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Abstract

We show that the spectral radius ρ (D) of a digraph D with n vertices and c2 closed walks

of length 2 satisfies ρ (D) ≥ c2

n
. Moreover, equality occurs if and only if D is the symmetric

digraph associated to a c2

n
-regular graph, plus some arcs that do not belong to cycles. As an

application of this result, we construct new upper bounds for the low energy of a digraph.
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1 Introduction

A directed graph (or just digraph) D consists of a non-empty finite set V of elements called

vertices and a finite set A of ordered pairs of distinct vertices called arcs. Throughout we assume

that D has no loops nor multiple arcs. Two vertices are called adjacent if they are connected by

an arc. If there is an arc from vertex u to vertex v we indicate this by writing uv. A walk π

of length l from vertex u to vertex v is a sequence of vertices π : u = u0, u1, . . . , ul = v, where

ut−1ut is an arc of D for every 1 ≤ t ≤ l. If u = v then π is a closed walk. If u = v but ui 6= uj

for i 6= j (i, j = 1, . . . , l) then π is a cycle of D.

A digraph D is symmetric if uv ∈ A then vu ∈ A, where u, v ∈ V. A one to one correspondence

between graphs and symmetric digraphs is given by G 
←→
G , where

←→
G has the same vertex set

as the graph G, and each edge uv of G is replaced by a pair of symmetric arcs uv and vu. Under

this correspondence, a graph can be identified with a symmetric digraph.

The adjacency matrix A of a digraph D whose vertex set is {v1, . . . , vn} is the n× n matrix

whose entry aij is defined as aij = 1 if vivj ∈ A and aij = 0 otherwise. The characteristic

polynomial |zI −A| of the adjacency matrix A of D is called the characteristic polynomial of D

and it is denoted by ΦD = ΦD (z). The eigenvalues of A are called the eigenvalues of D. Since A
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is not necessarily a symmetric matrix, the eigenvalues of A are in general complex numbers. The

spectral radius of A (respectively, of D) is denoted by ρ (A) (respectively, ρ (D)), and equals to

the largest absolute value of an eigenvalue of A. For a recent survey on spectra of digraphs we

refer to [1].

The eigenvalues of a graph G with n vertices are real numbers λ1, . . . , λn. The energy of G,

which was introduced by Gutman in [4] and it is extensively studied in chemistry, is defined as

E (G) =
n∑

i=1
|λi|. Recently, Nikiforov ([9],[10]) extended the energy of a graph to general matrices

as

E (A) =
n∑

i=1

σi

where σ1, . . . , σn are the singluar values of the n by m matrix A. When A is the adjacency matrix

of a graph G, then E (A) coincides with E (G).

Another definition for the energy of digraphs was given in [11]. Coulson’s integral formula

was generalized to digraphs

1

π

∞∫

−∞

(
n− ixΦ′

D (ix)

ΦD (ix)

)
dx =

n∑

i=1

|Rezi|

where z1, . . . , zn are the (possibly complex) eigenvalues of the digraph D and Rezi denotes the

real part of zi. Consequently, the concept of energy was naturally extended to digraphs as

e (D) =

n∑

i=1

|Rezi|

and it is called the low energy of D in [1], to differentiate between the two concepts. For further

results in the study of the low energy of digraphs we refer to [8], [11], [12] and [13].

In this paper we use Kolotilina’s ideas in the article [6], to find a new lower bound for the

spectral radius of a digraph in terms of its number of vertices and number of closed walks of

length 2 (see Theorem 2.1). This result generalizes the well known lower bound for the spectral

radius of a graph found by L. Collatz and U. Sinogowitz ([2], see also [3, Theorem 3.8]): if G has

n vertices and m edges then ρ (G) ≥ 2m
n

. Equality holds if and only if G is a 2m
n

-regular graph.

As an application of this result, we show in Theorem 3.1 that

e (D) ≤ c2

n
+

√

(n− 1)

[
a−

(c2

n

)2
]
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where D is a digraph with n vertices, a arcs and c2 closed walks of length 2. This upper bound for

the low energy generalizes the well-known inequality for the energy of a graph given by Koolen

and Moulton [7].

Finally, we introduce the symmetry index of a digraph, denoted by s and defined as s = a−c2,

which measures how far is a digraph from being symmetric. Then we show in Theorem 3.3 that

e(D) ≤ n
2 (1 +

√
n + 4s

n
)

generalizing the well known upper bound of the energy of a graph in terms of the number of

vertices given in [7, Theorem 3].

