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Distances, structured profiles and Arrow’s Theorem

Dubraska Salcedo and Ramón Pino-Pérez

Abstract

We study alternative spaces structured by a distanced. With the help ofd, many functions can be
defined for which the input is a pair formed by an alternative and a set of alternatives. We shall call
these functions “distances" between an alternative and a set of alternatives. The usual way to construct
these distances is via an aggregation function. These distances allow the construction of structured
profiles. We propose a natural condition on these distances calledrichness property, which allows us
to prove Arrow’s Theorem for the class of profiles structuredby distances satisfying the condition.
Then we study two distancesdmin anddσ whend is the Hamming distance. We prove thatdσ satisfies
the richness property butdmin does not.

key words. Social Choice Theory, Arrow’s Theorem, distances, structured profiles, aggregation func-

tions.

Resumen

Estudiamos espacios de alternativas estructurados por unadistanciad. Con ayuda ded podemos con-
struir funciones con dominio el producto cartesiano de las alternativas por los subconjuntos no vacíos
de alternativas. Llamaremos a esta funciones “distancias.entre alternativas y conjuntos de alternativas.
La manera estándard de construir estas distancias es usandouna función de agregación. Estas dis-
tancias permiten construir perfiles estructurados. En estetrabajo proponemos una condición natural
sobre esta distancias, llamadapropiedad de riqueza, la cual permite probar el Teorema de Arrow para
la clase de los perfiles estructurados por distancias que satisfacen la propiedad de riqueza. En par-
ticular estudiamos las distanciasdmin y dσ cuandod es la distancia de Hamming. Probamos quedσ

satisface la propiedad de riqueza y quedmin no la satisface.

Palabras claves:Teoría de elección social, Teorema de Arrow, distancias, perfiles estructurados, fun-

ciones de agregación.

1 Introduction

In the last years, Logic has been used in many successful waysfor representing and modelling knowledge.

One of the most inspiring approaches was proposed by Alchourrón, Gärdenfors and Makinson and is

known as the AGM belief revision framework [1, 4, 8].
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With the work of Groves [7] and, in particular, the work of Katsuno and Mendelzon [8] concerning

the representation theorems of revision operators, becomes clear that the problem of revising a knowledge

base by a new piece of information is a problem of rational choice: choosing the models of the new piece

of information that best fit the old knowledge base. This “best fitting” has a full meaning when we have a

distance between the models of a piece of information and theold knowledge base: the models that best

fit are those which minimalize such a distance.

The tight relations between rational choice, in particularthe Social Choice Theory studied by Economists

[2, 9], and the logical models of the knowledge dynamics, become more striking with the framework for

logical merging proposed by Konieczny and Pino-Perez in [10, 11]. Actually, with a distanced between

worlds, we can define a translation of the framework used in Social Choice Theory to the framework in

logical merging: alternatives (candidates) correspond tothe worlds (models); a preference corresponds to

a knowledge base; a profile corresponds to a multi-set of knowledge bases; an agenda corresponds to an

integrity constraint; a social choice function corresponds to a merging operator.

Recently, the strategy-proofness property -coming from Social Choice Theory- has been studied in

the framework of logical merging [3]. Unfortunately, in theframework of logical merging, there is not

yet a general result in the style of Gibbard and Satterthwaite’s theorem [6, 14, 15] in the framework of

Social Choice Theory. It is well known that the proof of Gibbard and Satterthwaite’s theorem is based on

the proof of Arrow’s Impossibility Theorem. Thus, in a first step towards the establishment of a general

result in the framework of logical merging, we define the class of profiles structured by a distance and

an aggregation function. Then, we find a natural condition (called richness property) on these distances

which allow us to prove the Arrow’s Impossibility Theorem for this class of profiles.

Some interesting questions arise when we have a concrete alternative setX, a concrete distanced on

the alternative setX and a concrete aggregation functiong and we would like to know if the distancedg

between an alternative and a set of alternatives satisfies the richness property. In particular, we studied

the concrete case whenX is the set{0, 1}n, i.e. the set of vectors of zeros and ones of sizen (this set

corresponds to set of worlds ofn propositional variables);d is the Hamming distance,i.e. the number

of positions in which two vectors differ; and the aggregation functions are themin and thesum(denoted

here byσ). We will prove that for alln ≥ 2, dmin has not the richness property. Concerningdσ, we will

prove that it is rich for alln, exceptn = 2.
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2 Preliminaries

Let N = {1, 2, . . . , n} be a set of individuals. LetX be a finite set of alternatives. The preferences of the

individual i ∈ N are given by a total pre-order�i on X, that is a total and transitive binary relation on

X.

