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Resumen

En este trabajo se caracterizan a una familia de operadores de la evolución que se pueden
aplicar para demostrar la existencia y unicidad de las soluciones de una clave general de
ecuación diferenciales parciales no - autónomos con retraso. Con una aplicación se considera
el siguiente sistema de la ecuación parabólica de retardo:





∂u(t, x)

∂t
= D∆u(t, x) +B(t)ut(t, x) + f(t, x), t > s, u ∈ R

n,

∂u(t, x)

∂η
= 0, t > s, x ∈ ∂Ω,

u(s, x) = ψ(x), x ∈ Ω,

us(τ, x) = φ(τ, x), τ ∈ [−r, 0), x ∈ Ω,

donde s ≥ 0, Ω es un dominio limitado en R
N(N ≥ 1), D es una matriz diagonal n×n cuyos

valores propios son semisimple con términos parte real negativa y f : R × Ω −→ R
n es una

buena función. La notación estandar us(x) define una función de [−r, 0] a R
n (con x fijo) por

us(x)(τ) = u(s+ τ, x), −r ≤ τ ≤ 0. Está r ≥ 0 es la máxima demora, que se supone es finito.
Suponemos que, el operador B ∈ L∞([0,∞);L(Z1, Z)) con Z1 = L2([−r, 0], Z), Z = L2(Ω).
El principal objetivo de este trabajo es generalizar el Lema 1.1 para una familia de operadores
de la evolución y utilizarla para obtener una variación de las constantes de la fórmula para
las soluciones de este sistema (Ecuación parabólica con retardo).

Palabras claves: Operador fuertemente continuo de evolución, operador de evolución del

Lema, ecuación parabólica de retraso.

Resumen

In this paper we characterize a family of evolution operators that can be applied to prove
the existence and uniqueness of the solutions of a general class of non-autonomous partial
differential equations with delay. As application we consider the following system of Parabolic-
Delay Equations:



A Lemma on Evolution Operators and Applications 1





∂u(t, x)

∂t
= D∆u(t, x) +B(t)ut(t, x) + f(t, x), t > s, u ∈ R

n,

∂u(t, x)

∂η
= 0, t > s, x ∈ ∂Ω,

u(s, x) = ψ(x), x ∈ Ω,

us(τ, x) = φ(τ, x), τ ∈ [−r, 0), x ∈ Ω,

where s ≥ 0, Ω is a bounded domain in R
N (N ≥ 1), D is a n × n diagonal matrix whose

eigenvalues are semisimple with non negative real part and f : R × Ω −→ R
n is a smooth

function. The standard notation us(x) define a function from [−r, 0] to (with x fixed) by
us(x)(τ) = u(s+ τ, x), −r ≤ τ ≤ 0. Here r ≥ 0 is the maximum delay, which is supposed to
be finite. We assume that, the operator B ∈ L∞([0,∞);L(Z1, Z)) with Z1 = L2([−r, 0], Z),
Z = L2(Ω). The main objective of this work is to generalize Lemma 1.1 for a family of
evolution operators and use it to derive a variation of constants formula for the solutions of
this system(Parabolic-Delay Equations).

key words. strongly continuous evolution operator, lemma evolution operator, parabolic-delay

equations.

AMS(MOS) subject classifications. primary: 34G10, 93B05; secondary: 35B40,93C25. Run-

ning Title: A Lemma on Evolution Operator.

1 Introduction

The Lemma 2.1 from [9] has been generalized in Lemma 3.1 from [1] which states that:

Lemma 1.1 Let Z be a separable Hilbert space, {Sn(t)}n≥1 a family of strongly continuous semi-

groups and {Pn}n≥1 a family of complete orthogonal projection in Z such that:

ΛnPn = PnΛn, n ≥ 1, 2, . . .

where Λn is the infinitesimal generator of Sn.

Define the following family of linear operators

S(t)z =

∞∑

n=1

Sn(t)Pnz, t ≥ 0.

Then:

(a) S(t) is a bounded linear bounded operator if ‖ Sn(t) ‖≤ g(t), n = 1, 2, ..., with g(t) ≥ 0,

continuous for t ≥ 0.
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(b) {S(t)}t≥0 is a strongly continuous semigroup in the Hilbert space Z whose infinitesimal gen-

erator Λ is given by

Λz =
∞∑

n=1

ΛnPnz, z ∈ D(Λ).

with

D(Λ) =

{
z ∈ Z /

∞∑

n=1

‖ ΛnPnz ‖
2<∞

}
.

(c) The spectrum σ(Λ) of Λ is given by

σ(Λ) =

∞⋃

n=1

σ(Λ̄n), (1.1)

where Λ̄n = ΛnPn : R(Pn) → R(Pn).

Those Lemmas have been used in [1], [2], [3], [6],[9], [10],[11] and [12] in order to prove existence

of solutions for partial and functional partial differential equations, stability and controllability as

well. However, these Lemmas can not be applied directly to time dependent differential equations

or evolutionary differential equations in general like the following system of time varying functional

partial parabolic equation:





∂u(t, x)

∂t
= D∆u(t, x) +B(t)ut(t, x) + f(t, x), t > s, u ∈ R

n,

∂u(t, x)

∂η
= 0, t > s, x ∈ ∂Ω,

u(s, x) = ψ(x), x ∈ Ω,

us(τ, x) = φ(τ, x), τ ∈ [−r, 0), x ∈ Ω,

(1.2)

where s ≥ 0, Ω is a bounded domain in R
N (N ≥ 1), D is a n × n diagonal matrix whose

eigenvalues are semisimple with non negative real part and f : R × Ω −→ R
n is a smooth

function. The standard notation us(x) define a function from [−r, 0] to R
n(with x fixed) by

us(x)(τ) = u(s + τ, x), −r ≤ τ ≤ 0. Here r ≥ 0 is the maximum delay, which is supposed

to be finite. We assume that, the operator B ∈ L∞([0,∞);L(Z1, Z)) with Z1 = L2([−r, 0], Z),

Z = L2(Ω).