2 Lower bound of the spectral radius of a digraph

Recall that the geometric symmetrization of a matrix A = (aij), denoted by S (A) = (sij), is the

matrix with entries

sij =
√

aijaji

for every i, j = 1, . . . , n. Note that if A is the adjacency matrix of a digraph D with n vertices,

then
n∑

j=1

n∑
i=1

sij = c2, where c2 denotes the number of walks of length 2 of D. Also, if D̂ is obtained

from D by deleting those arcs of D that do not belong to a cycle, then clearly S (A) = S
(
A
(
D̂
))

,

where A
(
D̂
)

is the adjacency matrix of D̂. Moreover, by the coefficient theorem for digraphs [3,

Theorem 1.2], D and D̂ have equal characteristic polynomial because they have the same cycle

structure.

Theorem 2.1 Let D be a digraph with n vertices and c2 closed walks of length 2. Then

ρ (D) ≥ c2

n

Equality holds if and only if

D =
←→
G + {possibly some arcs that do not belong to cycles}

where G is a c2
n
-regular graph.

Proof. Let A be the adjacency matrix of the digraph D and S (A) = (sij) the geometric

symmetrization matrix of A. Clearly A ≥ S (A) ≥ 0 and so by [5, Corollary 8.1.19], ρ (A) ≥



A lower bound for the spectral radius of a digraph 41

ρ (S (A)). On the other hand, by Raleigh-Ritz Theorem [5, Theorem 4.2.2],

ρ (A) ≥ ρ (S (A)) ≥ e⊤S (A) e

n
=

n∑
i=1

n∑
j=1

sij

n
=

c2

n
(1)

where e = (1, 1, . . . , 1)⊤.

Now assume that ρ (A) = c2
n

. It follows from inequality (1) that

ρ (A) =
e⊤S (A) e

n
= ρ (S (A))

We consider three cases. (i) D is strongly connected: in this case A is irreducible and so by

Perron-Frobenius Theorem, there exists 0 < v = (v1, . . . , vn)⊤ ∈ R
n such that Av = ρ (A) v.

Equivalently,

ρ (A) =
n∑

j=1

aij
vj

vi

for every i = 1, . . . , n. Hence by the Geometric-Arithmertic mean inequality,

nρ (A) =
∑

1≤i<j≤n

(
aij

vj

vi

+ aji
vi

vj

)
≥ 2

∑

1≤i<j≤n

√
aijaji = e⊤S (A) e = nρ (A)

which implies

aij
vj

vi

= aji
vi

vj

for every i, j = 1, . . . , n. Since A is a (0, 1)-matrix and v > 0, we deduce that aij = 0 if and only

if aji = 0 for every i, j = 1, . . . , n. Thus A is a symmetric matrix and so D =
←→
G for a graph G

that has c2
2 edges and n vertices. Since

ρ (G) = ρ (A) =
c2

n

it follows from [3, Theorem 3.8] that G is a c2
n

-regular graph.

(ii) D is the disjoint union of t strongly connected components D1, . . . ,Dt: in this case

A =





A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · At







42 E. Gudiño and J. Rada

where each block matrix Ak is the nk×nk adjacency (irreducible) matrix of Dk. Clearly
n∑

k=1

nk =

n. Hence

e⊤S (A) e

n
=

t∑

k=1

e⊤nk
S (Ak) enk

nk

nk

n
≤

t∑

k=1

nkρ (Ak)

n
≤max

k
ρ (Ak) = ρ (A) (2)

Since ρ (A) = e⊤S(A)e
n

we deduce from inequality (2) that ρ (A) = ρ (Ak) =
e⊤n

k
S(Ak)enk

nk
for every

k = 1, . . . , t, and now applying case (i) it follows that each Dk =
←→
Gk , where Gk is a c2

n
-regular

graph for every k = 1, . . . , t.

(iii) In the general case, let D̂ be the digraph obtained from D deleting every arc of D which

does not belong to a cycle. Then D̂ is the disjoint union of the strongly connected components

of D, D and D̂ have equal spectrum and S (A) = S
(
A
(
D̂
))

. Thus

ρ
(
D̂
)

= ρ (D) =
e⊤S

(
A
(
D̂
))

e

n

Now we apply case (ii) to D̂ to obtain that D̂ =
←→
G for a c2

n
-regular graph G, and consequently

D =
←→
G + {possibly some arcs that do not belong to cycles}

Note that if G is a graph with m edges and n vertices, then the digraph associated
←→
G also

has n vertices and the number of closed walks of length 2 of
←→
G is c2 = 2m. Hence

ρ (G) = ρ
(←→

G
)
≥ c2

n
=

2m

n
(3)

Moreover, if ρ (G) = 2m
n

then by inequality (3), ρ
(←→

G
)

= c2
n

and by Theorem 2.1,
←→
G is a c2

n
-

regular digraph (every arc of
←→
G belongs to a cycle) and so G is a 2m

n
-regular graph. Consequently,

Theorem 2.1 is a generalization to digraphs of Collatz and Sinogowitz’s Theorem.

