Revista Notas de Matemática
Vol.5(1), No. 274, 2009, pp.64-71
http://www.saber.ula.ve/notasdematematica/
Comisión de Publicaciones
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

Some results on T-zamfirescu operators

José R. Morales and Edixon Rojas

Abstract

The purpose of this paper is to obtain sufficient conditions for the existence of unique fixed point of T-zamficescu operators in complete metric spaces.

1 Introduction

Reciently, A. Beiranvand, S. Moradi, M. Omid and H. Pazadeh [1], introduced the notions of T-Banach contraction and T-contractive mapping, and then they extended the Banach contraction principle, (see [2]) and Edelstein's fixed point theorem [3], S. Moradi [4] introduced the T-Kannan contractive mapping and extended the Kannan's fixed point theorem [5]. Inspired and motived by the above said facts, the authors have introduced the motions of T-chatterjea contractive mapping [6] and the T-operator of Banach [8].

The purpose of this paper is to study the existence of fixed points for mapping S defined on a complete metric space such that is a T-zamfirescu operator.

2 Preliminaries

In the first, we recall some definitions.
Definition 2.1 ([1])
Let (M, d) be a metric space and $T, S: M \longrightarrow M$ be two functions. A mappings S is said to be T-Banach contraction, (TB-Contraction), if there is $a \in[0,1)$ such that

$$
\begin{equation*}
d(T S x, T S y) \leq a d(T x, T y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in M$.

If we take $T=I d=$ Identity in (2.1) then we obtain the definition of Banach's contraction.
Definition 2.2 ([2])
Let (M, d) be a metric space and $T, S: M \longrightarrow M$ be two functions. We say that S is a T-Kannan contraction, (TK - Contraction), if there is $b \in[0,1 / 2)$ such that

$$
\begin{equation*}
d(T S x, T S y) \leq b[d(T x, T S x)+d(T y, T S y)] \tag{2.2}
\end{equation*}
$$

for all $x, y \in M$.

If we take $T=I d$ then we get the definition given by Kannan [5].
Definition 2.3 ([6])
Let (M, d) be a metric space and $T, S: M \longrightarrow M$ be two mappings. We say that S is a T-Chatterjea contraction, (TC - Contraction), if there is $c \in[0,1 / 2)$ such that

$$
\begin{equation*}
d(T S x, T S y) \leq c[d(T x, T S y)+d(T y, T S x)] \tag{2.3}
\end{equation*}
$$

for all $x, y \in M$.

If we take $T=I d$ then we obtain the chatterjea's definition [9].
Definition 2.4 ([7])
Let (M, d) be a metric space and $T, S: M \longrightarrow M$ be two mappings. The function S is called a T-zamfirescu operator, (TZ - operator), if and only if there are real numbers, $0 \leq a<1,0 \leq$ $b, c<1 / 2$ such that for all $x, y \in M$ at least one condition is true:

$$
\left.\begin{array}{rl}
T Z_{1} .-d(T S x, T S y) & \leq a d(T x, T y) \tag{2.4}\\
T Z_{2} .-d(T S x, T S y) & \leq b[d(T x, T S x)+d(T y, T S y)] \\
T Z_{3} .-d(T S x, T S y) & \leq c[d(T x, T S y)+d(T y, T S x)]
\end{array}\right\}
$$

If we take $T=I d$ then we obtain the zamfirescu's definition [10].

Lemma 2.5 Let (M, d) be a metric space and $T, S: M \longrightarrow M$ be two functions. Is S is a TZ operator then there is $0 \leq \delta<1$ such that

$$
\begin{equation*}
d(T S x, T S y) \leq \delta d(T x, T y)+2 \delta d(T x, T S x) \tag{2.5}
\end{equation*}
$$

for all $x, y \in M$.

