Revista Notas de Mateméatica

Vol.4(2), No. 264, 2008, pp.1-23
http://www.saber.ula.ve/notasdematematica/
Comisién de Publicaciones

Departamento de Matematicas

Facultad de Ciencias

Universidad de Los Andes

In search of traces of some holomorphic spaces on polyballs

Romi F. Shamoyan and Olivera R. Mihi¢ ( ex Djordjevi¢ )

Resumen

Consideramos que una nueva traza problema para las funciones holomorfas en las pelotas
de poli que completamente generalizar una conocido problema mapa diagonal para el dis-
co poli y dar una descripcion completa de las huellas de ciertas clases holomorfa en bolas
producto definido con la ayuda del operador de la zona Luzin o una pelota de Bergman
métricas.

Palabras claves: funcion holomorfa, bola Bergman métricas, el operador de la zona Luzin,

derivado fraccionada, el problema de seguimiento.

Abstract

We consider a new trace problem for functions holomorphic on poly balls which completely
generalize a known diagonal map problem for poly disk and give complete description of traces
of certain holomorphic classes on product balls defined with the help of Luzin area operator
or Bergman metric ball.

key words. holomorphic function, Bergman metric ball, Luzin area operator, fractional deriva-

tive, Trace problem
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1 Introduction

Let C denote the set of complex numbers. Throughout the paper we fix a positive integer n and
let C* = C x---xC denote the Euclidean space of complex dimension n. The open unit ball in C™
is the set B = {z € C"||z| < 1}. The boundary ofB will be denoted by S, S = {z € C"||z| = 1}.As

usual, we denote by H(B) the class of all holomorphic functions on B.

For 0 < p < oo we define the Hardy space HP(B™) consist of holomorphic functions f in B”

such that || f||j = supge,<1 [gn |f(rE)Pdo(€) < co. Here do denotes the surface measure on S”
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normalized so that o(S™) = 1. For every function f € H(B) having a series expansionf(z) =
Z| k|0 a2, we define the operator of fractional differentiation by
D%f(z) = Z (|k| + 1)%ax2",
|k|>0
where « is any real number.It is obvious that for any «, D® is an operator acting from H(B) to
H(B).For a fixed a > 1 let I'y(¢§) = {z € B: |1 —€z| < a1 — |z|)} be the admissible approach
region with vertex at £ € S.Let dv denote the volume measure on B, normalized so that v(B) = 1,
and let do denote the surface measure on S normalized so that ¢(S) = 1. and let du denote the

positive Borel measure.For o > —1 the weighted Lebesgue measure dv,, is defined by

dve = co(1 — |2|*)%duv(2) (1)

where

Fn+a+1)
nIl'(a+1) @)

is a normalizing constant so that v,(B) = 1 (see[23]). Let also dvg(z) = dvg(z1)...dvg(zm) =

(1 — 212 (1 — |2n|>)Pdv(21) - - - dv(2y,). For z € B and r > 0 the set D(z,7) = {w € B :

Ltz (w)]
1=fepz(w)]

Co —

B(z,w) < r} where [ is a Bergman metric on B, §(z,w) = %log is called the Bergman

metric ball at z (see[23]).
For £ € S™ and r > 0 set Q,(§) = {z € B" : d(2,£) < r}, where d is a non-isotropic metric
on 8", d(z,w) = |1 — <z,w>|% is called the Carles on tube at £ (see [23]).For a« > —1 and p > 0

the weighted Bergman space A}, consists of holomorphic functions f in LP(B,dv,), that is,

AP = [P(B,dv,) N H(B).

When the weight o = 0, we write AP for A%. These are the standard Bergman spaces. See [8]
and [23] for more details of weighted Bergman spaces. Let D" = {z = (21,... ,2,) € C" : |2;| <
1, 1 < j < n} be the unit poly disc in C*, and T" = {£ = (&1,... ,&,) € C": €] =1, 1 < j < n}
be the n-dimensional torus, the distinguished boundary of D™. If f(z) = f(r¢) is a measurable

function in D™, then



2 Romi F. Shamoyan and Olivera R. Mihié¢ ( ex Djordjevi¢ )

where 0 < p < oo, I" = (0,1)", m,, is the n- dimensional Lebesgue measure on T". Let m, m > 1
be a natural number, M C C" and K C C™, C"™ = C™ x --- x C™, be a hyper surface. Let
X (M) be a class of functions on M,Y (K) the same. We say TraceY (M™) =X (M), K = M™,
M™ = M x --- x M, if for any f € Y(M™), f(w,...,w) € X(M), w € M, and for any
g € X(M), there exist a functionf € Y (K) such that f(w,...,w) = g(w), w € M. Traces of
various functional spaces in R™ were described in[13] and [22]. In polydisk this problem is also
known as a problem of diagonal map (see [8] and references there).The intention of this paper is
to consider the following natural Trace problem for polyballs. Let M be a unit ball and let Kbe
a polyball (product of m balls) in definition we gave above.Let further H(B x - -- x B) be a space
of all holomorphic functions by each zj, z; € B, j=1,... ,m: f(z1,...,%p). Let further Y be
a subspace of H(B x --- x B).

