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Abstract

We show that the spectral radius p (D) of a digraph D with n vertices and ¢y closed walks
of length 2 satisfies p (D) > <2. Moreover, equality occurs if and only if D is the symmetric
digraph associated to a “2-regular graph, plus some arcs that do not belong to cycles. As an
application of this result, we construct new upper bounds for the low energy of a digraph.
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1 Introduction

A directed graph (or just digraph) D consists of a non-empty finite set V' of elements called
vertices and a finite set A of ordered pairs of distinct vertices called arcs. Throughout we assume
that D has no loops nor multiple arcs. Two vertices are called adjacent if they are connected by
an arc. If there is an arc from vertex u to vertex v we indicate this by writing uv. A walk 7
of length [ from vertex u to vertex v is a sequence of vertices 7 : u = ug, u1,... ,u; = v, where
ug—1uy is an arc of D for every 1 <t < [. If u = v then 7 is a closed walk. If u = v but u; # u;

fori#j (1,7 =1,...,1) then 7 is a cycle of D.

A digraph D is symmetric if uv € A then vu € A, where u,v € V. A one to one correspondence
between graphs and symmetric digraphs is given by G ~~ ﬁ, where ‘G’ has the same vertex set
as the graph G, and each edge uv of G is replaced by a pair of symmetric arcs uv and vu. Under

this correspondence, a graph can be identified with a symmetric digraph.

The adjacency matrix A of a digraph D whose vertex set is {v1,... ,v,} is the n X n matrix
whose entry a;; is defined as a;; = 1 if v;u; € A and a;; = 0 otherwise. The characteristic
polynomial |zI — A| of the adjacency matrix A of D is called the characteristic polynomial of D
and it is denoted by ®p = ®p (2). The eigenvalues of A are called the eigenvalues of D. Since A
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is not necessarily a symmetric matrix, the eigenvalues of A are in general complex numbers. The
spectral radius of A (respectively, of D) is denoted by p(A) (respectively, p (D)), and equals to
the largest absolute value of an eigenvalue of A. For a recent survey on spectra of digraphs we

refer to [1].

The eigenvalues of a graph G with n vertices are real numbers A1,... , \,. The energy of G,
which was introduced by Gutman in [4] and it is extensively studied in chemistry, is defined as

n

E (G) = > |\l Recently, Nikiforov (]9],[10]) extended the energy of a graph to general matrices
i=1
as

E(A)=> o
=1

where o1, ... ,0, are the singluar values of the n by m matrix A. When A is the adjacency matrix
of a graph G, then E (A) coincides with E (G).
Another definition for the energy of digraphs was given in [11]. Coulson’s integral formula

was generalized to digraphs

17 iz®", (iz) "
- _ 2D\ gy = ;
- / <n B (i) > x ;\Rez\
where z1,..., 2, are the (possibly complex) eigenvalues of the digraph D and Rez; denotes the

real part of z;. Consequently, the concept of energy was naturally extended to digraphs as

n

e(D) = Z | Rez;|

i=1
and it is called the low energy of D in [1], to differentiate between the two concepts. For further

results in the study of the low energy of digraphs we refer to [8], [11], [12] and [13].

In this paper we use Kolotilina’s ideas in the article [6], to find a new lower bound for the
spectral radius of a digraph in terms of its number of vertices and number of closed walks of
length 2 (see Theorem 2.1). This result generalizes the well known lower bound for the spectral
radius of a graph found by L. Collatz and U. Sinogowitz (|2], see also [3, Theorem 3.8|): if G has
n vertices and m edges then p (G) > 277” Equality holds if and only if G is a 2Tm—regular graph.

As an application of this result, we show in Theorem 3.1 that

e (D) §%2—|—\/(n—1) [a_ (%2>2]
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where D is a digraph with n vertices, a arcs and cs closed walks of length 2. This upper bound for
the low energy generalizes the well-known inequality for the energy of a graph given by Koolen

and Moulton |7].