This system is motivated by the following Open Problem: Suppose the next functional ordi-

nary differential equation admits an asymptotically stable periodic orbit P

ẏ(t) = h(yt), t ∈ IR, y ∈ IRn, (1.3)
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where h ∈ C2(C([−r, 0]; IRn); IRn), yt : [−r, 0] −→ IRn defined by yt(s) = y(t + s), s ∈ [−r, 0]

and r ≥ 0 is the maximum delay, which is supposed to be finite.

Now, if we add diffusion to the system (1.3) with Neumann boundary condition we get the

following functional partial differential system





∂w(t, x)

∂t
= D∆w(t, x) + h(wt(t, x)), t > 0s, w ∈ R

n,

∂w(t, x)

∂η
= 0, t > s, x ∈ ∂Ω,

w(s, x) = ψ(x), x ∈ Ω,

ws(τ, x) = φ(τ, x), τ ∈ [−r, 0), x ∈ Ω,

(1.4)

where Ω is a bounded domain in R
N (N ≥ 1) and D is a n×n diagonal matrix whose eigenvalues

are semisimple with non negative real part.

Since we assume Neumann boundary conditions, then P is also periodic solution of the system

(1.4). So, the open question is: Under which condition this periodic orbit still asymptoti-

cally stable for the functional partial differential equation (1.4)?.

Using some ideas from [8] and [5] we can try to solve this problem by considering the varia-

tional equation around this periodic orbit,i. e., by the change of variable u = w−P(t), study the

stability of the zero solution of the system





∂u(t, x)

∂t
= D∆u(t, x) + B(t)ut(t, x) +H(t, ut(t, x)), t > 0, u ∈ R

n,

∂u(t, x)

∂η
= 0, t > 0, x ∈ ∂Ω,

(1.5)

where B(t) = hy(Pt) and H(t, φ) = O(‖φ‖c), φ ∈ C([−r, 0]; IRn).

The main objective of this work is to generalize Lemma 1.1 for a family of evolution operators

and use it to derive a variation of constants formula for the solutions of system (1.2). We hope

this result can be useful to solve the foregoing Legendary Open Problem.
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2 Evolution Operators

In general, we are interested in the abstract Cauchy problem defined on a Hilbert space Z,





dz(t)

dt
= A(t)z(t), 0 ≤ s ≤ t <∞,

z(s) = z0 ∈ Z,

(2.1)

where z : [0,∞) −→ Z, A(t) is a family of unbounded linear operators from D(A(t)) = D in Z,

independent on t, such that A(·)z ∈ C(R+, Z) for each z ∈ D.

This motives the study of evolution operators and the generator of these operators. We start

this section with the definition of fundamental solution of (2.1).

Definition 2.1 An operator-value function U(t, s) ∈ L(Z) which is strongly continuous jointly

in t, s for 0 ≤ s ≤ t <∞, is called fundamental solution of (2.1) if

1. For all z ∈ D the partial derivative
∂

∂t
U(t, s)z exists in the strong topology of Z and it is

strongly continuous in (t, s) for 0 ≤ s ≤ t <∞.

2. For all z ∈ D, U(t, s)z ∈ D.

3. For all z ∈ D,
∂

∂t
U(t, s)z = A(t)U(t, s)z, 0 ≤ s ≤ t <∞ and U(s, s) = I.

Proposition 2.2 The operator-value function U(t, s) given by the foregoing definition satisfies

the following properties:

U(t, s)z0 = z0 +

∫ t

s
A(τ)U(τ, s)z0dτ, ∀z0 ∈ D. (2.2)

ĺım
r−→t+

ĺım
k−→t−

U(r, k)U(k, s)z0 − U(k, s)z0
r − k

= ĺım
k−→t−

ĺım
r−→t+

U(r, k)U(k, s)z0 − U(k, s)z0
r − k

. (2.3)
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Proof (2.2) is trivial. So, we only prove (2.3). In fact,

ĺım
r−→t+

ĺım
k−→t−

U(r, k)U(k, s)z0 − U(k, s)z0
r − k

= ĺım
r−→t+

ĺım
k−→t−

1

r − k

∫ r

k
A(τ)U(τ, k)U(k, s)z0dτ

= ĺım
r−→t+

ĺım
k−→t−

1

r − k

∫ r

k
A(τ)U(τ, s)z0dτ

= ĺım
r−→t+

1

r − t

∫ r

t
A(τ)U(τ, s)z0dτ

= ĺım
h−→0+

1

h

∫ t+h

t
A(τ)U(τ, s)z0dτ

= A(t)U(t, s)z0.

and

ĺım
k−→t−

ĺım
r−→t+

U(r, k)U(k, s)z0 − U(k, s)z0
r − k

= ĺım
k−→t−

ĺım
r−→t+

1

r − k

∫ r

k
A(τ)U(τ, k)U(k, s)z0dτ

= ĺım
k−→t−

ĺım
r−→t+

1

r − k

∫ r

k
A(τ)U(τ, s)z0dτ

= ĺım
k−→t−

1

t− k

∫ t

k
A(τ)U(τ, s)z0dτ

= ĺım
h−→0+

1

h

∫ t

t−h
A(τ)U(τ, s)z0dτ

= A(t)U(t, s)z0.