The question we would like to study and solve in this work is the following: Find the complete
description of Trace Y in a sense of our definition for several concrete functional classes. We
observe that for n = 1 this problem completely coincide with the well- known problem of diagonal
map. The last problem of description of diagonal of various subspaces of H(D™)of spaces of all
holomorphic functions in the polydisk was studied by many authors before (see [8], [11],[16],
[17], [21] and references there). With the help of Luzin area operator and Bergman metric ball
inB we introduce new holomorphic functional classes on polyballs and describe completely their
Traces via classical Bergman spaces in the unit ball B of C™.In our previous paper (see [19])
we completely described traces of weighted Bergman classes on polyballs for all values ofp €
(0,00) and traces of some analytic Bloch type spaces on polyballs expanding known theorems
on diagonal map in polydisk(see [8], [16], and references there). Some results of this paper are
knew even for n = 1 (polydisk case). Main results of this paper will be proved in next section.
In the final section we consider related estimates for spaces defined with the help of fractional
derivatives, we describe traces of Hardy classes in polyballs and we consider similar constructions
in polyhalfplane. Basic properties of a known so-called r-latticein the Bergman metric that can
be found in [23] andes timates of expanded Bergman projection in the unit ball are essential
for our proofs.Trace theorems even for n = 1 (case of polydisk) have numerous applications in
the theory of holomorphic functions (see for example [3], 8], [18]).Throughout the paper, we
write C' (sometimes with indexes) to denote a positive constant which might be different at each
occurrence (even in a chain of inequalities) but is independent of the functions or variables being

discussed.We will write for two expressions A < B if there is a positive constant C' such that

A< CB.
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2 The description of Traces of analytic functional spaces in poly-
balls based on Luzin area operator and Bergman metric ball
and the action of expanded Bergman projection.

3 Preliminaries

Proofs of all our theorems in this section are heavily based on properties of r-lattice {ax} in a
Bergman metric (see for example [23]). In particular we will use systematically the following

lemmas.
Lemma A [23]

There exists a positive integer N such that for any 0 < r < lwe can find a sequence {ay} in

B with the following properties:

(1) B =, D(ag,r);

(2) The sets D(ay, §) are mutuallydisjoint;

(3) Each point z € B belongs to at most N of thesets D(ay, 4r)
Lemma B /25/

For each r > 0 there exists a positive constant C,. such that

_ 1— |al? 1— al?
Cl< 0 — <
N el F1E 1= (za) ="

for all a and z such that B(a,z) < r. Moreover,if r is bounded above, then we may choose C,

<C., O7'<

independent ofr.

Lemma C [23/

Let 0 <p<1anda>—1. Then

/n |f(2)|(1 — |Z|2)"+;+Q—(n+1)dv(z) < Hf”:n,a (4)

Ca

for all f € AL, where ¢, is the constant defined in (2).

Lemma D /25/

Suppose r >0, p > 0, and o« > —1. Then there exists a constant C' > 0 such that

P < e [, @@ )
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for all f € H(B"™) and all z € B".

We will need also:

Lemma E [12]

Let 3> 0 and p > 0. Let {A;}5° be a positive sequence and Y oo | 27"P A} < oo. Then

» 2miar < (Ag +) 274, - An_1|P> .

n=1 n=1

Bergman classes on poly balls AP(B™, dv,, - - - dv,,,) consists of functions f in H(B™), such that,

/ / (21, zm)P(L =2 )™ - (1 = 2] ) dv(21) - - - dv(2m) < oo.
B B
Let

A”(Bm,dvslmdvsm):{feH(Bm):/B---/B]f(zl,... )P

(1= [z1)™ - (L= |zm])*" dv(z1) - - dv(zm) < OO}

be we need also the following theorem from our paper [19] where the description of traces of

Bergman classes in poly balls were given.

Theorem A (1)

Suppose 1 < p < oo and $1,... ,8ym > —LPutt = (m —1)(n+1)+ Z;nzl sj. Then there
are bounded operators S : AP(B,dv;) — AP(B™,dvs, ---dvs,,), and R : AP(B™, dvs, - - dvs,, ) —
AP(B,dv;) such that (Sf)(z,...,2) = f(z) and(Rg)(z) = g(z,... ,z) for all f € AP(B,duv),
all g € AP(B™,dvs, - - - dvs,,) and all z € B. In other words, the TraceAP(B™,dvs, - -dvs, ) =
AP(B,dvy).(2) Let 0 <p <1, 81,0, 8, > =1, t=(m—1)(n+1)+>"" s;. Then
TraceAP(B™, dvs,, ... ,dvs,, ) = AP(B,duv;).

