Revista Notas de Matemática
Vol.5(1), No. 272, 2009, pp.39-48
http://www.saber.ula.ve/notasdematematica/
Comisión de Publicaciones
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

A lower bound for the spectral radius of a digraph

E. Gudiño and J. Rada

Abstract

We show that the spectral radius $\rho(D)$ of a digraph D with n vertices and c_{2} closed walks of length 2 satisfies $\rho(D) \geq \frac{c_{2}}{n}$. Moreover, equality occurs if and only if D is the symmetric digraph associated to a $\frac{c_{2}}{n}$-regular graph, plus some arcs that do not belong to cycles. As an application of this result, we construct new upper bounds for the low energy of a digraph.

key words. Spectral radius of a digraph. Energy of a digraph. Low energy of a digraph.
AMS(MOS) subject classifications. 05C35; 05C50; 05C90; 15A18.

1 Introduction

A directed graph (or just digraph) D consists of a non-empty finite set \mathcal{V} of elements called vertices and a finite set \mathcal{A} of ordered pairs of distinct vertices called arcs. Throughout we assume that D has no loops nor multiple arcs. Two vertices are called adjacent if they are connected by an arc. If there is an arc from vertex u to vertex v we indicate this by writing $u v$. A walk π of length l from vertex u to vertex v is a sequence of vertices $\pi: u=u_{0}, u_{1}, \ldots, u_{l}=v$, where $u_{t-1} u_{t}$ is an arc of D for every $1 \leq t \leq l$. If $u=v$ then π is a closed walk. If $u=v$ but $u_{i} \neq u_{j}$ for $i \neq j(i, j=1, \ldots, l)$ then π is a cycle of D.

A digraph D is symmetric if $u v \in \mathcal{A}$ then $v u \in \mathcal{A}$, where $u, v \in \mathcal{V}$. A one to one correspondence between graphs and symmetric digraphs is given by $G \rightsquigarrow \overleftrightarrow{G}$, where \overleftrightarrow{G} has the same vertex set as the graph G, and each edge $u v$ of G is replaced by a pair of symmetric arcs $u v$ and $v u$. Under this correspondence, a graph can be identified with a symmetric digraph.

The adjacency matrix A of a digraph D whose vertex set is $\left\{v_{1}, \ldots, v_{n}\right\}$ is the $n \times n$ matrix whose entry $a_{i j}$ is defined as $a_{i j}=1$ if $v_{i} v_{j} \in \mathcal{A}$ and $a_{i j}=0$ otherwise. The characteristic polynomial $|z I-A|$ of the adjacency matrix A of D is called the characteristic polynomial of D and it is denoted by $\Phi_{D}=\Phi_{D}(z)$. The eigenvalues of A are called the eigenvalues of D. Since A
is not necessarily a symmetric matrix, the eigenvalues of A are in general complex numbers. The spectral radius of A (respectively, of D) is denoted by $\rho(A)$ (respectively, $\rho(D)$), and equals to the largest absolute value of an eigenvalue of A. For a recent survey on spectra of digraphs we refer to [1].

The eigenvalues of a graph G with n vertices are real numbers $\lambda_{1}, \ldots, \lambda_{n}$. The energy of G, which was introduced by Gutman in [4] and it is extensively studied in chemistry, is defined as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Recently, Nikiforov $([9],[10])$ extended the energy of a graph to general matrices as

$$
E(A)=\sum_{i=1}^{n} \sigma_{i}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are the singluar values of the n by m matrix A. When A is the adjacency matrix of a graph G, then $E(A)$ coincides with $E(G)$.

Another definition for the energy of digraphs was given in [11]. Coulson's integral formula was generalized to digraphs

$$
\frac{1}{\pi} \int_{-\infty}^{\infty}\left(n-\frac{i x \Phi_{D}^{\prime}(i x)}{\Phi_{D}(i x)}\right) d x=\sum_{i=1}^{n}\left|R e z_{i}\right|
$$

where z_{1}, \ldots, z_{n} are the (possibly complex) eigenvalues of the digraph D and $\operatorname{Re} z_{i}$ denotes the real part of z_{i}. Consequently, the concept of energy was naturally extended to digraphs as

$$
e(D)=\sum_{i=1}^{n}\left|R e z_{i}\right|
$$

and it is called the low energy of D in [1], to differentiate between the two concepts. For further results in the study of the low energy of digraphs we refer to [8], [11], [12] and [13].