The above calculation motives the following definition.

Definition 2.3 A two parameter family of bounded linear operators U(t, s) ∈ L(Z), 0 ≤ s ≤ t <

∞, is called an evolution operator if the following conditions are satisfied:

1. U(s, s) = I and U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ t <∞.

2. (t, s) −→ U(t, s) is strongly continuous for 0 ≤ s ≤ t <∞.

3. Exists a real valued continuous nonnegative function g(t, s) with ‖ U(t, s) ‖≤ g(t, s) for all

0 ≤ s ≤ t <∞.

Now, we shall give a definition of generator of an evolution operator.
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Definition 2.4 The generator A(t) of an evolution operator U(t, s), 0 ≤ s ≤ t < ∞ is defined

as follows:

A(t)z = ĺım
h−→0+

U(t+ h, t)z − z

h
, ∀z ∈ D(A(t)), 0 ≤ t <∞.

where D(A(t)) = D is given by

D =

{
z ∈ Z : ĺım

r−→t+
ĺım

k−→t−

U(r, k)U(k, s)z − U(k, s)z

r − k
= ĺım

k−→t−
ĺım

r−→t+

U(r, k)U(k, s)z − U(k, s)z

r − k

}

and the limit exists for all 0 ≤ s ≤ t <∞.

Remark 2.1 The foregoing definition is similar to the given in [7] pg 1902, and the generator of

an evolution operator satisfies, for z ∈ D, the following property:

A(t)z = ĺım
k−→t−

U(t, k)z − z

t− k
= ĺım

r−→t+

U(r, t)z − z

r − t
.

In fact,

ĺım
r−→t+

ĺım
k−→t−

U(r, k)U(k, s)z − U(k, s)z

r − k
= ĺım

k−→t−
ĺım

r−→t+

U(r, k)U(k, s)z − U(k, s)z

r − k
, 0 ≤ s ≤ t <∞.

If we put s = t, then

A(t)z = ĺım
h−→0+

U(t+ h, t)z − z

h

= ĺım
k−→t−

U(t, k)z − z

t− k
= ĺım

r−→t+

U(r, t)z − z

r − t
.

Lemma 2.5 Let U(t, s), 0 ≤ s ≤ t < ∞ be an evolution operator on Z such that, U(t, s)z ∈ D

for all z ∈ D. Then for all z ∈ D we have that

∂

∂t
U(t, s)z = A(t)U(t, s)z, for 0 ≤ s ≤ t ≤ T.

∂

∂s
U(t, s)z = −U(t, s)A(s)z for 0 ≤ s < t ≤ T.

Proof If z ∈ D, then from the hypothesis we have that U(t, s)z ∈ D for 0 ≤ s ≤ t <∞ and

ĺım
h−→0+

U(t+ h, s)z − U(t, s)z

h
= ĺım

h−→0+

U(t+ h, t)U(t, s)z − U(t, s)z

h
.

Since U(t, s)z ∈ D, we obtain that

ĺım
h−→0+

U(t+ h, s)z − U(t, s)z

h
= A(t)U(t, s)z.



A Lemma on Evolution Operators and Applications 7

Now, suppose t > s and h ≥ 0 is small enough such that t− h ≥ s. Then

ĺım
h−→0+

U(t− h, s)z − U(t, s)z

−h
= ĺım

h−→0+

−U(t− h, s)z + U(t, s)z

h

= ĺım
h−→0+

U(t, t− h)U(t− h, s)z − U(t− h, s)z

h

= ĺım
k−→t−

U(t, k)U(k, s)z − U(k, s)z

t− k

= ĺım
k−→t−

ĺım
r−→t+

U(r, k)U(k, s)z − U(k, s)z

r − k

= ĺım
r−→t+

ĺım
k−→t−

U(r, k)U(k, s)z − U(k, s)z

r − k

= ĺım
r−→t+

U(r, t)U(t, s)z − U(t, s)z

r − t

= ĺım
h−→0+

U(h+ t, t)U(t, s)z − U(t, s)z

h
, (h = r − t)

= A(t)U(t, s)z.

So,
∂

∂t
U(t, s)z = A(t)U(t, s)z, for 0 ≤ s < t <∞.

Finally,
∂

∂t
U(t, s)z |t=s= ĺım

h−→0+

U(s+ h, s)z − z

h
= A(s)z.

Newly, suppose that t > s and h ≥ 0 is small enough such that s+ h < t. Then
∥∥∥∥
U(t, s+ h)z − U(t, s)z

h
+ U(t, s)A(s)z

∥∥∥∥ =

∥∥∥∥
U(t, s + h)z − U(t, s+ h)U(s + h, s)z

h

+ U(t, s+ h)U(s + h, s)A(s)z ‖

=

∥∥∥∥−U(t, s+ h)

{
U(s+ h, s)z − z

h
− U(s+ h, s)A(s)z

}∥∥∥∥

≤ g(t, s + h)

∥∥∥∥
{
U(s+ h, s)z − z

h
− U(s+ h, s)A(s)z

}∥∥∥∥ .

Since,

ĺım
h−→0+

U(s+ h, s)z − z

h
= A(s)z,
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we get that

ĺım
h−→0+

U(t, s + h)z − U(t, s)z

h
= −U(t, s)A(s)z.