In this section we will give the complete description of traces of the following spaces of holomor-
phic functions on polyballs B = B x --- x B defined with the help of Luzin area operator and

Bergman metric ball with some restrictions on parameters.
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ME={f € HB™): f3 Jry ) Jry(e) 1 (2)PdTa(2)do(€) < oo},

€ (0,00), @ > —1.

LAY

—{f e HB™): / -/ (/ /D (zm,r)lf(z)lpd%(zv d55(2) < oo},

p,q € (0,00), @ >—1, 8> —1.

1 m
my . _\B _ j
Dl = {renE™): [ - /| /Md /|m P TL= I251)doz) | dr < oo,

Jj=1

1zl <7 (lz1] <7 ... |zm| < 1), p e (0,00), >—1,a; >—1,& = 1,...m. This classes
were studied in unit disc before (see [21]).These classes were considered in the case of unit disk
by manyauthors (see, for example, [2], [10], [21]).Functional classes defined with the help of
Bergman metric balland Luzin area operator in the unit ball were studied in[4], [14], [15] and also
in Chapter 5 andChapter 6 in [23]. Note that M¥ coincide withusual weighted Bergman class in
ball for m =1 (see [14],[15]).The following Theorem for n = 1 was proved in [11].

Theorem 1 Let m e Ny ne N, 0 <p<oo,a>—(n+1) andy = (a«+n+1)m —1. Then
Trace(ME(B™)) = AL(B).

Proof of Theorem 1.

In [5] it was shown

/ u(rér, ... € P — r)odr <c/ AP = [2)2"du(2), (6)

a>-1,0<p<oo,u€c HB), &= (&,...,&,) € S. We use this estimate m times by each
variable separately and get integrating both sides of obtained estimate by S

1 1
/ / N / |u(’r1£17' . arlgnw . armgly- . armén)|p(1 - 7,,1)041 te (1 - rm)amdrl o d?"mdé' (7)
S JO 0
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go// / (1 2m)P(L = |2])@ (1 = [z du(21) . .- dv (),
S JT'¢, (€) T (6)

where u € H(B™),m € N,a; > —1,0 < p < oo. The function u(z) = u(z,... ,2) is in H(B). To
prove the estimate we need we will use below so-called slice functions (see [23], page 125). Let
Hence using standard slice function technique (see [23],page 125) we have the following chain of
estimates (£2) = (2&1,...,260),ue(2, ... ,2) = u(&z, ... ,&2),ue € H(B™), (u¢)(2) = u(éz),z €
D,z = |z|7,D ={w: |w| < 1},§ € S,

u§(217"' 7Zm) :u(glzlu"' 7§n217'-' 7512777,7"' 7§nzm)7

zj=rjp, z; €D, j=1,... mue(z) =u(&rz,... 6z, ..., &12,... ,&z), 2 € D.
Then 1 € H(D), and

1—2—(k+1)

2
/ g (2)|P (1 — [2])7 drd|z] (8)

—2-k 0

[ eara - zparae < Cé /

oo oo _9—(k1+2) _o—(km+2)
—k1v —kmy —k1 —km 1=2 1=2
SOy Y (2 ) (22 y
1—2—(k1+1) 1—2—(km+1)

2T
X / |(ue) (21, - - - L Zm)|P (2R 2EmYdrd) 2y |- - - d) 2
0

1 1 por m .
S6(2/ / / ‘(’U{)(Zl,... 7Zm)’pH(1_‘Zk’)%_lde‘Zl‘”'d‘Zm"
0 0 Jo Pty

Using Lemma 1.10 from [23] we haveUsing that for f € L'(S",do)

2m
fao= [ doQ)5- [ f(E")as, )

and if 1 < k < n, then

[ gdr=c [ 0—Pran) [ TP, ),
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FOE) = F(tEL, ...ty tE1, ... tE0),E €S, t € (0,27), (10)

(see [23],Lemma 1.10), we have from (8) integrating both sides of it by sphere S

/|u JP(L— |2]) () Z/l

< Ol (Js la(rog)Pdo(s)) 27 127"

k1 —km —kq —km
< Clzl?;:o ka_0<2 m1 ZT’Y><2 2m)

1—2~(k+1)

/S [a(2)["(1 = |2])7do(§)d|=] (11)

—(km+2)

1—2—(k1+2)
X < 1_o—(kp+1) * (km+1) fs lu(z1,. .. azm)|pd0(f)) (Zkl "'2km)

1 1
< Cfy-Jy Jelu@Pdo© a5~ (L |z 5l - dlzl
u(z) = u(z,...,z). Combining (7) and (11) we have for 0 < p < co,v > —1