In this paper we use Kolotilina's ideas in the article [6], to find a new lower bound for the spectral radius of a digraph in terms of its number of vertices and number of closed walks of length 2 (see Theorem 2.1). This result generalizes the well known lower bound for the spectral radius of a graph found by L. Collatz and U. Sinogowitz ([2], see also [3, Theorem 3.8]): if G has n vertices and m edges then $\rho(G) \geq \frac{2 m}{n}$. Equality holds if and only if G is a $\frac{2 m}{n}$-regular graph. As an application of this result, we show in Theorem 3.1 that

$$
e(D) \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}
$$

where D is a digraph with n vertices, a arcs and c_{2} closed walks of length 2 . This upper bound for the low energy generalizes the well-known inequality for the energy of a graph given by Koolen and Moulton [7].

Finally, we introduce the symmetry index of a digraph, denoted by s and defined as $s=a-c_{2}$, which measures how far is a digraph from being symmetric. Then we show in Theorem 3.3 that

$$
e(D) \leq \frac{n}{2}\left(1+\sqrt{n+\frac{4 s}{n}}\right)
$$

generalizing the well known upper bound of the energy of a graph in terms of the number of vertices given in [7, Theorem 3].

2 Lower bound of the spectral radius of a digraph

Recall that the geometric symmetrization of a matrix $A=\left(a_{i j}\right)$, denoted by $S(A)=\left(s_{i j}\right)$, is the matrix with entries

$$
s_{i j}=\sqrt{a_{i j} a_{j i}}
$$

for every $i, j=1, \ldots, n$. Note that if A is the adjacency matrix of a digraph D with n vertices, then $\sum_{j=1}^{n} \sum_{i=1}^{n} s_{i j}=c_{2}$, where c_{2} denotes the number of walks of length 2 of D. Also, if \widehat{D} is obtained from D by deleting those arcs of D that do not belong to a cycle, then clearly $S(A)=S(A(\widehat{D}))$, where $A(\widehat{D})$ is the adjacency matrix of \widehat{D}. Moreover, by the coefficient theorem for digraphs $[3$, Theorem 1.2], D and \widehat{D} have equal characteristic polynomial because they have the same cycle structure.

Theorem 2.1 Let D be a digraph with n vertices and c_{2} closed walks of length 2. Then

$$
\rho(D) \geq \frac{c_{2}}{n}
$$

Equality holds if and only if

$$
D=\overleftrightarrow{G}+\{\text { possibly some arcs that do not belong to cycles }\}
$$

where G is a $\frac{c_{2}}{n}$-regular graph.

Proof. Let A be the adjacency matrix of the digraph D and $S(A)=\left(s_{i j}\right)$ the geometric symmetrization matrix of A. Clearly $A \geq S(A) \geq 0$ and so by [5, Corollary 8.1.19], $\rho(A) \geq$
$\rho(S(A))$. On the other hand, by Raleigh-Ritz Theorem [5, Theorem 4.2.2],

$$
\begin{equation*}
\rho(A) \geq \rho(S(A)) \geq \frac{e^{\top} S(A) e}{n}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i j}}{n}=\frac{c_{2}}{n} \tag{1}
\end{equation*}
$$

where $e=(1,1, \ldots, 1)^{\top}$.
Now assume that $\rho(A)=\frac{c_{2}}{n}$. It follows from inequality (1) that

$$
\rho(A)=\frac{e^{\top} S(A) e}{n}=\rho(S(A))
$$

We consider three cases. (i) D is strongly connected: in this case A is irreducible and so by Perron-Frobenius Theorem, there exists $0<v=\left(v_{1}, \ldots, v_{n}\right)^{\top} \in \mathbb{R}^{n}$ such that $A v=\rho(A) v$. Equivalently,

$$
\rho(A)=\sum_{j=1}^{n} a_{i j} \frac{v_{j}}{v_{i}}
$$

for every $i=1, \ldots, n$. Hence by the Geometric-Arithmertic mean inequality,

$$
n \rho(A)=\sum_{1 \leq i<j \leq n}\left(a_{i j} \frac{v_{j}}{v_{i}}+a_{j i} \frac{v_{i}}{v_{j}}\right) \geq 2 \sum_{1 \leq i<j \leq n} \sqrt{a_{i j} a_{j i}}=e^{\top} S(A) e=n \rho(A)
$$