Analogously,

ĺım
h−→0+

U(t, s− h)z − U(t, s)z

−h
= ĺım

h−→0+

U(t, s)U(s, s − h)z − U(t, s)z

−h

= −U(t, s) ĺım
h−→0+

U(s, s− h)z − z

h

= −U(t, s)A(s)z.

Therefore,
∂

∂s
U(t, s)z = −U(t, s)A(s)z, for 0 ≤ s ≤ t <∞.

Theorem 2.6 Let U(t, s), 0 ≤ s ≤ t <∞ be an evolution operator on Z satisfying the condition

on Lemma 2.5, and A(t) its generator with domain D. Then the Cauchy problem




z′(t) = A(t)z(t), t ≥ s,

z(s) = z0, z0 ∈ D,

has the unique solution

z(t) = U(t, s)z0, t ≥ s.

Proof From Lemma 2.5 we get that z(t) = U(t, s)z0 is one solution of the Cauchy problem.

Now, we shall prove the uniqueness; for this, we will suppose that y(t) is another solution of the

problem. Then the difference w(t) = z(t) − y(t) satisfies the differential equation

dw

dt
= A(t)w(t), t ≥ s; w(s) = 0

so we need to show that w(t) ≡ 0. For this, let us define F (u) = U(t, u)w(u),

0 ≤ u ≤ s < t. Then

F ′(u) =
∂

∂u
U(t, u)y(u) + U(t, u)

d

du
y(u)

= −U(t, u)A(u)y(u) + U(t, u)A(u)y(u)

= 0.

Therefore, F (u) = U(t, u)y(u) = c (constant). In particular, if we put u = s, we have that

F (s) = U(t, s)w(s) = 0.
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Now, from the strongly continuity of U(t, s) we get that

F (t) = ĺım
s−→t−

F (s)

= ĺım
s−→t−

U(t, s)w(s)

= 0.

Hence, w(t) = z(t) − y(t) = 0.

Theorem 2.7 Let U(t, s), 0 ≤ s ≤ t <∞ be an evolution operator on Z satisfying the condition

on Lemma 2.5, and A(t) its generator with domain D. Consider the non-homogeneous Cauchy

problem.





z′(t) = A(t)z(t) + f(t), t ≥ s,

z(s) = z0, z0 ∈ Z, 0 ≤ s ≤ t.
(2.4)

Suppose that either

(i) z0 ∈ Z and f ∈ C(R+, Z) takes values on D and (A(·)f(·))′ ∈ C(R+, Z),

or

(ii) z0 ∈ D and f ∈ C1(R+, Z).

Then (2.4) has an unique solution z ∈ C1(R+, Z) with value on D. Moreover, this solution z(t)

is a solution of the following integral equation

z(t) = U(t, s)z0 +

∫ t

s
U(t, α)f(α)dα. (2.5)

Definition 2.8 A solution of (2.5) is called mild solution of (2.4).

Remark 2.2 A particular case of an evolution operator U(t, s) which satisfies the condition on

Lemma 2.5, is given by

U(t, s)z = T (t− s)z +

∫ t

s
T (t− α)B(α)U(α, s)zdα, (2.6)

where A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 in the Banach

space Z and B ∈ P∞([0,∞);L(Z)), where

P∞([0,∞);L(Z)) :=

{
B/〈z1, B(·)z2〉 is measurable for every z1, z2 ∈ Z and (ess sup

0≤t<∞

) ‖ B(t) ‖L(Z)<∞

}
.
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In this case, it is clear that the generator of this evolution operator is

A(t) = A+B(t),

with domain D(A(t)) = D(A) = D. See [4].

Proposition 2.9 Consider the evolution operator U(t, s) given by (2.6). Then

1.
∂

∂t
U(t, s)z = A(t)U(t, s)z, 0 ≤ s ≤ t <∞.

2.
∂

∂s
U(t, s)z = −U(t, s)A(t)z, 0 ≤ s < t <∞.

3. A(t) is closed.

3 Mean Theorem

In this section we shall characterize a family of evolution operators that can be used to prove

the existence and uniqueness of solutions for a general class of non-autonomous functional partial

differential equations.

Lemma 3.1 Let Z be a Hilbert Space, {Un(t, s)}0≤s≤t<∞ a family of evolution operators and

Pn(·) : [0,∞) −→ L(Z); n = 1, 2, . . . , a family of strongly continuous orthogonal projections on

Z, which are complete and

Pn(t)Un(t, s) = Un(t, s)Pn(s); n = 1, 2, . . . , 0 ≤ s ≤ t <∞.

Let us define the following family of linear operators

U(t, s) =
∞∑

n=1

Un(t, s)Pn(s)z, 0 ≤ s ≤ t <∞.

Then, the following statements holds:

(i) {U(t, s)}0≤s≤t<∞ is an evolution operator, if ‖Un(t, s)‖ ≤ g(t, s), n = 1, 2, . . . , with g(t, s) ≥

0, continuous in 0 ≤ s ≤ t <∞.

(ii) The generator A(t) : D −→ Z of {U(t, s)}0≤s≤t<∞ is given by

A(t)z =
∞∑

n=1

An(t)Pn(t)z, z ∈ D,
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where

D ⊂ W =

{
z ∈ Z :

∞∑

n=1

‖ An(t)Pn(t)z ‖2<∞, ∀t ∈ [0,∞)

}
,

and if A(t) is a closed operator, then D = W.