/|u AP = |2]) dv(z <o// / (1, 2P %
Ls(¢ T's(6)

O (1= ) T du () - dv () dor (),

x (1— |a)
Let 8 = %—1 —(n+1),theny=(B+n+1)m—-1,8> —(n+1).
So we proved completely one part of our assertion in Theorem1.Now we prove the reverse to the

last inequality. Let p < 1. We use systematically properties of, so-called, r-lattice {ay } or sampling

sequences (see Lemma Fand Lemma G, [23]).For every s > —1 we have F(z,... ,z) = f(z), where

B f) =l
F(Zl,... ,Zm)—O/BH;nZI(l_<w’Zj>)S+1%d ( )

by Bergman representation formula (see [23], Theorem 2.11).So we get the following chain esti-

mates (p < 1, s is large enough) using known properties of {a;} from LemmaF and Lemma G(

see also [23|, Chapter 2) and the fact that
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P
(1—|w|)®
| (Z17 |p S Z max |f </ m stltn dU(W)
k‘>0 D(akv D(alwr) H]ZI |1 - <w7 Z]>| m
1 — |ax))?® (v(D(ag,r)))?
< Dmax |f (w)|p( m‘ ) (_( ( IZHBL)p-
k>0 (agr) Hj:l |1 - <ak‘7 Z]>| m

Then using again the relation

|1 - <’(U,Z>| = |1 - <CLk,Z>|, w e D(akv’r)7 z € B,
(see [23],page 63)

and Lemma 2.24 from [23] and Lemma F we finally get

, @)1~ | dv (@)
|F(z1,... ,2m)|P < C/B I 1 (zk,@fﬂf”p’ (12)

where t = (n+ 1+ s)p— (n+ 1), t > —1. Integrating both sides of the last inequality by sphere

we have the following estimate

Js Jew ey Jrnie [FGL o zn) P (1= [aa) 0D (1~ [ ) 0 =04 D du(z1) . do(zm)do (€)

< C[glf@)PQ—lwl)vdv(w);  ~v>-1, pe(0,1].

We used m times the following known estimate

/ A D ey C L (see[13] [14]) (13)
rue) 11

— (@, 2)[* T =G w)frn iy

EeS, weB, v>-n—1, s >v+n+ 1. It is easy to see that our Theorem 1 is proved
completely for all p € (0,1].For p > 1 we use the following estimate, which can be easily obtained
from Holder’s inequality applied twice and the estimate (see [23], Theorem 1.12):
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A—1=D" C
/Bid (2) <

1= (w, z)[* (1 = fwl)s—n=t=v?

weB, v>—1, 51 >v+n+1, applied m times for s; = Top'm

— +n+1 1 1 _
(r=p (22t —n),L+L=1)

F)P(1— w5 (1 = |z12)" - (1 — |2m|?)7
| (Zlv"'a |P</ | | | |)( | |)_1md( |m|) dv(w), (14)
[Tizi 11 = (e @) [P
where z; € B, j=1,... ,mir; + 1y = %,T =p (HmL;l — 7*2) ,71,79 > 0, and continue as for
the case p < 1, using appropriate 71, 5. The proof of theorem is complete. [J Let us turn

to the proof of the theorem:

Remark 1 Form = n =1 the statement of Theorem 1 is obvious. Let us note that form =n =1
after definition of MK spaces it is obvious that for m = 1 these classes coincide with classical

Bergman spaces in the unit ball.

Theorem 2 Let n € N,0 < p < oo, t; > —1,8; > —-1,7 = 1,... , mya > —1 and o =
D (B +2(n 1) +t5) — (n+ 1), then

Trace (Kf’é)(Bm)) = AR(B).

The proof needs small modification of above argument and is based on some embed dings
obtained in [16].

Proof of Theorem 2. Obviously by LemmaF and G

[ 1@r i) £ 35 (e 1FF) tnPlosr). (15)

where f(z) = f(z,...,2),0 < p < 00,a > —1. We have by Lemma 2.24 from [23] and Lemma F
and G

max ‘f(z)’pck,a—l—n—l—l 5 Z < max ‘f(zly o 7Zm)‘p> Ck1,... Jkm,atn41, (16)

>0 z€D(ay,r) Ky >0k >0 ZjGD(akj )
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1

Ck,a—l—n—l—l = 'Ua—i-n—i-l(p(aka T))a Ck‘l,... Jkn,a = Vo (D(akl ) r))ﬁ c Uy (D(aknar)) 3

3=

m m
a=> B+ ti—n—1, t;>—1,j=1,...,m,
j=1 j=1
Bi=0i+2n+1), j=1,...,m.