which implies

$$
a_{i j} \frac{v_{j}}{v_{i}}=a_{j i} \frac{v_{i}}{v_{j}}
$$

for every $i, j=1, \ldots, n$. Since A is a $(0,1)$-matrix and $v>0$, we deduce that $a_{i j}=0$ if and only if $a_{j i}=0$ for every $i, j=1, \ldots, n$. Thus A is a symmetric matrix and so $D=\overleftrightarrow{G}$ for a graph G that has $\frac{c_{2}}{2}$ edges and n vertices. Since

$$
\rho(G)=\rho(A)=\frac{c_{2}}{n}
$$

it follows from [3, Theorem 3.8] that G is a $\frac{c_{2}}{n}$-regular graph.
(ii) D is the disjoint union of t strongly connected components D_{1}, \ldots, D_{t} : in this case

$$
A=\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{t}
\end{array}\right)
$$

where each block matrix A_{k} is the $n_{k} \times n_{k}$ adjacency (irreducible) matrix of D_{k}. Clearly $\sum_{k=1}^{n} n_{k}=$ n. Hence

$$
\begin{equation*}
\frac{e^{\top} S(A) e}{n}=\sum_{k=1}^{t} \frac{e_{n_{k}}^{\top} S\left(A_{k}\right) e_{n_{k}}}{n_{k}} \frac{n_{k}}{n} \leq \sum_{k=1}^{t} \frac{n_{k} \rho\left(A_{k}\right)}{n} \leq \max _{k} \rho\left(A_{k}\right)=\rho(A) \tag{2}
\end{equation*}
$$

Since $\rho(A)=\frac{e^{\top} S(A) e}{n}$ we deduce from inequality (2) that $\rho(A)=\rho\left(A_{k}\right)=\frac{e_{n_{k}}^{\top} S\left(A_{k}\right) e_{n_{k}}}{n_{k}}$ for every $k=1, \ldots, t$, and now applying case (i) it follows that each $D_{k}=\overleftrightarrow{G_{k}}$, where G_{k} is a $\frac{c_{2}}{n}$-regular graph for every $k=1, \ldots, t$.
(iii) In the general case, let \widehat{D} be the digraph obtained from D deleting every arc of D which does not belong to a cycle. Then \widehat{D} is the disjoint union of the strongly connected components of D, D and \widehat{D} have equal spectrum and $S(A)=S(A(\widehat{D}))$. Thus

$$
\rho(\widehat{D})=\rho(D)=\frac{e^{\top} S(A(\widehat{D})) e}{n}
$$

Now we apply case (ii) to \widehat{D} to obtain that $\widehat{D}=\overleftrightarrow{G}$ for a $\frac{c_{2}}{n}$-regular graph G, and consequently

$$
D=\overleftrightarrow{G}+\{\text { possibly some arcs that do not belong to cycles }\}
$$

Note that if G is a graph with m edges and n vertices, then the digraph associated \overleftrightarrow{G} also has n vertices and the number of closed walks of length 2 of \overleftrightarrow{G} is $c_{2}=2 m$. Hence

$$
\begin{equation*}
\rho(G)=\rho(\overleftrightarrow{G}) \geq \frac{c_{2}}{n}=\frac{2 m}{n} \tag{3}
\end{equation*}
$$

Moreover, if $\rho(G)=\frac{2 m}{n}$ then by inequality (3), $\rho(\overleftrightarrow{G})=\frac{c_{2}}{n}$ and by Theorem 2.1, \overleftrightarrow{G} is a $\frac{c_{2}}{n}-$ regular digraph (every arc of \overleftrightarrow{G} belongs to a cycle) and so G is a $\frac{2 m}{n}$-regular graph. Consequently, Theorem 2.1 is a generalization to digraphs of Collatz and Sinogowitz's Theorem.

3 Upper bound for the energy of a digraph

We next apply Theorem 2.1 and the technique used by Koolen and Moulton in [7], to construct new upper bounds for the low energy of a digraph.