(iii) Suppose A(t) is a closed operator. If z ∈ D, then U(t, s)z ∈ D.

Proof We show first that U(t, s) is a bounded linear operator for fixed s ≤ t. In fact, let z ∈ Z.

Then

‖ U(t, s)z ‖2 =

〈
∞∑

n=1

Un(t, s)Pn(s)z,

∞∑

m=1

Um(t, s)Pm(s)z

〉

=
∞∑

n,m=1

〈Un(t, s)Pn(s)z, Um(t, s)Pm(s)z〉

=
∞∑

n,m=1

〈Pn(t)Un(t, s)Pn(s)z, Pm(t)Um(t, s)Pm(s)z〉

=

∞∑

n=1

‖ Un(t, s)Pn(s)z ‖2

≤ (g(t, s))2 ‖ z ‖2 .

This proves that U(t, s) is bounded.

Now, we will show that U(t, r)U(r, s) = U(t, s) for 0 ≤ r ≤ s ≤ t <∞

U(t, r)U(r, s)z =
∞∑

n=1

Un(t, r)Pn(r)

(
∞∑

i=1

Ui(r, s)Pi(s)z

)

=

∞∑

n=1

Un(t, r)Un(r, s)Pn(s)z

=

∞∑

n=1

Un(t, s)Pn(s)z

= U(t, s)z.
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Next, we show that U(t, s) is strongly continuous in [0,∞). In fact:

‖ U(t, s)z − z ‖2 =

∥∥∥∥∥

∞∑

n=1

Un(t, s)Pn(s)z −

∞∑

n=1

Pn(s)z

∥∥∥∥∥

2

=
∞∑

n=1

‖ (Un(t, s) − I)Pn(s)z ‖2

=
N∑

n=1

‖ (Un(t, s) − I)Pn(s)z ‖2 +
∞∑

n=N+1

‖ (Un(t, s) − I)Pn(s)z ‖2

≤ sup
1≤n≤N

‖ (Un(t, s) − I)Pn(s)z ‖2 N +K

∞∑

n=N+1

‖ Pn(s)z ‖2,

where K = sup
0≤s≤t≤1; n≥1

‖ Un(t, s) − I ‖2≤ (g(t, s) + 1)2.

Since {Un(t, s)}0≤s≤t≤T (n = 1, 2, . . . ) is a strongly continuous evolution operator and {Pn(s)}n≥1

is a complete orthogonal projections, given an arbitrary ǫ > 0 we have, for some natural number

N and 0 < s < t < 1, the following estimates:

∞∑

n=N+1

‖ Pn(s)z ‖2<
ǫ

2K
, sup

1≤n≤N
‖ (Un(t, s) − I)Pn(s)z ‖2<

ǫ

2N

and hence
‖ U(t, s)z − z ‖2 <

ǫ

2N
N +K

ǫ

2K
,

= ǫ.

Therefore, U(t, s) is a strongly continuous evolution operator in [0,∞).

Let A(t) be the generator of this evolution operator. Then, from definition 2.2, we have for all

z ∈ D,

A(t)z = ĺım
h−→0+

U(t+ h, t)z − z

h
= ĺım

h−→0+

∞∑

n=1

(Un(t+ h, t) − I)

h
Pn(t)z.

Therefore,

Pm(t)A(t)z = Pm(t)

(
ĺım

h−→0+

∞∑

n=1

(Un(t+ h, t) − I)

h
Pn(t)z

)

= ĺım
h−→0+

(Um(t+ h, t) − I)

h
Pm(t)z

= Am(t)Pm(t)z.
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Hence,

A(t)z =
∞∑

n=1

Pn(t)A(t)z =
∞∑

n=1

An(t)Pn(t)z,

and

D ⊂ W =

{
z ∈ Z :

∞∑

n=1

‖ An(t)Pn(t)z ‖2<∞, ∀t ∈ [0,∞)

}
.

Now, suppose A(t) is closed and z ∈

{
z ∈ Z :

∞∑

k=1

‖ Ak(t)Pk(t)z ‖2<∞, ∀t ∈ [0,∞)

}
. Then

∞∑

k=1

‖ Ak(t)Pk(t)z ‖2<∞, t ∈ [0,∞) and y =
∞∑

k=1

Ak(t)Pk(t)z ∈ Z.

Therefore, if we consider zn =

n∑

k=1

Pk(t)z, then zn ∈ D and A(t)zn =

n∑

k=1

Ak(t)Pk(t)z.

Hence, ĺım
n−→∞

zn = z and ĺım
n−→∞

A(t)zn = y and since A(t) is a closed linear operator we get that

z ∈ D and A(t)z = y.