1l < fae (=l - (1= fam])im

X (fD oy Sogn [ (01, ,wm)lf”d@ﬁ({b)> do(2),
where dv (w) = [T;2,(1 - |wl|? )ﬁkdv( ). At the final step we used Lemma F again and the fact
that for z € D(ag,r) (1 — |2])! < (1 — |ax|)!, t € R. Let us prove the reverse to the estimate
we obtained above. We again use properties of expanded Bergman projection and we have the
following chain of estimates. (First we consider the case p = q) We have as before for positive

large enough integer s,

flw)(1 — IWI)de(lf) ;

B ILy (1 (@, 2)

Hence by Lemma 2.15 from [23], for p < 1, we have

Js- kﬂkﬂ—MA(b% o | F G 2m) Pl (2)) d0(3)

f(w 1 |w‘ p(n+1+s) (n+1))
SleJp I I8 st X
(#1,r) T (= (@) [P

x TTisy (U= [2)™ TTily (1 — [2e]) %+ do(2)do(@)di(2),
dv(z) = dv(z1) ...dv(Zp,). Using the fact that s is large and using the inequality known estimates
for integrals on D(z;,7),j =1,... ,m;2z; € B based on lemmas F and G, (see [23])

11— P (1 = |wy,|)Pm
/ / ( an1|) ( s|1+01+,|1) dv(wy) - - - dv(wp,)
D(air)  JIDGm) [y 1= (wy, 2)| 7 P

m
—(s n) .
< CH 11— (z,2)| o FHOitntl -, e B, z; € B,
i=1
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we finally get the estimate we need:

IF Iy S 161, a7)
where is
m m
a=m+1) | g+> t;—1],
j=1 j=1
a>—-1,t;>—-1,8; > -1, =1,... ,m. when o,t, 3 were defined above. Theorem 2 is proved

completely for p < 1. To finish the proof we need estimate (17) for p > 1.
To finish the proof we need the estimate (17) for p > 1.For that reason we apply estimate (14).
Then repeat arguments we provided above for p < 1 using the fact that sis large enough in

Bergman representation formula. The proof of theorem is complete.

Remark 2 Let us note that for m =1 and n = 1 the Theorem 2 is obvious. Our Theorem 2 is

new even for m > 1, n = 1(poly disk case).for n =1 this theorem was obtained recently in

Let us note that for m = n = 1 after definition of ML spaces it is obvious that for m = 1

these classes coincide with classical Bergman spaces in the unit ball.
Remark 3 The general case of Kg’qﬁ spaces can be considered almost similarly for 0 < p < q < 1.

Remark 4 Traces of spaces of type fol <f\2|<r If (21, s 2m)|9d0g (21, - . . ,zn)) dr; |Z] < r i.e.
(lz1l <7 %... ,|zn] <7T), g € (0,00) can be obtained similarly.

Theorem 3 Let 0 < p < 00,8 > —l,a; > —1,57 = 1,... ,m. Then Trace(Dgﬂ(Bm)) =

TTGC@(A%(Bm)) = AZ}L aj+B+1+(n+1)(m—1) (B).

Proof 1 We obtain first a characterization of DZﬁ classes via weighted Bergman spaces on poly
balls and then we will apply Theorem A and thus we will calculate completely traces of DY, 3 classes
in poly bals. Let 0 <t <1, fi(z) = f(tz),z€ Bx---xB. Letr,, =1—-2""n=0,1,.... Using

decomposition

Tk+1

/01 P(r)dr = kf:;o/rk P(r)dr,

where P(r) is any measurable function on (0,1), it is easy to check
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1A = S =7 (frpr ™ S str i iz 2 P T (1= [z do(zy) )

< OS2 ([ e fipgen, AP T = |2 do(z)))

= C 22021 Z_N(ﬁ—’_l)A;?L = K(p7 f> Oé)-
We have by Lemma E

m
K<Cp) 27D / / / |fi(z 1— |z:))%dv(z;)
Z ‘Z1|<1 [zm—1]|<1 Jrp_1<zm<rn I;I J J

n(a+1)4
< CQ”ft”Ap(Bm dval, dUam 17dvﬁ+1+am 22 5+1 </ / ’ft Tné. ‘de'( )) 2 ( +1)p ..
(18)

1 1 B+ (at1)m B+4 (at)m
gC/---/(1—7‘1)T---(1—7’m)7><
0 0

X </S"’/S’ft(741§17--- 7rm§m)’pda(§17"' 7§m)>p

=Co / T / |fi(z1, ooy 2m)[Pdvg, (21) - - dvam71(2m—l)d”ﬁ+1+am (2m)-
|z1]<1 |zm|<1

Finally we have

i

HftH%Zﬁ < C|fell ar B dve, ... dva,, , dvgersan)- (19)

We tend t — 1 and apply Theorem A. So we get

Trace(D}, 4(B™)) C Ap m (B).