The relation�i expresses when an alternative isat least as good asanother one. Thus,x �i y means

that for the individuali, x is at least as good asy. The relation of strict preference≺i is defined byx �i y

andy 6�i x. Thus,x ≺i y means that for the individuali, x is strictly preferred toy.

The set of total pre-orders overX will be denotedP . An elementu of Pn (the cartesian product ofP ,

n times) is called aprofile. In the profileu = (�1, . . . ,�n), the preference�i denotes the preference of

the individuali. A nonempty set ofX is called anagenda(the names profile and agenda are the technical

terms used by economists in Social Choice Theory). The set ofagendas will be denotedP∗(X).

If V is an agenda and� is a total pre-order overX, we define the set of minimal elements ofV with

respect to�, denotedmı́n(V,�) as follows:

mı́n(V,�) = {x ∈ V : ∀y(y ≺ x ⇒ y 6∈ V )}

Definition 1 A social choice functionis a functionf : Pn ×P∗(X) −→ P∗(X) such thatf(u, V ) ⊆ V .

Oftenf(u, V ) will be denotedfu(V ).

Let � be a preference relation. The relation∼, called indifference relation, is defined by putting

x ∼ y iff x � y ∧ y � x.

The graphical representation of preference relations by levels is very useful. In one particular level

are all the indifferent alternatives. The lower the level, the more preferred are the alternatives. For instance

whenX = {x, y, z, w}, the total pre-orderx ∼ y ≺ z ∼ w will be represented by

z w
x y

and the total pre-ordery ≺ x ≺ z ≺ w will be represented by

w
z
x
y

2.1 Postulates and Arrow’s Theorem

We set the postulates that a good social choice functionf has to satisfy:
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Standard Domain condition (SD)There are at least3 elements inX andf is defined for all the pairs

in Pn ×P∗(X). The totality of the function is a desirable property because we want to have a procedure

that gives a result in any given situation.

The individuali is a dictator forf if for all u ∈ Pn and allV ∈ P∗(X), if x ≺i y andx ∈ V then

y /∈ fu(V ).

No Dictator condition (ND)There is no individuali ∈ N such thati is a dictator forf . The absence

of dictator is also a desirable property.

Weak Pareto Condition (WP)For all profileu and for all agendaV if x ∈ V and∀i, x ≺i y then

y /∈ fu(V ). In particular, iff satisfies the Domain Standard Condition andV = {x, y}, the Weak Pareto

Condition says that if for all the individualsx is preferred toy, then selecting the best elements ofV , will

give onlyx.

Let V be a nonempty subset ofX. Let � a preference. We denote by�↾V the restriction toV of

the relation�. If u = (�1, . . . ,�n) thenu ↾V = (�1↾V , . . . ,�n↾V ). A social choice functionf satisfies

the Independence of Irrelevant Alternatives (IAI)Property if and only if for allV ∈ P∗(X) and for all

u, u′ ∈ P if u ↾V = u′ ↾V thenfu(V ) = fu′(V ). This condition states that the result of selecting on an

agendaV depends only on the individual preferences onV .

A social choice functionf satisfiesTransitive Explanations (TE)if for all profile u there exists a total

pre-order�u such thatfu(V ) = mı́n(V,�u), for any agendaV . This is a very interesting property. It

says that there is a very uniform way for choosing the best elements of agendas when the profile is fixed.

In other words, the social choice function can be seen operating in two steps: the first step in the process

consists in giving an aggregation total pre-order�u to the inputu and the second step consists in taking

the minimal elements (the preferred ones) of the agendaV with respect to this relation�u.

Now, having stated the previous properties, we can formulate the Arrow’s Impossibility Theorem [2].

It tells us that it is impossible to have a function for which these five good properties hold (for a proof

we can also see [9, 5] or [13]; in the last reference one can finda very interesting analysis of the proof).

More precisely, it can be stated as follows.