Proof: If S is a TZ - operator then at least one of $\left(T Z_{1}\right),\left(T Z_{2}\right)$ or $\left(T Z_{3}\right)$ is true. If $\left(T Z_{2}\right)$ holds then

$$
\begin{aligned}
d(T S x, T S y) & \leq b[d(T x, T S x)+d(T y, T S y)] \\
& \leq b[d(T x, T S x)+d(T y, T x)+d(T x, T S x)+d(T S x, T y)]
\end{aligned}
$$

since $0 \leq b<1 / 2$ we obtain

$$
\begin{equation*}
d(T S x, T S y) \leq \frac{b}{1-b} d(T x, T y)+\frac{2 b}{1-b} d(T x, T S x) \tag{2.6}
\end{equation*}
$$

If $\left(T Z_{3}\right)$ holds, then similarly we get

$$
\begin{equation*}
d(T S x, T S y) \leq \frac{c}{1-c} d(T x, T y)+\frac{2 c}{1-c} d(T x, T s x) \tag{2.7}
\end{equation*}
$$

Therefore by denoting,

$$
\delta=\max \left\{a, \frac{b}{1-b}, \frac{c}{1-c}\right\}
$$

we have $0 \leq \delta<1$ and for all $x, y \in M$ the following inequality

$$
\begin{equation*}
d(T s x, T S y) \leq \delta d(T x, T y)+2 \delta d(T x, T S x) \tag{2.8}
\end{equation*}
$$

holds.
In a similar "maner" we obtain

$$
\begin{equation*}
d(T S x, T S y) \leq \delta d(T x, T y)+2 \delta d(T x, T S y) \tag{2.9}
\end{equation*}
$$

holds for all $x, y \in M$.

Example 2.6 1. Let $M=[1, \infty) \subset \mathbb{R}$ be with the metric induced by $\mathbb{R}: d(x, y)=|x-y|$. We consider the functions $T, S: M \longrightarrow M$ defined by $T x=\frac{1}{x}+1, S x=2 x, x \in M$. Then
1.1.- It is clear that S is not a Banach contraction.
1.2.- S is $T B$ - Contraction because:

$$
\begin{aligned}
d(T S x, T S y) & =|T S x-T S y|=\left|\frac{1}{2 x}+1-\frac{1}{2 y}-1\right| \\
& =\frac{1}{2}\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{1}{2}\left|\frac{1}{x}-1-\frac{1}{y}-1\right|=\frac{1}{2}|T x-T y| \leq \operatorname{ad}(T x, T y)
\end{aligned}
$$

where $a=1 / 2<1$.
2. Let $M=[0,1] \subset \mathbb{R}$ be with the metric induced by $\mathbb{R}: d(x, y)=|x-y|$. We consider the functions $T, S: M \longrightarrow M$ defined by $T x=x^{2}$ and $S x=\frac{x}{2}, x \in M$. Then
2.1.- It is clear that S is a Banach contraction.
2.2.- S is not a K-contraction since

$$
\begin{aligned}
d(S x, S 0) & =|S x-S 0|=\frac{x}{2} \\
d(x, S x) & =|x-S x|=\frac{x}{2} \\
d(0, S 0) & =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d(T x, S 0) & =\frac{x}{2}=|x-S x|+|0-S 0| \\
& =d(x, S x)+d(0, S 0) .
\end{aligned}
$$

2.3.- S is a TK - contraction because:

$$
\begin{aligned}
d(T S x, T S y) & =|T S x-T S y|=\left|\frac{x^{2}}{4}-\frac{y^{2}}{4}\right| \\
& \leq \frac{1}{3}[|T x-T S x|+|y-T S y|] \\
& =\frac{1}{3}(d(T x, T S x)+d(y, T S y))
\end{aligned}
$$

2.4.- In a similar maner we see that S is a $T C$ - Contraction.
3. Let $M=[0,1]$ be with the metric induced by $\mathbb{R}: d(x, y)=|x-y|$. We consider the functions $T, S: M \longrightarrow M$ defined by $T x=\sqrt{x}$ and $S x=x^{2}, x \in M$. Then
3.1.- It is clear that S is not a Banach contraction.
3.2.- S satisfies the condition (2.8) with $\delta \in(1 / 3,1)$ since

$$
d(T S x, T S y)=|T S x-T S y|=|x-y| \leq \delta|x-y|+2 \delta|x-y|
$$

Definition 2.7 ([1])

Let (M, d) be a metric space and $T: M \longrightarrow M$.