1 @ +B+1+(n+1)(m—1)
The reverse to estimate (18) can be obtained by similar argument.The reverse to (19) can be

obtained by very similar arguments. So using again Theorem A we get there verse inclusion

AP

POy aj+5+1+(n+1)(m_1)(B) = TT@CE(DQQ(Bm))-

The proof of theorem is complete.

2—n(a+1)
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4 On traces of Hardy spaces and some functional classes defined
with the help of fractional derivatives in poly balls and related
estimates in poly half plane

In this section we will give estimates for traces of classes of holomorphic functions of Besov-type in
poly balls defined with the help of fractional derivatives, obtain the description of traces of Hardy

classes HP(B™) in poly balls and present similar assertions and estimates for polyhalfplane.Let

HYy = {f € HB™) s sup (M (D7) ) (1 = 7)* < o0},

a

a>0, pe(0,00), BeR, Df=D5...DF §

Mg(fﬁ):/S"'/SIf(Tﬁl,---Tﬁm)lde(&)"'dff(&n), re(0,1).

We define Hardy class H? in poly balls as HP(B™) = Hg, for p € (0,00). As usual, we denote

by @ the vector (aq,... ,ay). Let

Ml =7 HE): [ o [ 1Dm Do (= ) () < o),
ajeR,j=1,... ,mt>—-1,0<p<ooand (1—|2]) =T (1 — |zl
Then the following result can be formulated as a direct corollary of estimates for expanded
Bergman projection obtained during the proof of Theorem 1 (see estimate (12)) and some known

calculations with fractional derivatives on Bergman kernels that can be found also in [14] and

[15].

Theorem 4 (1) Letp <1, a > (3 >0, then Afzm-l—(a—,@)pm—(n—l—l)(B) C Trace(H, 5(B™));

(2) Letp < 1,a; >0,t > L% e AP

m mt+m(nt1)—(n+1)—3"7", oy (B) - Trace(Af,U’(Bm))'

Remark 5 Note that forn =1 (poly disk case) and o = 0,3 = 0 the first inclusion can be found

in [8]. The second inclusion for ai,... ,on =0 can be also found in [8].

It is not difficult to see as a consequence of Cauchy formula (as in case of poly disk) that the

expansion of any function f, f € H(B") can be defined as follows
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f(217’-' 7ZM) = Z Z anlv---vnmz?l ”.sz,mu

n12>0 N, >0

i

zzj is in unit disk in C. And hence the corresponding homogeneous expansion of will be defined

as follows:

(0.0] o0
f(zlu 7Zm) - Z o Z fkl, ,km(zh sz)a
k1=0 km=
—
fk1,...,km (217 . 7Zm) - Z o Z a81, ,szfl anm7
Isil=k1  |sm|=km

n .
s => ], 2z €B,
=1

and the action of the fractional derivative is given by

(Dt ) (2) = D T + D)5 frre o (215 2m),

k1=0  km=0j=1

t,€R, j=1,...,m, (DTf) . H(B™) — H(B™).

We now provide some estimates for traces of Hardy HP classes in poly balls.

Let p > 2. Then Trace( HP(B™)) C Aﬁ(m_l)_

pmeNmMm>1neN.
The proof follows directly from binomial formula. We will give as hort proof for n = 1 poly
disk case. The general case needs smallmodification.Let D™ be unit poly disk, dma,(z) Lebesgue

measure on D™. Then we have the following chain of estimates. First

n

kit b+ 1= 3 Culan,.o o) | [0+ 1% | (~1) 1 (0 — 1),

ajZO;Z}Lill aj=s J=1

Z?:l aj = s, >0, we have oy, ... ,a,s € N. Hence
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M o= fou | S o et o o+ D, g, 2t 2 P

(1 _ |Z1|)a1p—1 o (1 _ |zn|)°‘"p_1dm2n(z)

X

< C Jpu DO fIPTTioa (1 = |2 )P~ dman (2) < C|f v
The last estimate follows directly from Theorem 4.41 from|23] for H?,p > 2 applied n times.On
the other hand obviously by Theorem A we have

M > (] fD | Ekl,...,kn(kl +. .tk + 1)sak1w’knzkl+...+kn P(1 = |2])*Pt"2dmy (2)

(1= - 2ama )

> O3Hﬂ|iszv p227
widetildef = f(z,... ,2).

Remark 6 [t is easy to notice that our appendiz will immediately give results for ,,smooth classes®

X ={D*f € HE} or Y ={D*f € HP}. where D* is a fractional derivative.

Remark 7 Various assertions for traces of different spaces can be obtained using estimates for

Remark 8 The complete description of traces of classes of Z), s- type cane be obtained by methods

outdated above using F(z1,... ,z,) functions.