Theorem 3.1 Let D be a digraph with n vertices, a arcs and c_{2} closed walks of length 2. Then

$$
\begin{equation*}
e(D) \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]} \tag{4}
\end{equation*}
$$

Equality holds if and only if D is the empty digraph (i.e. n isolated vertices) or

$$
D=\overleftrightarrow{G}+\{\text { possibly some arcs that do not belong to cycles }\}
$$

where G is one of the following:

1. $G=\frac{n}{2} K_{2}$;
2. $G=K_{n}$;
3. G is a non-complete connected strongly regular graph with two non-trivial eigenvalues both with absolute value $\sqrt{\frac{a-\left(\frac{c_{2}}{n}\right)^{2}}{n-1}}$.

Proof. Let A be the adjacency matrix of D. Since $A \geq 0$ we know that $\rho:=\rho(A)$ is an eigenvalue of D. Assume that $\rho=z_{1}, z_{2}, \ldots, z_{n}$ are the eigenvalues of D. By the Cauchy-Schwarz inequality applied to the vectors

$$
\left(\left|\operatorname{Re}\left(z_{2}\right)\right|,\left|\operatorname{Re}\left(z_{3}\right)\right|, \ldots,\left|\operatorname{Re}\left(z_{n}\right)\right|\right) \text { and }(1,1, \ldots, 1)
$$

of \mathbb{R}^{n-1} we deduce that

$$
\left(\sum_{i=2}^{n}\left|\operatorname{Re}\left(z_{i}\right)\right|\right)^{2} \leq(n-1) \sum_{i=2}^{n}\left[\operatorname{Re}\left(z_{i}\right)\right]^{2}
$$

From ([12, Lemma 2.2]) we know that

$$
\begin{equation*}
\sum_{i=2}^{n}\left[R e\left(z_{i}\right)\right]^{2} \leq a-\rho^{2} \tag{5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
e(D)=\rho+\sum_{i=2}^{n}\left|\operatorname{Re}\left(z_{i}\right)\right| \leq \rho+\sqrt{(n-1)\left(a-\rho^{2}\right)} \tag{6}
\end{equation*}
$$

Consider the function

$$
f(x)=x+\sqrt{(n-1)\left(a-x^{2}\right)}
$$

defined in the interval $[-\sqrt{a}, \sqrt{a}]$. First we consider the case $c_{2} \geq \sqrt{n a}$. Then by Theorem 2.1 and inequality (5)

$$
\sqrt{\frac{a}{n}} \leq \frac{c_{2}}{n} \leq \rho \leq \sqrt{a}
$$

Since the function f is strictly decreasing in the interval $\left[\sqrt{\frac{a}{n}}, \sqrt{a}\right]$, and bearing in mind inequality (6)

$$
\begin{equation*}
e(D) \leq f(\rho) \leq f\left(\frac{c_{2}}{n}\right)=\frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]} \tag{7}
\end{equation*}
$$

If $e(D)=\frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}$ then by inequality (7), $f(\rho)=f\left(\frac{c_{2}}{n}\right)$. Since f is strictly decreasing, $\rho=\frac{c_{2}}{n}$. Again by Theorem 2.1,

$$
D=\overleftrightarrow{G}+\{\text { possibly some arcs that do not belong to cycles }\}
$$

where G is a $\frac{c_{2}}{n}$-regular graph with n vertices and $\frac{c_{2}}{2}$ edges. Further, by [7, Theorem 1] and the fact that $c_{2} \leq a$

$$
\begin{aligned}
e(D)=E(G) & \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[c_{2}-\left(\frac{c_{2}}{n}\right)^{2}\right]} \\
& \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}=e(D)
\end{aligned}
$$

which implies $c_{2}=a$ and

$$
E(G)=\frac{c_{2}}{n}+\sqrt{(n-1)\left[c_{2}-\left(\frac{c_{2}}{n}\right)^{2}\right]}
$$