1. The function T is said sequentially convergent if we have, for every sequence $\left(y_{n}\right)$, if $T\left(y_{n}\right)$ is convergent then $\left(y_{n}\right)$ is also convergent.
2. The function T is said subsequentially convergent if we have, for every sequence $\left(y_{n}\right)$, if $T\left(y_{n}\right)$ is convergent then $\left(y_{n}\right)$ has a convergent subsequence.

3 Main results

We introduce the following, let (M, d) be a metric space, $x_{0} \in M$ and $T, S: M \longrightarrow M$ two mappings. The sequence $\left(T x_{n}\right) \subset M$ defined by

$$
\begin{equation*}
T x_{n+1}=T S x_{n}=T S^{n} x_{0}, \quad n=0,1, \ldots \tag{3.10}
\end{equation*}
$$

is called the T-Picard iteration associated to S.

Theorem 3.1 Let (M, d) be a complete metric space and $T, S: M \longrightarrow M$ be two mappings such that T is continuous, one to one and subsequentially convergent. If S is a $T Z$ - operator then S has a unique fixed point. Moreover, if T is sequentially convergent then for every $x_{0} \in M$ the T-Picard iteration associated to $S,\left(T S^{n} x_{0}\right)$ converges to $T\left(z_{0}\right)$, where z_{0} is the fixed point of S.

Proof: \quad Since S is a TZ - operator then by lemma 2.5 there is $0<\delta<1 / 3<1$ such that

$$
\begin{equation*}
d(T S x, T S y) \leq \delta d(T x, T y)+2 \delta d(T x, T S x) \tag{3.11}
\end{equation*}
$$

for all $x, y \in M$.
Now let $\left(T x_{n}\right) \subset M$ the T-Picard iteration associated to S defined by (3.11) and $x_{0} \in M$ arbitrary. Then

$$
\begin{equation*}
d\left(T S^{n+1} x_{0}, T S^{n} x_{0}\right) \leq h d\left(T S^{n} x_{0}, T S^{n-1} x_{0}\right) \tag{3.12}
\end{equation*}
$$

where $\quad h=\frac{\delta}{1-2 \delta}<1$. Therefore, for all n,

$$
\begin{equation*}
d\left(T S^{n+1} x_{0}, T S^{n} x_{0}\right) \leq h^{n} d\left(T S x_{0}, T x_{0}\right) \tag{3.13}
\end{equation*}
$$

From (3.13) we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T S^{n+1} x_{0}, T S^{n} x_{0}\right)=0 \tag{3.14}
\end{equation*}
$$

Now, for $m, n \in \mathbb{N}$ with $m>n$, we have

$$
\begin{align*}
d\left(T S^{m} x_{0}, T S^{n} x_{0}\right) & \leq\left(h^{n}+\ldots+h^{m-1}\right) d\left(T S x_{0}, T x_{0}\right) \\
& \leq \frac{h^{n}}{1-h} d\left(T S x_{0}, T x_{0}\right) \tag{3.15}
\end{align*}
$$

From (3.15) we obtain,

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} d\left(T S^{m} x_{0}, T S^{n} x_{0}\right)=0 \tag{3.16}
\end{equation*}
$$

and hence $\left(T S^{n} x_{0}\right) \subset M$ is a Cauchy sequence in M and thus there is $y_{0} \in M$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T S^{n} x_{0}=y_{0} \tag{3.17}
\end{equation*}
$$

since T is subsequentially convergent, $\left(S^{n} x_{0}\right)$ has a convergent subsequence, so there is a $z_{0} \in M$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} S^{n_{k}} x_{0}=z_{0} \tag{3.18}
\end{equation*}
$$