Lemma F [23] There exists a positive integer N such that for any 0 < r < 1 we can find a

sequence {ay} in B™ with the following properties:

(1) B" =, D(ag,);
(2) The sets D(ag, §) are mutually disjoint;

(3) Each point z € B™ belongs to at most N of the sets D(ay,4r)

Lemma G [23] For each v > 0 there exists a positive constant Cy such that

_ 1— |al? _ 1— lal?
cTl< cl<— I <
N N T = (za)) T "
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for all a and z such that ((a,z) < r. Moreover,if r is bounded above, then we may choose C,

independent of r.

For ¢ € 8™ and r > 0 set Q,-(§) = {z € B" : d(2,€) < r}, where d is a non-isotropic metric
on S", d(z,w) = |1 — <z,w>]% is called the Carles on tube at £ (see [23|).Let us note also that
according to well known estimate for Poisson integral of functions from Hardy classes in the unit

ball (see[23|, page 154) applied (m — 2) times we have Since according to page 154 of [23]

e ,z>\P§c/n---/Sn\f<sl,... a2, 2) P

O el R € Bl 0
o 1= (6, )P
z€B,f€ H/(B x--- x B) = HP(B™),0 < p < oo. From last estimate now it is easy to see
that if

do(£1) -+ - do(§m—2),

/B (2, 2)P(1 = [2))" " dv(z) < Ol v (B2), (20)

0<p<oo, n>1, fe HP(B?),

then for any m > 1m €N, f e HP(B™), 0 < p < o0,

/ £z )P (1= [2)™" D7 do(2) < O gm)- (21)

So Trace(HP(B™)) c AP 1(B),0 < p < oco. Let us note for (20) it is enough to show that

n(m—1)—

/B(U(%Z))Q(l = |21)"tdu(2) < Cllull2(s2)

for any non negative subharmonic (by z; and z3) function u = u(z1, 22). It follows from the fact

that all functions |f(21, 22)[P, p € (0,00), f € H(B?) are subharmonic by 21 and z;. Note

o0 oo o0

u(z1,22) = Z Z Unyng 2yt 202 = Z Un, (21)252 21,22 € B.

ni=—0o0 nNg=—00 n2=—0oo

Hence by Hélder inequality
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[e.e] (o)

(u(z,2))? < [ D (kel + 1) |22l oy, (2) Y (ko +1)7 2]

ko=—0c0 ko=—0c0

Hence

/B (21— )2 <C S S Jamml? = Cllulle.

n]=—00 Ng=—00

Theorem 5 Let0 < p < comn € Nm > 1. Let also [ |f(z, 2)[P(1—[z))""'dv(z) < C||f| aem2)-
Then Trace(HP(B™)) = Aﬁ(m_l)_l(B)-

Proof 2 The proof for p < 1 follows from (21) and Theorem j.Let f € An(m - (B),p>1,
and let

_ 2mn—nm—1
9(z1, .-+ s 2n C/ )a |w| ) dv(w)

1—(w,21))%" - (1 = (W, 2))%"’

So we must show g € HP(B™). Let ® € LI(S™),||®| fagm) = 1,% +% = 1. Then by standard
duality argument inserting the integral representation for g function and using Fubini’s theorem

we have

2\nm—n—1 ‘(I)(f)’(l — ‘w‘2r2)nm
lor sy < € [ 110~y i) [ R

dO’(fl,... ,gm)

e / F)|(1 = w2 P@) (wr, ..., wr)dv(w),
B

where P(®) is a Poisson integral of ® in the ball B (see [23], Chapter 4).It remains to use Hélder’s
wnequality with p, q (% + % = 1) and estimate (21) and known properties of Poisson integral in
the ball (see[23], page 154).

grllrsm) < C </B [f(w)P(1 = IWI2)”m_”_1dv(W)> "

The proof of theorem is complete.
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Remark 9 Arguments we used above in the proof of Theorem 5 were partially based on corre-

sponding arguments for n =1 case (case of poly disk, see [8]).

Remark 10 Note that for n =1 Theorem 5 is well-known (see[8], [9], [20] and references there).

We mention at the end of paper some similar constructions concerning poly half planes. Ideas
we present below are based one stimates and results from [7] and [6] for A% classes in a half plane.
We need basic definitions. Let Cy is a upper half plane in C, and C! = Cy x --- x C,m €
N,m > 1, be a poly half plane. H(C,) is a space of all analytic functions in upper half plane, and
H(CT) is a space of all functions of the type F'(z1,... ,zp) analytic inH(C,) by each z; variable.

We define Bergman classes in half plane. Let

AB(C4) = {f € HCH)  [fllpa = (/ / P+ )Py ad:cdy)%oo,

a>-1,0<p< oo}

We also define Bergman classes in poly half plane. Let

) = {F e HED Wl = ([ [ [T [ 1@ vime o i)l

m
. 1
xHy;-ljdxjdyj)E <oo, aj>—1,j=1,...,m0<p< oo}
j=1

According to result from [6] the following proposition is true. Let dms(w) denote a Lebegues

measure on Cy, dmg(w) = dxdy.