Now the result follows from the equality conditions in [7, Theorem 1].
For $c_{2}<\sqrt{n a}$, we consider two cases:
(a) If $a<n$ then $a \leq \sqrt{(n-1) a}$ and by [12, Theorem 2.5],

$$
\begin{equation*}
e(D) \leq a \tag{8}
\end{equation*}
$$

Since f is strictly increasing in $\left[0, \sqrt{\frac{a}{n}}\right]$ and $c_{2}<\sqrt{n a}$, then $\frac{c_{2}}{n} \in\left[0, \sqrt{\frac{a}{n}}\right]$ and we have

$$
\begin{equation*}
\sqrt{(n-1) a}=f(0) \leq f\left(\frac{c_{2}}{n}\right) \tag{9}
\end{equation*}
$$

From inequalities (8) and (9) we deduce

$$
e(D) \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}
$$

If equality holds, then again from inequalities (8) and (9)

$$
e(D)=a=\sqrt{a(n-1)}=f(0)=f\left(\frac{c_{2}}{n}\right)
$$

Since f is strictly increasing, $c_{2}=0$. On the other hand by [12, Theorem 2.5], $D=\frac{a}{2} \overleftrightarrow{K}_{2}$ plus some isolated vertices, which implies that $a=c_{2}=0$. Hence D is the empty digraph.
(b) If $a \geq n$, then it is not difficult to see that

$$
\sqrt{\frac{1}{2} n\left(a+c_{2}\right)} \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}
$$

and so by [12, Theorem 2.3]

$$
e(D) \leq \frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}
$$

If equality holds, then by [12, Theorem 2.3] $D=\frac{n}{2} \overleftrightarrow{K}_{2}$.

An application of Theorem 3.1 gives an improvement of [7, Theorem 1]. More precisely, if G is a graph with n vertices and m edges, the hypothesis " $2 m \geq n$ " can be dropped. In fact, consider \overleftrightarrow{G} the digraph associated to G. Then \overleftrightarrow{G} has n vertices and $a=c_{2}=2 m$. Now from Theorem 3.1

$$
\begin{equation*}
E(G)=e(\overleftrightarrow{G}) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]} \tag{10}
\end{equation*}
$$

If equality in (10) holds, then again the result follows by the equality conditions in Theorem 3.1.
Koolen and Moulton [7, Theorem 3] also showed that for a graph G with n vertices

$$
E(G) \leq \frac{n}{2}(1+\sqrt{n})
$$

We next generalize this result for digraphs. Let us first introduce an invariant which measures how far is a digraph from being a symmetric digraph.

Definition 3.2 Let D be a digraph with a arcs and c_{2} closed walks of length 2. The symmetry index of D, denoted by s, is defined as $s=a-c_{2}$.

Clearly, $0 \leq s \leq n(n-1)$ for every digraph D. Also note that a digraph D is symmetric if and only if $s=0$.

Theorem 3.3 Let D be a digraph with n vertices and symmetry index s. Then

$$
e(D) \leq \frac{n}{2}\left(1+\sqrt{n+\frac{4 s}{n}}\right)
$$

Proof. Consider the function $g(x)=\frac{x}{n}+\sqrt{(n-1)\left(x+s-\left(\frac{x}{n}\right)^{2}\right)}$ defined in the interval $I=\left[\frac{n^{2}}{2}-\frac{n}{2} \sqrt{n^{2}+4 s}, \frac{n^{2}}{2}+\frac{n}{2} \sqrt{n^{2}+4 s}\right]$. Using routine calculus we can see that g attains its maximum in $x_{0}=\frac{n^{2}}{2}+\frac{n}{2} \sqrt{n+\frac{4 s}{n}} \in I$. Then by Theorem 3.1 and the fact that $c_{2} \in I$ because

$$
c_{2} \leq n(n-1) \leq \frac{n^{2}}{2}+\frac{n}{2} \sqrt{n^{2}+4 s}
$$

we deduce

$$
e(D) \leq g\left(c_{2}\right) \leq g\left(x_{0}\right)=\frac{n}{2}\left(1+\sqrt{n+\frac{4 s}{n}}\right)
$$

Note that Theorem 3.3 is a generalization of [7, Theorem 3] since $s=0$ for symmetric digraphs.