Theorem 1 If a social choice functionf satisfies the Domain Standard Condition, the Independence of

Irrelevant Alternatives Property, the Weak Pareto Condition and Transitive Explanations, thenf has a

dictator.

It is interesting to note the following proposition that is auseful tool in the proof and it is reminiscent

of representation theorems in knowledge dynamics:
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Proposition 1 If f satisfies Transitive explanations (fu(V ) = min(V,�u)) then�u is unique and it is

defined by putting

x �u y ⇐⇒ x ∈ fu ({x, y})

2.2 Structured profiles

We are going to define a subset of the the set of profiles over a set of alternativesX. Such a subset will

have a sort of structure given by a distance overX. First, let us recall the notion ofdistance.

Definition 2 LetX be a set. The functiond : X×X −→ R
+, withR

+ = {x ∈ R : x ≥ 0}, is a distance

overX if :

• d(x, y) = d(y, x),

• d(x, y) = 0 ⇐⇒ x = y,

• d(x, y) ≤ d(x, z) + d(z, y).

Example 1 ConsiderX = {0, 1}n with n ∈ N. Defined : X × X −→ R
+ by putting

d(x, z) = # of positions in whichx andz are different.

It is easy to see that this function is a distance. It is calledthe Hamming distance.

Definition 3 g :
⋃

n≥1

(R+)n −→ R
+ is an aggregation function1 if the following conditions hold:g(0) =

0, andg(x) = g(y) if y is a permutation ofx.

Let d : X ×X −→ R
+ be a distance overX. Let g :

⋃

n≥1

(R+)n −→ R
+ be an aggregation function.

Now we can definedg : X × P∗(X) −→ R
+ a “distance”2 between elements ofX and non empty

subsets ofX in the following way:

dg(x, V ) = g(d(x, v1), ..., d(x, vn)), whereV = {v1, ..., vn}

Note that due to the factg is an aggregation function (in particular, the output does not depend upon

the order in which the arguments are presented),dg is well defined.

Associated to the most common aggregation functions we havethe following distances:
1Actually, we are not asking for all the properties of aggregation functions in the literature.
2Strictly speaking this is not a distance but, by abuse, we will call this kind of functions distances.
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• dσ(x, V ) :=
∑

y∈V

d(x, y),

whereσ =:
⋃

n≥1

(R+)n −→ R
+ is defined byσ(x1, ..., xn) =

n
∑

i=1

xi

• dmin(x, V ) := min{d(x, y) : y ∈ V },

wheremin :
⋃

n≥1

(R+)n −→ R
+ is defined bymin(x1, ..., xn) = min{xi : 1 ≤ i ≤ n}

• dmax(x, V ) := max{d(x, y) : y ∈ V },

wheremax :
⋃

n≥1

(R+)n −→ R
+ is defined bymax(x1, ..., xn) = max{xi : 1 ≤ i ≤ n}

Definition 4 LetX be a set of alternatives. Letd be a distance overX. Letg be an aggregation function.

A preference (a total pre-order)� is dg−consistent if there existsA ∈ P∗(X) such that

x � y ⇐⇒ dg(x,A) ≤ dg(y,A)

Example 2 LetX = {0, 1}3 and Letd be the Hamming distance.

• The following total preorder isdmin−consistent, withA = {(0, 0, 0)}.

(1, 1, 1)
(1, 1, 0) (1, 0, 1) (0, 1, 1)
(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0)

• The following total preorder isdσ−consistent, withA = {(0, 0, 0), (0, 0, 1)}.

(1, 1, 1) (1, 1, 0)
(1, 0, 1) (0, 1, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 1) (0, 0, 0)

• The following total preorder isdσ−consistent, withA = {(0, 0, 0), (1, 0, 0)}.

(0, 0, 1) (0, 1, 1) (0, 1, 0) (0, 0, 0)
(1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0)

Definition 5 A profileu = (�1,�2, . . . ,�n) is dg−consistent if for alli, �i is dg−consistent.

In [12] appears the notion ofd-consistent preference (profile). Is easy to see that the notion of d-

consistent preference is a particular case ofdmin−consistent in which the setA is the lowest level of the

preference�. Actually, the profiles used in logical merging (∆Σ or ∆Gmax) are alldmin−consistent, in

factd-consistent (see [10]).
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3 Arrow’s Theorem for structured profiles

Because we want to study the social choice functions fordg−consistent profiles we will modify conse-

quently some of the postulates.