(iii) If A(t) is a closed operator, then D = W. Now, let z ∈ D and consider
∞∑

n=1

‖ An(t)Pn(t)z ‖2<∞, for all 0 ≤ t <∞. Then,

∥∥∥∥∥

∞∑

n=1

An(t)Pn(t)U(t, s)z

∥∥∥∥∥

2

=

∥∥∥∥∥

∞∑

n=1

An(t)Pn(t)

(
∞∑

k=1

Uk(t, s)Pk(s)z

)∥∥∥∥∥

2

=

∥∥∥∥∥

∞∑

n=1

An(t)Un(t, s)Pn(s)z

∥∥∥∥∥

2

≤

∞∑

n=1

‖ An(t)Un(t, s)Pn(s)z ‖2

≤ (g(t, s))2
∞∑

n=1

‖ An(t)Pn(t)z ‖2

< ∞,

for all 0 ≤ s ≤ t <∞. Hence, U(t, s)z ∈ D for all z ∈ D and 0 ≤ s ≤ t <∞.
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4 Applications

In this section we shall use the foregoing result to find a variation of constants formula for the

following system of functional partial parabolic equations:





∂u(t, x)

∂t
= D∆u(t, x) +B(t)ut(t, x) + f(t, x), t > s, u ∈ R

n,

∂u(t, x)

∂η
= 0, t > s, x ∈ ∂Ω,

u(s, x) = ψ(x), x ∈ Ω,

us(τ, x) = φ(τ, x), τ ∈ [−r, s), x ∈ Ω,

(4.1)

where s ≥ 0, Ω is a bounded domain in R
N (N ≥ 1), D is a n × n diagonal matrix whose

eigenvalues are semisimple with non negative real part and f : R×Ω −→ R
n is a smooth function.

The standard notation us(x) define a function from [−r, 0] to R
n(with x fixed) by us(x)(τ) =

u(τ + s, x), −r ≤ τ ≤ 0. Here r ≥ 0 is the maximum delay, which is supposed to be finite.

We assume that, for each T ≥ 0, the operator B ∈ L∞([0,∞);L(Z1)) with Z1 = L2([−r, 0], Z),

Z = L2(Ω).

4.1 Abstract Formulation of the Problem

In this section we choose a Hilbert space where system (4.1) can be written as an abstract

functional differential equation; for this, we consider the following hypothesis:

H1). The matrix D is semi simple (block diagonal) and the eigenvalues di ∈ C of D satisfy

Re(di) ≥ 0 . Consequently, if 0 = λ1 < λ2 < ... < λn −→ ∞ are the eigenvalues of −∆ with

homogeneous Neumann boundary conditions, then there exists a constant M ≥ 1 such that :

‖e−λnDt‖ ≤M , t ≥ 0, n = 1, 2, 3, ...

H2). For all I > 0 and z ∈ L2
loc([−r,∞);Z) we have the following inequality

∫ t

0
| B(α)zα | dα ≤M0(t) | z |L2([−r,t),Z), ∀t ∈ [0, I],

where M0(·) is a positive continuous function on [0,∞).

Consider H = L2(Ω, IR) and 0 = λ1 < λ2 < ... < λn −→ ∞ the eigenvalues of −∆, each one

with finite multiplicity γn equal to the dimension of the corresponding eigenspace. Then :

(i) There exists a complete orthonormal set {φn,k} of eigenvectors of −∆.
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(ii) For all ξ ∈ D(−∆) we have

−∆ξ =
∞∑

n=1

λn

γn∑

k=1

< ξ, φn,k > φn,k =
∞∑

n=1

λnEnξ, (4.2)

where < ·, · > is the inner product in H and

Enx =

γn∑

k=1

< ξ, φn,k > φn,k. (4.3)

So, {En} is a family of complete orthogonal projections in H and

ξ =
∞∑

n=1

Enξ, ξ ∈ H.

(iii) ∆ generates an analytic semigroup {T∆(t)} given by

T∆(t)ξ =

∞∑

n=1

e−λntEnξ. (4.4)

Now, we denote by Z the Hilbert space L2(Ω, IRn) and define the following operator

A : D(A) ⊂ Z −→ Z, Aψ = −D∆ψ

with D(A) = H2(Ω, IRn) ∩H1
0 (Ω, IRn).

Therefore, for all z ∈ D(A) we obtain,

Az =

∞∑

n=1

λnDPnz

and

z =

∞∑

n=1

Pnz, ‖ z ‖2=

∞∑

n=1

‖ Pnz ‖2, z ∈ Z,

where

Pn = diag(En, En, ..., En)

is a family of complete orthogonal proyections in Z.

Consequently, system (4.1) can be written as an abstract functional differential equation in Z:




dz(t)

dt
= −Az(t) +B(t)zt + f e(t), t > 0,

z(s) = ψ0,

zs(τ) = φ(τ), τ ∈ [−r, s).

(4.5)

Here f e : (0,∞) −→ Z is a function defined as follows:

f e(t)(x) = f(t, x), t > 0, x ∈ Ω.
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4.2 Existence and Uniqueness of Solutions

In case that f e ≡ 0 the system (4.5)is given by:





dz(t)

dt
= −Az(t) +B(t)zt, t > 0,

z(s) = ψ0 = z0,

zs(τ) = φ(τ), τ ∈ [−r, s).

(4.6)

So, the system (4.6) admits only one solution.

Definition 4.1 A function z(·) define on [s− r, α) is called a Mild Solution of (4.6) if

z(t) =





φ(t− s); s− r ≤ t < s,

TA(t− s)z0 +

∫ t

s
TA(t− γ)B(γ)zγdγ, t ∈ [s,∞).

Theorem 4.2 The problem (4.6) admits only one mild solution defined on [s− r,∞).

5 The Variation of Constants Formula

Now we are ready to find the formula announced in the title of this paper for the system (4.5), but

first we need to write this system as an abstract ordinary differential equation in an appropriate

Hilbert space. In fact, we consider the Hilbert space M2([−r, 0];Z) = Z ⊕L2([−r, 0];Z) with the

usual inner product given by:

〈(
φ01

φ1

)
,

(
φ02

φ2

)〉
= 〈φ01, φ02〉Z + 〈φ1, φ2〉L2 .