Finally, we introduce the symmetry index of a digraph, denoted by s and defined as s = a—cs,

which measures how far is a digraph from being symmetric. Then we show in Theorem 3.3 that

e(D) < 2(1+y/n+ %)

generalizing the well known upper bound of the energy of a graph in terms of the number of

vertices given in [7, Theorem 3.

2 Lower bound of the spectral radius of a digraph

Recall that the geometric symmetrization of a matrix A = (a;j), denoted by S (A) = (s;5), is the

matrix with entries

Sij = /0ijaji

for every 4,5 = 1,... ,n. Note that if A is the adjacency matrix of a digraph D with n vertices,
n n o~
then )" > si; = 2, where ¢z denotes the number of walks of length 2 of D. Also, if D is obtained
j=1i=1

from D by deleting those arcs of D that do not belong to a cycle, then clearly S (A) = S (A <B)) ,

where A (ﬁ) is the adjacency matrix of D. Moreover, by the coefficient theorem for digraphs |3,
Theorem 1.2], D and D have equal characteristic polynomial because they have the same cycle

structure.

Theorem 2.1 Let D be a digraph with n vertices and co closed walks of length 2. Then
C2
D) > =
p(D) =z
Equality holds if and only if
D="G + {possibly some arcs that do not belong to cycles}

where G is a Z-reqular graph.

Proof. Let A be the adjacency matrix of the digraph D and S (A) = (s;;) the geometric
symmetrization matrix of A. Clearly A > S(A) > 0 and so by [5, Corollary 8.1.19], p(A) >
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p(S(A)). On the other hand, by Raleigh-Ritz Theorem [5, Theorem 4.2.2],

3

isij
p(4) > p(S(4)) > LW H= =2 (1)

n n

where e = (1,1,..., I)T.
Now assume that p (A) = <2. It follows from inequality (1) that

)
p(a)= 5 BE s ay)

n

We consider three cases. (i) D is strongly connected: in this case A is irreducible and so by

Perron-Frobenius Theorem, there exists 0 < v = (vy,... ,vn)T € R” such that Av = p(A)w.
Equivalently,
p(A) =) ai—*
Uy
j=1
for every i = 1,... ,n. Hence by the Geometric-Arithmertic mean inequality,

(N (%
np (A) = Z <aijv—z + (Ijiv—j> >2 Z \V@ijj; = GTS (A) e=np (A)

1<i<j<n 1<i<j<n
which implies
v v
Ajj L = ]z_l
Uy ’UJ
for every i,j =1,... ,n. Since A is a (0,1)-matrix and v > 0, we deduce that a;; = 0 if and only
if aj; = 0 for every i,j = 1,... ,n. Thus A is a symmetric matrix and so D = ‘G for a graph G

that has % edges and n vertices. Since

it follows from [3, Theorem 3.8| that G is a 2-regular graph.

(74) D is the disjoint union of ¢ strongly connected components D1, ..., D;: in this case
A 0 -+ 0

0 Ay -~ 0

0o 0 - A
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where each block matrix Ay is the ny x nj adjacency (irreducible) matrix of Dy. Clearly > ng =

k=1
n. Hence
e'S(Ae ! G,IkS (Ak) en, ng ! nkp (Ag)
p D T S Smawp (A = p(4) (2)
k=1 k=1
el en

Since p (A) = % we deduce from inequality (2) that p (A) = p (Ax) = % for every
kE=1,...,t, and now applying case (7) it follows that each Dy = <CT;;, where Gy, is a “2-regular

graph for every k=1,... ,t.