3 Upper bound for the energy of a digraph

We next apply Theorem 2.1 and the technique used by Koolen and Moulton in [7], to construct

new upper bounds for the low energy of a digraph.

Theorem 3.1 Let D be a digraph with n vertices, a arcs and c2 closed walks of length 2. Then

e (D) ≤ c2

n
+

√

(n− 1)

[
a−

(c2

n

)2
]

(4)
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Equality holds if and only if D is the empty digraph (i.e. n isolated vertices) or

D =
←→
G + {possibly some arcs that do not belong to cycles}

where G is one of the following:

1. G = n
2 K2;

2. G = Kn;

3. G is a non-complete connected strongly regular graph with two non-trivial eigenvalues both

with absolute value

√
a−( c2

n
)
2

n−1 .

Proof. Let A be the adjacency matrix of D. Since A ≥ 0 we know that ρ := ρ (A) is an

eigenvalue of D. Assume that ρ = z1, z2, . . . , zn are the eigenvalues of D. By the Cauchy-Schwarz

inequality applied to the vectors

(|Re (z2)| , |Re (z3)| , . . . , |Re (zn)|) and (1, 1, . . . , 1)

of R
n−1 we deduce that

(
n∑

i=2

|Re (zi)|
)2

≤ (n− 1)
n∑

i=2

[Re (zi)]
2

From ([12, Lemma 2.2]) we know that

n∑

i=2

[Re (zi)]
2 ≤ a− ρ2 (5)

Hence

e (D) = ρ +

n∑

i=2

|Re (zi)| ≤ ρ +
√

(n− 1) (a− ρ2) (6)

Consider the function

f (x) = x +
√

(n− 1) (a− x2)

defined in the interval [−√a,
√

a]. First we consider the case c2 ≥
√

na. Then by Theorem 2.1

and inequality (5)

√
a

n
≤ c2

n
≤ ρ ≤

√
a
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Since the function f is strictly decreasing in the interval
[√

a
n
,
√

a
]
, and bearing in mind inequality

(6)

e (D) ≤ f (ρ) ≤ f
(c2

n

)
=

c2

n
+

√

(n− 1)

[
a−

(c2

n

)2
]

(7)

If e (D) = c2
n

+

√
(n− 1)

[
a−

(
c2
n

)2]
then by inequality (7), f (ρ) = f

(
c2
n

)
. Since f is strictly

decreasing, ρ = c2
n

. Again by Theorem 2.1,

D =
←→
G + {possibly some arcs that do not belong to cycles}

where G is a c2
n

-regular graph with n vertices and c2
2 edges. Further, by [7, Theorem 1] and the

fact that c2 ≤ a

e (D) = E (G) ≤ c2

n
+

√

(n− 1)

[
c2 −

(c2

n

)2
]

≤ c2

n
+

√

(n− 1)

[
a−

(c2

n

)2
]

= e(D)

which implies c2 = a and

E (G) = c2
n

+

√
(n− 1)

[
c2 −

(
c2
n

)2]

Now the result follows from the equality conditions in [7, Theorem 1].

For c2 <
√

na, we consider two cases:

(a) If a < n then a ≤
√

(n− 1)a and by [12, Theorem 2.5],

e (D) ≤ a (8)

Since f is strictly increasing in
[
0,
√

a
n

]
and c2 <

√
na, then c2

n
∈
[
0,
√

a
n

]
and we have

√
(n− 1)a = f(0) ≤ f(

c2

n
) (9)

From inequalities (8) and (9) we deduce

e (D) ≤ c2
n

+

√
(n− 1)

[
a−

(
c2
n

)2]

If equality holds, then again from inequalities (8) and (9)

e (D) = a =
√

a(n− 1) = f(0) = f( c2
n

)
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Since f is strictly increasing, c2 = 0. On the other hand by [12, Theorem 2.5], D = a
2

↔

K2 plus

some isolated vertices, which implies that a = c2 = 0. Hence D is the empty digraph.

