_0 \in M$, $(S^n x_0)$ converges to z_0 and $TS^n x_0 \longrightarrow Tz_0$. If we take T = Id we get the Kannan's fixed point theorem [5].

Corollary 3.3 Let (M, d) be a complete metric space and $T, S : M \longrightarrow M$ be two mappings such that T is continuous, one to one and subsequentially convergent. If S is TC - contraction then S has a unique fixed point, said $z_0 \in M$. Moreover, if T is sequentially convergent then for every $x_0 \in M$, $(S^n x_0)$ converges to z_0 and $TS^n x_0 \longrightarrow Tz_0$.

If we take T = Id we obtain the chtterjea's fixed point theorem [9].

References

- V. Berinde, Iterate Approximation of fixed points, lecture Notes in Math, 1912, Springer -Verlag.
- [2] A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two fixed point theorem for special mappings, arx IV: 0903, 1504V1.
- [3] M. Edelstein, An extension of Banach's contraction principal, Proc. Amer. Math. Soc., 12, (1961), 7 - 10.
- [4] S. Moradi and R. Kannan, Fixed point theorem on complete metric spaces and on generalized metric spaces depended on another function, arX IV: 0903, 1577V1.
- [5] R. Kannan, Some results on fixed points, Bull. Calc. Math. Soc., 60, (1968), 71 76.
- [6] J. Morales and E. Rojas, Cone metric spaces and fixed point theorems of T-Contractive mappings, arx IV: 0907.344aV1.
- [7] J. Morales and E. Rojas, Fixed point theorem of T-Zamfirescu operator in cone metric spaces, to appear.
- [8] J. Morales, Teoremas del punto fijo para T-operadores de Banach, to appear.
- [9] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25, (1972), 727 730.
- [10] T. Zamficuscu, A theorem on fixed points, Atti. Acad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. 8, 52, (1972), 832 - 834.

JOSÉ ROBERTO MORALES

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes Mérida 5101, Venezuela e-mail: moralesj@ula.ve

EDIXON ROJAS

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes Mérida 5101, Venezuela e-mail: edixonr@ula.ve