Proposition A If f € AL(C,),0 <p < oo, > —1 then

=y [T LI s,

where 0 <p <1, > 22 — 2, 07’1§p<oo,627‘1—1.

We need also a lemma from |[7].
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Proposition B [7/

Let Cy is a covered by dyadic cubes Cy = |Ji—; Ag. Let (A}) be enlarged cube (see[7]) and
u € H(CL). Then

p a L w(w) P (Im(w))*dmeo (w
Zselfk\u(z)’ (Imz)* < AT AZ‘ (w)[P(Im(w))* dma(w),

0<p<oo,a>-—1.

We use these assertions to obtain an estimate for expanded Bergman projections in the poly half
plane an analogue of the estimate we had for poly ball above and using it as we did above we

describe traces of Bergman classes in poly half plane.

Theorem 6 Let p < 1,5 > —1,5 = 1,... ,m, then B is large enough positive number, then
Trace(A%(CT)) contain AY(C) that is Trace(AZ (CT)) = AY(Cy), fory = (34t o) +2m—2.
In other words for every function f, f € AL (CT), f(z,...,z) is in AY(CL) and the converse is
also true.

Proof 3 Let f € AL (CL). Then for large enough (3 according to Proposition A we have f(z) =

Cs fooo ffooo %dﬁ@(w). Now we consider

oC o0 w)(Im(w))?
Fea i) =Cs [ [ anﬂ i(l W diia(w).
k=1\W

T — 21)
Then obviously F(z,... ,z) = f(z) and F(z1,... ,zm) € H(CT). We will show that F € A”_(C'?)
for some a.. This will prove the half of the theorem. We have the following chain of estimates by
Proposition B and by the following estimates that can checked without difficulties (see also [7]).
If wy, is a center of diadic cube {A\;} from Proposition B then

(Im(wy))® = [Ag| = ma(Ag), (see[5], [6]) (22)

(Im(wg))? = |AF] = ma(AF)

Im(w) < Im(wg), w e ANy,

/(C+ (Ig(i));gfggz) < C’(Im(@))o‘+2_(ﬁ+2)p, we Cy, (see[5], [6]) (23)
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for all B, (8 +2)p —2 > a. Since Cy = Uy ; Dk, p < 1 we have

‘7:/ / [F (21, zmn) [P (Im(z0)) - (Im(zn)) 2" dia(z1) - - - diia(2m)
Cy Cy

w)|(Im(w))P dims (w P N _
gc/@+ /CH”” Z(/A ()l (Tm(w)) i >> diia(21) -« (o).

+ k=1 3 Ty (@ = z) |

Hence using (22) and (23)we get the following chain of estimates

Ak’pdﬁlg(zl) s dT?lg(Zm)
jgc/ / ||I ak§j P(1 oo =
. : m(zx)) max]f )P (I (wg)) 5T

+ =1 (ITeZy [k = 26 +7)

<C (Z max ]f(w)‘l’> (Im(wk))zk ak+2m—(ﬁ+2)p+6P‘Ak‘p <C <Z niax\f(w)]p> (Im(wk))Zkak“m
P — Ay,

<y / WP Im(w) sy () £ O [P ImG) S g )

In last estimate we used the fact that {A\;} is a finite covering of C (see [6],[7] and Proposition
B). So one part of the Theorem is obtained. To finish the proof we have to prove the following

estimate
K= | |f(w,...,w)P(Im(w))=r* 220, (w)
Cy
< c/ / |Fwiy .o we) [P (Im(w:))* - (Im(wp,)) ™ ding (wr) - - ding (wm) = CK1,
Ct+ Ct+

0 <p < oo. We have by Lemma F and GThis last estimate follows from the following chain of
estimates based on dyadic decomposition of C4, (22) and Proposition B

K = |Flw, ... w)[P(Im(w))=r %22 qm, (w)
C+
SO max [flw, ..., w)[P(Im(wy))=r s tm
’LUEAk
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SC N max [ wa) P(Im(uwg, )2 (Imfwy,, )
Epyeos >0 F17 kM
m
<c Y / / s wn) P T Im(uwg)*difa(wr) S CK;.
k1, skm Akl Akm k=1
p a1+2 am+2
<C Z max | f(wi,...,wy)P (Im(wy,) - Im(wg,,) ) < CK;.
P e R

The proof of theorem is complete.

Remark 11 The description of traces of Bergman classes in poly half plane for p > 1 can be also
obtained with the help of technique we developed above for p < 1 case and by some modification
of arguments we provided in our paper [19] for the case of Bergman classes in poly balls B™ for

p> 1.

Acknowledgement. We sincerely thank Tri eu Le for numerous discussions concerning Trace

problem.
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