It is reasonable to compare the generalized McClelland bound

$$
M=\sqrt{\frac{1}{2} n\left(a+c_{2}\right)}
$$

given in [12, Theorem 2.3] with the new bound

$$
K=\frac{c_{2}}{n}+\sqrt{(n-1)\left[a-\left(\frac{c_{2}}{n}\right)^{2}\right]}
$$

given in Theorem 3.1. It was shown in [7, Inequality (4) and Theorem 2] that if D is a symmetric digraph then $K \leq M$. In the general situation this is not always true, as we can see in the proof of Theorem 3.1 when $a \geq n$ and $c_{2}<\sqrt{n a}$. However, we show in our next result a large class of non-symmetric digraphs where $K \leq M$.

Proposition 3.4 Let D be a digraph with $n \geq 6$ vertices, c_{2} closed walks of length 2 and symmetry index s. If $c_{2} \geq \frac{n^{2}}{2}+\frac{n}{2} \sqrt{n+\frac{4 s}{n}}$ then $K<M$.

Proof. Consider the functions

$$
M(x)=\sqrt{\frac{n}{2}(2 x+s)} \quad \text { and } \quad K(x)=\frac{x}{n}+\sqrt{(n-1)\left(x+s-\left(\frac{x}{n}\right)^{2}\right)}
$$

which are well defined in the interval $I=[0, n(n-1)]$. Since $M^{\prime}(x)>0$ for every $x \in I$ then M is strictly increasing in I. On the other hand, $K(x)$ attains its maximum in $x_{0}=\frac{n^{2}}{2}+\frac{n}{2} \sqrt{n+\frac{4 s}{n}}$ ($x_{0} \in I$ when $n \geq 6$), and it is strictly decreasing in the interval $\left[x_{0}, n(n-1)\right]$ (see Figure 1).

It is easy to see that

$$
K\left(x_{0}\right)=\frac{n}{2}\left(1+\sqrt{n+\frac{4 s}{n}}\right)<\sqrt{\frac{n}{2}\left(n^{2}+n \sqrt{n+\frac{4 s}{n}}+s\right)}=M\left(x_{0}\right) .
$$

Hence $K(x)<M(x)$ for every $x \in\left[x_{0}, n(n-1)\right]$. In particular, if $c_{2} \geq x_{0}$ (note that in any digraph $c_{2} \leq n(n-1)$) then $K=K\left(c_{2}\right)<M\left(c_{2}\right)=M$.

Example 3.5 Table 1 shows examples of non-symmetric digraphs with n vertices, symmetry index s and c_{2} closed walks of length 2 such that $K \leq M$.

Table 1:

n	10	20	50	100
c_{2}	68	252	1436	5520
s	4	32	53	200
K	21,11	61,38	209,11	569,61
M	26,17	73,21	270,41	749,66

References

[1] R. Brualdi, Spectra of digraphs, Linear Algebra Appl., in press, doi: 10.1016/j.laa.2009.02.033.
[2] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 63-77.
[3] D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs. Academic Press, New York 1980.
[4] I. Gutman, The energy of a graph. Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978) 1-22.
[5] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[6] L. Yu. Kolotilina, Lower bounds for the Perron root of a nonnegative matrix, Linear Algebra Appl., 180 (1993) 133-151.
[7] J.H. Koolen and V. Moulton, Maximal Energy Graphs, Adv. Appl. Math. 26 (2001) 47-52.
[8] W. López and J. Rada, Equienergetic digraphs, Int. Journal Pure and Appl. Math. 36 (2007), no. 3, 361-372.
[9] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.
[10] V. Nikiforov, Graphs and matrices with maximal energy, J. Math. Anal. Appl. 327 (2007) 735-738.
[11] I. Peña and J. Rada, Energy of digraphs, Lin. Multilin. Alg. Vol. 56, No. 5, 565-579 (2008).
[12] J. Rada, The McClelland inequality for the energy of digraphs, Linear Algebra Appl., 430 (2009) 800-804.
[13] J. Rada, Lower bounds for the energy of digraphs, Linear Algebra Appl., in press, doi: 10.1016/j.laa.2009.02.007.

JUAN RADA

Departamento de Matemáticas, Facultad de Ciencias
Universidad Simón Bolívar
Caracas 1080 - A, Venezuela
e-mail: juanrada@usb.ve

ELIAS GUDIÑO

Departamento de Matemáticas, Facultad de Ciencias
Universidad Simón Bolívar
Caracas 1080 - A, Venezuela
e-mail: eliasg@ma.usb.ve