Define the following operator in the space M2 for t ≥ s ≥ 0 by

U(t, s)

(
ψ0

φ(·)

)
=

(
z(t)
zt(·)

)
=

(
z(t, s, φ(·), ψ0)
zt(·, s, φ(·), ψ0)

)
(5.1)

where z(·) is the unique mild solution of the system (4.6).

Theorem 5.1 The family of operators {U(t, s)}t≥s≥0 defined by (5.1) is a strongly continuous

evolution operator on M2 such that

U(t, s)W =

∞∑

n=1

Un(t, s)QnW, W ∈ M2, t ≥ s ≥ 0, (5.2)
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where,

Qn =

(
Pn 0

0 P̃n

)
,

with (P̃nφ)(α) = Pnφ(α), φ ∈ L2([−r, 0];Z), α ∈ [−r, 0], and {{Un(t, s)}t≥s≥0, n = 1, 2,3, ..} is a

family of strongly continuous evolution operators on M
n
2 = QnM2 is given defined as follows

Un(t, s)

(
ψn

0

φn(·)

)
=

(
zn(t)

zn(t+ ·)

)
,

(
ψn

0

φn(·)

)
∈ M

n
2 ,

where zn(·) is the unique solution of the initial value problem





dz(t)

dt
= −λnDz(t) +Bn(t)zt, t > s,

z(s) = ψn
0 ,

zs(τ) = φn(τ), τ ∈ [−r, s)

(5.3)

and Bn(t) = B(t)P̃n = PnB(t).

Proof We prove first that

U(t, s)W =
∞∑

n=1

Un(t, s)QnW, W ∈ M2, t ≥ s.

In fact, let W =

(
w1

w2

)
∈ M2.
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∞∑

n=1

Un(t, s)QnW =
∞∑

n=1

Un(t, s)

(
Pn 0

0 P̃n

)(
w1

w2

)

=

∞∑

n=1

Un(t, s)

(
Pnw1

P̃nw2

)

=

∞∑

n=1

(
zn(t)

zn(t+ ·)

)
; zn(·) the unique mild solution of (5.3)

=

∞∑

n=1




e−λnD(t−s)Pnw1 +

∫ t

s
e−λnD(t−γ)Bn(γ)(P̃nz

n(γ + ·))dγ

(P̃nz(t+ ·))




=




∞∑

n=1

e−λnD(t−s)Pnw1 +

∫ t

s

∞∑

n=1

e−λnD(t−γ)Pn

(
B(γ)

∞∑

m=1

(P̃mz(γ + ·))

)
dγ

∞∑

n=1

(P̃nz(t+ ·))




=




TA(t− s)w1 +

∫ t

s
TA(t− γ)B(γ)z(γ + ·)dγ

z(t+ ·)




=

(
z(t)
zt(·)

)
; z(·) the unique mild solution of (4.6)

= U(t, s)W.

In the same way as in [1], we can prove that the infinitesimal generator of {Un(t, s)}t≥s≥0 is given

by:

Λn(t)

(
w0

n

wn(·)

)
=




−λnDw
0
n +Bn(t)wn(α)

∂wn(·)

∂α


 , −r ≤ α ≤ 0

with

D(Λn(t)) =

{(
w0

n

wn(·)

)
∈ M

n
2 : wn is a.c.,

∂wn(·)

∂α
∈ L2([−τ, 0];QnZ) and wn(0) = w0

n

}
.

{Qn}n≥1 is a family of complete orthogonal projection on M2 such that

QnUn(t, s) = Un(t, s)Qn, n = 1, 2, 3, . . . ,
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and ‖Un(t, s)‖ ≤ g(t, s), n = 1, 2, . . . , for some continuous function g(t, s) ≥ 0.

Therefore, applying Lemma 3.1, we obtain that U(t, s) is bounded and {U(t, s)}t≥s is a strongly

continuous evolution operator on the Hilbert space M2, whose generator Λ is given by

Λ(t)W =

∞∑

n=1

Λn(t)QnW, W ∈ D(Λ),

with

D(Λ(t)) ⊂

{
W ∈ M2/

∞∑

n=1

‖ Λn(t)QnW ‖2<∞

}
.

Lemma 5.2 Let Λ(t) be the infinitesimal generator of the evolution operator {U(t, s)}t≥s. Then

Λ(t)ϕ̃(α) =




−Aψ(0) +B(t)φ(α)

∂φ(·)

∂α


 ; −r ≤ α ≤ 0,

D(Λ(t)) =

{(
ψ0

φ(·)

)
∈ M2 : ψ0 ∈ D(A), φ is a.c.,

∂φ(·)

∂α
∈ L2([−r, 0];Z) and φ(0) = ψ0

}
.

Proof Consider

(
ψ0

φ(·)

)
in M2. Then

Λ(t)W = Λ(t)

(
ψ0

φ(·)

)
=

∞∑

n=1

Λn(t)QnW

=

∞∑

n=1

Λn(t)

(
Pn 0

0 P̃n

)(
ψ0

φ(·)

)
=

∞∑

n=1

Λn(t)

(
Pnψ0

P̃nφ(·)

)

=
∞∑

n=1




−λnDP̃nψ(0) +Bn(t)P̃nφ(α)

∂P̃nφ(·)

∂α




=




−
∞∑

n=1

λnDPnψ(0) +B(t)
∞∑

n=1

P̃nφ(α)

∂

∂α

(
∞∑

n=1

P̃nφ(·)

)




=




−Aψ(0) +B(t)φ(s)

∂φ(·)

∂α


 .