(b) If a ≥ n, then it is not difficult to see that

√
1

2
n (a + c2) ≤

c2

n
+

√

(n− 1)

[
a−

(c2

n

)2
]

and so by [12, Theorem 2.3]

e (D) ≤ c2
n

+

√
(n− 1)

[
a−

(
c2
n

)2]

If equality holds, then by [12, Theorem 2.3] D = n
2

↔

K2.

An application of Theorem 3.1 gives an improvement of [7, Theorem 1]. More precisely, if

G is a graph with n vertices and m edges, the hypothesis “2m ≥ n" can be dropped. In fact,

consider
←→
G the digraph associated to G. Then

←→
G has n vertices and a = c2 = 2m. Now from

Theorem 3.1

E (G) = e
(←→

G
)
≤ 2m

n
+

√√√√(n− 1)

[

2m−
(

2m

n

)2
]

(10)

If equality in (10) holds, then again the result follows by the equality conditions in Theorem 3.1.

Koolen and Moulton [7, Theorem 3] also showed that for a graph G with n vertices

E (G) ≤ n

2

(
1 +
√

n
)

We next generalize this result for digraphs. Let us first introduce an invariant which measures

how far is a digraph from being a symmetric digraph.

Definition 3.2 Let D be a digraph with a arcs and c2 closed walks of length 2. The symmetry

index of D, denoted by s, is defined as s = a− c2.

Clearly, 0 ≤ s ≤ n (n− 1) for every digraph D. Also note that a digraph D is symmetric if

and only if s = 0.

Theorem 3.3 Let D be a digraph with n vertices and symmetry index s. Then

e (D) ≤ n

2

(
1 +

√
n +

4s

n

)
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Proof. Consider the function g (x) = x
n

+

√
(n− 1)

(
x + s−

(
x
n

)2)
defined in the interval

I =
[

n2

2 − n
2

√
n2 + 4s, n2

2 + n
2

√
n2 + 4s

]
. Using routine calculus we can see that g attains its

maximum in x0 = n2

2 + n
2

√
n + 4s

n
∈ I. Then by Theorem 3.1 and the fact that c2 ∈ I because

c2 ≤ n(n− 1) ≤ n2

2 + n
2

√
n2 + 4s

we deduce

e (D) ≤ g (c2) ≤ g (x0) =
n

2

(
1 +

√
n +

4s

n

)

Note that Theorem 3.3 is a generalization of [7, Theorem 3] since s = 0 for symmetric

digraphs.

It is reasonable to compare the generalized McClelland bound

M =

√
1

2
n (a + c2)

given in [12, Theorem 2.3] with the new bound

K =
c2

n
+

√

(n− 1)

[
a−

(c2

n

)2
]

given in Theorem 3.1. It was shown in [7, Inequality (4) and Theorem 2] that if D is a symmetric

digraph then K ≤M . In the general situation this is not always true, as we can see in the proof

of Theorem 3.1 when a ≥ n and c2 <
√

na. However, we show in our next result a large class of

non-symmetric digraphs where K ≤M .

Proposition 3.4 Let D be a digraph with n ≥ 6 vertices, c2 closed walks of length 2 and symmetry

index s. If c2 ≥ n2

2 + n
2

√
n + 4s

n
then K < M .

Proof. Consider the functions

M (x) =
√

n
2 (2x + s) and K (x) = x

n
+

√
(n− 1)

(
x + s−

(
x
n

)2)

which are well defined in the interval I = [0, n (n− 1)] . Since M ′ (x) > 0 for every x ∈ I then M

is strictly increasing in I. On the other hand, K (x) attains its maximum in x0 = n2

2 + n
2

√
n + 4s

n

(x0 ∈ I when n ≥ 6), and it is strictly decreasing in the interval [x0, n (n− 1)] (see Figure 1).

It is easy to see that
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K (x0) = n
2

(
1 +

√
n + 4s

n

)
<

√
n
2 (n2 + n

√
n + 4s

n
+ s) = M (x0).

Hence K (x) < M (x) for every x ∈ [x0, n (n− 1)]. In particular, if c2 ≥ x0 (note that in any

digraph c2 ≤ n (n− 1)) then K = K (c2) < M (c2) = M .

Example 3.5 Table 1 shows examples of non-symmetric digraphs with n vertices, symmetry

index s and c2 closed walks of length 2 such that K ≤M .

Table 1:

n 10 20 50 100

c2 68 252 1436 5520
s 4 32 53 200
K 21,11 61,38 209,11 569,61
M 26,17 73,21 270,41 749,66
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