(7i7) In the general case, let D be the digraph obtained from D deleting every arc of D which
does not belong to a cycle. Then D is the disjoint union of the strongly connected components

of D, D and D have equal spectrum and S (A) = § (A <B>) Thus

() iy TS

n

Now we apply case (i) to D to obtain that D = ‘G for a “2_regular graph G, and consequently

D="G + {possibly some arcs that do not belong to cycles}

Note that if G is a graph with m edges and n vertices, then the digraph associated ‘G also

has n vertices and the number of closed walks of length 2 of G is ca = 2m. Hence

p(@)=p(T) 222 (3

n n

Moreover, if p(G) = sz then by inequality (3), p (ﬁ) = 2 and by Theorem 2.1, G isa 2
regular digraph (every arc of kel belongs to a cycle) and so G is a 2Tm—regular graph. Consequently,

Theorem 2.1 is a generalization to digraphs of Collatz and Sinogowitz’s Theorem.

3 Upper bound for the energy of a digraph

We next apply Theorem 2.1 and the technique used by Koolen and Moulton in |7], to construct

new upper bounds for the low energy of a digraph.

Theorem 3.1 Let D be a digraph with n vertices, a arcs and cs closed walks of length 2. Then

e(D)g%z—i-\/(n—l) [a—(%ﬂ (@)
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Equality holds if and only if D is the empty digraph (i.e. n isolated vertices) or
D="G + {possibly some arcs that do not belong to cycles}

where G is one of the following:

1. G= %KQ;
2. G = Ky;
3. G is a non-complete connected strongly reqular graph with two non-trivial eigenvalues both

n—1

with absolute value

Proof. Let A be the adjacency matrix of D. Since A > 0 we know that p := p(A) is an
eigenvalue of D. Assume that p = z1, 29,... , 2, are the eigenvalues of D. By the Cauchy-Schwarz

inequality applied to the vectors
(|Re (z2)|,|Re(23)|,...,|Re(zn)|) and (1,1,...,1)

of R"1 we deduce that

" 2
(Z | Re (zi)l> <(n-1)) [Re(z)]
=2 ‘

From ([12, Lemma 2.2|) we know that

n

S [Re () <o 5)

1=2

Hence

e(D)=p+ Y |Re(z)| < p+(n—1)(a—p?) (6)

1=2

Consider the function

fl@)=a+(n—1)(a—2?)

defined in the interval [—+/a,+/a]. First we consider the case ca > /na. Then by Theorem 2.1

and inequality (5)
\/E <2 <p<iva
no-n




44 E. Gudino and J. Rada

Since the function f is strictly decreasing in the interval [\/g , \/a] , and bearing in mind inequality

(6)

e(D)Sf(p)Sf(c—z>=C—2+¢(n—l) {a—(c—zﬂ (7)

If e(D) = 2+ \/(n -1) {a - (%)2] then by inequality (7), f(p) = f (). Since f is strictly
decreasing, p = %2. Again by Theorem 2.1,

D="G + {possibly some arcs that do not belong to cycles}

where G is a “2-regular graph with n vertices and % edges. Further, by [7, Theorem 1| and the

fact that cs < a
24 (n—1) |c —(C—2>2
n 2 n

)
S
I
e
2
A
|

IA
|3
_l’_
e
S
|
=
| — |
s}
|
/N
3|8
N—
[\
| I
|
o
S

which implies ¢ = a and

B(@) =%+ /-1 [0 (2)]

Now the result follows from the equality conditions in [7, Theorem 1].

For ¢s < /na, we consider two cases:
(a) If a < n then a < y/(n — 1)a and by [12, Theorem 2.5],

e(D)<a (8)
Since f is strictly increasing in [0, %] and ¢z < y/na, then 2 € [O, \/g] and we have

Vin=Ta=f(0) < f(2) (9)

From inequalities (8) and (9) we deduce

e(D) < %+\/(n_1) [a_ (%)2}

If equality holds, then again from inequalities (8) and (9)

e(D) =a=+/a(n—1) = f(0) = f(5

3|8
~—
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Since f is strictly increasing, c; = 0. On the other hand by [12, Theorem 2.5|, D = § ]:?2 plus

some isolated vertices, which implies that a = co = 0. Hence D is the empty digraph.