Now, using the continuity of T and (3.18) we have,

$$
\begin{equation*}
\lim _{k \rightarrow 0} T S^{n_{k}} x_{0}=T z_{0} \tag{3.19}
\end{equation*}
$$

From (3.17) and (3.19) we obtain $y_{0}=T z_{0}$. So

$$
\begin{aligned}
d\left(T S z_{0}, T z_{0}\right) & \leq d\left(T S z_{0}, T S^{n(k)} x_{0}\right)+d\left(T S^{n(k)} x_{0}, T S^{n(k)+1} x_{0}\right) \\
& +d\left(T S^{n(k)+1} x_{0}, T z_{0}\right) \longrightarrow 0, \quad(k \rightarrow \infty) .
\end{aligned}
$$

Therefore, $d\left(T S z_{0}, T z_{0}\right)=0$. Since T is one to one $S z_{0}=z_{0}$ so S has a fixed point.
Since (3.11) holds and T is one to one, S has a unique fixed point.
Finally, if T is sequentially convergent, by replacing (h) with $\left(n_{k}\right)$ we conclude that

$$
\lim _{n \rightarrow \infty} S^{n} x_{0}=z_{0} \quad \text { and } \quad \lim _{n \rightarrow \infty} T S^{n} x_{0}=T z_{0}
$$

If we take $T=I d$ then we obtain the zamfirescu's fixed point [10]. Since the T-Kannan's and T-Chatterjea's contractive conditions are both included in the class of TZ - operators, by theorem 3.1, we obtain inmediately the following results,

Corollary 3.2 Let (M, d) be a complete metric space and $T, S: M \longrightarrow M$ be two mappings such that T is continuous, one to one and subsequentially convergent. If S is TK - contraction then S has a unique fixed point, said $z_{0} \in M$. Moreover, if T is sequentially convergent then for every $x_{0} \in M,\left(S^{n} x_{0}\right)$ converges to z_{0} and $T S^{n} x_{0} \longrightarrow T z_{0}$. If we take $T=I d$ we get the Kannan's fixed point theorem [5].

Corollary 3.3 Let (M, d) be a complete metric space and $T, S: M \longrightarrow M$ be two mappings such that T is continuous, one to one and subsequentially convergent. If S is $T C$ - contraction then S has a unique fixed point, said $z_{0} \in M$. Moreover, if T is sequentially convergent then for every $x_{0} \in M,\left(S^{n} x_{0}\right)$ converges to z_{0} and $T S^{n} x_{0} \longrightarrow T z_{0}$.

If we take $T=I d$ we obtain the chtterjea's fixed point theorem [9].

References

[1] V. Berinde, Iterate Approximation of fixed points, lecture Notes in Math, 1912, Springer Verlag.
[2] A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two fixed - point theorem for special mappings, arx IV: 0903, 1504V1.
[3] M. Edelstein, An extension of Banach's contraction principel, Proc. Amer. Math. Soc., 12, (1961), 7 - 10.
[4] S. Moradi and R. Kannan, Fixed point theorem on complete metric spaces and on generalized metric spaces depended on another function, arx IV: 0903, 1577V1.
[5] R. Kannan, Some results on fixed points, Bull. Calc. Math. Soc., 60, (1968), $71-76$.
[6] J. Morales and E. Rojas, Cone metric spaces and fixed point theorems of T-Contractive mappings, arx IV: 0907.344aV1.
[7] J. Morales and E. Rojas, Fixed point theorem of T-Zamfirescu operator in cone metric spaces, to appear.
[8] J. Morales, Teoremas del punto fijo para T-operadores de Banach, to appear.
[9] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25, (1972), 727 - 730.
[10] T. Zamficuscu, A theorem on fixed points, Atti. Acad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. 8, 52, (1972), 832 - 834.

JOSÉ ROBERTO MORALES

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes
Mérida 5101, Venezuela
e-mail: moralesj@ula.ve

EDIXON ROJAS

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes
Mérida 5101, Venezuela
e-mail: edixonr@ula.ve