20 Alexander Carrasco and Hugo Leiva

In consequent, for each t fixed, Λ(t) is the infinitesimal generator of a strongly continuous semi-

group.

Hence, Λ(t) is closed and the result follows from part ii) of Lemma 3.1.

Therefore, the systems (4.6) and (4.5) are equivalent to the following two systems of ordinary

di-fferential equations in M2 respectively:





dW (t)

dt
= Λ(t)W (t), t > s,

W (s) = W0 = (ψ0, φ(·)),

(5.4)





dW (t)

dt
= Λ(t)W (t) + Φ(t), t > s,

W (s) = W0 = (ψ0, φ(·)),

(5.5)

where Λ(t) is the infinitesimal generator of the evolution operator {U(t, s)}t≥s and Φ(t) =

(f e(t), 0).

The steps we have to arrive here allow us find The Variation of Constants Formula for Parabolic-

Delay Equations. This result is presented in the final Theorem of this work.

Theorem 5.3 The abstract Cauchy problem in the Hilbert space M2





dW (t)

dt
= Λ(t)W (t) + Φ(t), t > s,

W (s) = W0,

where Λ(t) is the infinitesimal generator of the evolution operator {U(t, s)}t≥s and Φ(t) = (f e(t), 0)

is a function taking values in M2, admits one and only one mild solution given by:

W (t) = U(t, s)W0 +

∫ t

s
U(t, γ)Φ(γ)dγ, t ≥ s. (5.6)

Corollary 5.4 If z(t) is a solution of (4.5), then the function W (t) := (z(t), zt) is solution of

the equation (5.5)
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6 Conclusion

As we can see, this work can be applied to a broad class of time-dependent functional reaction

diffusion equation in a Hilbert space Z of the form:




dz(t)

dt
= Az(t) +B(t)zt + F (t), t > s,

z(s) = φ0,

zs(α) = φ(α), α ∈ [−r, 0),

(6.1)

where A is given by

Az =

∞∑

n=1

AnPnz, z ∈ D(A), (6.2)

B ∈ L∞([0,∞);L(Z1, Z)) with Z1 = L2([−r, 0], Z) and F : [−r,∞) −→ Z is a suitable function.

Some examples of this class are the following well known systems of partial differential equations

with delay:

Example 6.1 The equation modeling the damped flexible beam:




∂2z

∂2t
= −

∂3z

∂3x
+ 2α

∂3z

∂t∂2x
+ b(t)z(t − τ, x) + f(t, x) t > s, 0 ≤ x ≤ 1,

z(t, 1) = z(t, 0) =
∂2z

∂2x
(0, t) =

∂2z

∂2x
(1, t) = 0,

z(s, x) = φ0(x),
∂z

∂t
(s, x) = ψ0(x), 0 ≤ x ≤ 1,

z(α, x) = φ(α, x),
∂z

∂t
(α, x) = ψ(α, x), α ∈ [s− r, s), 0 ≤ x ≤ 1,

(6.3)

where α > 0, b(t) is a bounded continuous function, f : IR × [0, 1] → IR is a smooth function,

φ0, ψ0 ∈ L2[0, 1] and φ,ψ ∈ L2([−r, 0];L2[0, 1]).

Example 6.2 The strongly damped wave equation with Dirichlet boundary conditions




∂2w

∂2t
+ η(−∆)1/2 ∂w

∂t
+ γ(−∆)w = B(t)wt + f(t, x), t > s, x ∈ Ω,

w(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

w(s, x) = φ0(x),
∂z

∂t
(s, x) = ψ0(x), x ∈ Ω,

w(α, x) = φ(s, x),
∂z

∂t
(α, x) = ψ(α, x), α ∈ [s− r, s), x ∈ Ω,

(6.4)



22 Alexander Carrasco and Hugo Leiva

where Ω is a sufficiently smooth bounded domain in IRN , B ∈ L∞([0,∞);L(Z1, Z)) with Z1 =

L2([−r, 0], Z), Z = L2(Ω), f : IR × Ω → IR is a smooth function, φ0, ψ0 ∈ Z and φ,ψ ∈

L2([−τ, 0];Z) and r ≥ 0 is the maximum delay, which is supposed to be finite.

Example 6.3 The thermoelastic plate equation with Dirichlet boundary conditions





∂2w

∂2t
+ ∆2w + α∆θ = B1(t)wt + f1(t, x) t > s, x ∈ Ω,

∂θ

∂t
− β∆θ − α∆

∂w

∂t
= B2(t)θt + f2(t, x) t > s, x ∈ Ω,

θ = w = ∆w = 0, t ≥ 0, x ∈ ∂Ω,

w(s, x) = φ0(x),
∂w

∂t
(s, x) = ψ0(x), θ(s, x) = ξ0(x), x ∈ Ω,

w(α, x) = φ(α, x),
∂w

∂t
(α, x) = ψ(α, x), θ(α, x) = ξ(α, x), α ∈ [s− r, s), x ∈ Ω,

(6.5)

where Ω is a sufficiently smooth bounded domain in IRN , B1, B2 ∈ L∞([0,∞);L(Z1, Z)) with

Z1 = L2([−r, 0], Z), Z = L2(Ω), f1, f2 : IR × Ω → IR are smooth functions, φ0, ψ0, ξ0 ∈ Z and

φ,ψ, ξ ∈ L2([−r, 0];Z) and r ≥ 0 is the maximum delay, which is supposed to be finite.
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