(b) If a > n, then it is not difficult to see that

%n(a+02)§2—2+\/(”_1) [“_ (%2)2]

and so by [12, Theorem 2.3]

cD) <2+ ftn-1[a- (2)]

If equality holds, then by [12, Theorem 2.3] D = & [?2.
[

An application of Theorem 3.1 gives an improvement of [7, Theorem 1|. More precisely, if
G is a graph with n vertices and m edges, the hypothesis “2m > n" can be dropped. In fact,
consider ‘G the digraph associated to G. Then ‘G has n vertices and a = co = 2m. Now from

Theorem 3.1

E(G)=e (ﬁ) < %m + (-1 [2m— (277”)2] (10)

If equality in (10) holds, then again the result follows by the equality conditions in Theorem 3.1.

Koolen and Moulton |7, Theorem 3| also showed that for a graph G with n vertices

E(G) < 5 (1+n)

We next generalize this result for digraphs. Let us first introduce an invariant which measures

how far is a digraph from being a symmetric digraph.
Definition 3.2 Let D be a digraph with a arcs and co closed walks of length 2. The symmetry
index of D, denoted by s, is defined as s = a — cs.

Clearly, 0 < s < n(n —1) for every digraph D. Also note that a digraph D is symmetric if
and only if s = 0.

Theorem 3.3 Let D be a digraph with n vertices and symmetry index s. Then

e(D)S%(l%—Un%—%)
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n

Proof. Consider the function g (z) = £ + \/(n -1) (:U +s— (5)2> defined in the interval

I = [”72 - %\/nz + 4s, ”72 + %\/n2 + 48:|. Using routine calculus we can see that g attains its
maximum in g = ”72 +54/n+ % € I. Then by Theorem 3.1 and the fact that co € I because

czgn(n—l)ﬁ%Q—i-%\/nz—i-éls

(i

Note that Theorem 3.3 is a generalization of [7, Theorem 3| since s = 0 for symmetric

we deduce

e(D) < g(ca) < g(xo) =

|3

digraphs.

It is reasonable to compare the generalized McClelland bound

1
M = in(a—i-cz)

given in [12, Theorem 2.3] with the new bound

k=2 -y fo- (2)]

given in Theorem 3.1. It was shown in [7, Inequality (4) and Theorem 2| that if D is a symmetric

digraph then K < M. In the general situation this is not always true, as we can see in the proof
of Theorem 3.1 when a > n and ¢y < v/na. However, we show in our next result a large class of

non-symmetric digraphs where K < M.

Proposition 3.4 Let D be a digraph with n > 6 vertices, co closed walks of length 2 and symmetry
index s. If co > ”72 + %\/n—l—% then K < M.

Proof. Consider the functions

M (z) = /% (2z+s) and K(m):%+\/(n—l)(x+s—(£)2>

n

which are well defined in the interval I = [0,n (n — 1)]. Since M’ (z) > 0 for every x € I then M
is strictly increasing in 1. On the other hand, K (x) attains its maximum in z¢ = "72 + 54/ + 4—;

(xo € I when n > 6), and it is strictly decreasing in the interval [zg,n (n — 1)] (see Figure 1).

It is easy to see that
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K(mo)zg(l—i-\/n—k%) < \/g(nQ—i-m/n—i-%—i-s):M(wo).

Hence K (z) < M (z) for every = € [zg,n(n —1)]. In particular, if co > z¢ (note that in any
digraph ¢a <n(n—1)) then K = K (c2) < M (co) =M. =

Example 3.5 Table 1 shows examples of non-symmetric digraphs with n vertices, symmetry

index s and co closed walks of length 2 such that K < M.

Table 1:

10 20 50 100

68 252 1436 5520

4 32 53 200
21,11 61,38 209,11 569,61
26,17 73,21 270,41 749,66

=X e 8|3
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