A social choice functionf satisfies thedg-consistent domain conditionif X has at least 3 elements

andf is defined for alldg−consistent profiles.

A social choice functionf satisfies thedg−consistent Transitive Explanationsif for anydg−consistent

profileu there exists a total pre-order�u such that for all agendaV , fu(V ) = min(V,�u).

What is interesting here is that if we modify the hypotheses of Arrow’s Theorem, changing Standard

Domain bydg-consistent domain and Transitive Explanations bydg−consistent Transitive Explanations,

then the theorem will be true whendg satisfies some properties. In particular, the richness property, which

we define as follows:

Definition 6 (Richness Property) A distance functiondg : X × P∗(X) −→ R
+ (whered is a distance

andg is an aggregation function) satisfies the richness propertyif for every triplex, y, z ∈ X all different

between them, the following conditions hold:

i) ∃Y ⊆ X
[

dg(x, Y ) < dg(y, Y ) < dg(z, Y )
]

,

ii) ∃Y ⊆ X
[

dg(x, Y ) = dg(y, Y ) < dg(z, Y )
]

,

iii) ∃Y ⊆ X
[

dg(x, Y ) < dg(y, Y ) = dg(z, Y )
]

In such a case, we will say thatdg is a rich distance.

Now we are ready to set the modified Arrow’s Theorem:

Theorem 2 (Arrow’s Theorem for d
g-consistent profiles) Let dg be a rich distance between elements

of X and non empty subsets ofX and letf be a social choice function satisfying the following conditions:

1. dg−consistent domain,

2. dg−consistent Transitive Explanations ,

3. Independence of Irrelevant Alternatives and

4. Weak Pareto condition.

Thenf has a dictator.
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The proof of this theorem is not difficult. It is enough to follow a standard proof of the classical

Arrow’s Theorem and to remark that the richness property allows to build the preferences required in

such a classical proof.

It is interesting to remark that, in general, the class ofds-consistent profiles is a proper class of the

class of all the profiles. Thus, the previous theorem is not a trivial one. In order to see that, we establish

the following theorem.

Theorem 3 Let X = {0, 1}3 and d the Hamming distance overX. Then for each non emptyA ⊆ X,

there arey1, y2 ∈ X, y1 6= y2 such that

ds(y1, A) = ds(y2, A) (1)

The following observations concerningX = {0, 1}n, N = {1, . . . , n} andd -the Hamming distance

onX- are very useful:

O1 x = (x1, ..., xn) ∈ X iff xi ∈ {0, 1},∀i ∈ N .

For eachi ∈ N we define

xi =

{

0 si xi = 1
1 si xi = 0

If x = (x1, ..., xn) ∈ X then we definex = (x1, ..., xn)

O2 If d(x, y) = t thend(x, y) = n − t.

O3 For any vectorx = (x1, . . . , xn) ∈ X there is a unique vectory ∈ X such thatd(x, y) = n.

Actually, y = x.

The following lemma summarizes some observations expressing the symmetry in the hypercube

structure given by the Hamming distance and the sum.

Lemma 1 Let X = {0, 1}n and letd be the Hamming distance onX; then the following conditions

hold:

(i) For anyA,B ∈ P∗(X) and anyx ∈ X such thatA∩B = ∅, dσ(x,A∪B) = dσ(x,A)+dσ(x,B).

(ii) For any x, y ∈ X, dσ(x,X) = dσ(y,X). More precisely, for anyx ∈ {0, 1}n we have

d(x,X) =

n
∑

i=1

(

n
i

)

· i (2)

In particular, if n = 3, thendσ(x,X) = 12, for anyx ∈ X.
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(iii) Let A ∈ P∗(X) andx, y ∈ X. If dσ(x,A) = dσ(y,A) thendσ(x,X \ A) = dσ(y,X \ A).

Proof. (i) is straightforward by definition ofdσ.

In order to prove (ii), it is enough to see that the equation (2) holds. Notice that for a fix vectorx there

are hay exactly

(

n
i

)

vectors having distancei from x. From this observation the equation (2) follows.

In order to prove (iii), we use (i) and (ii). Actually, by (i) and (ii) for anyx ∈ X and anyA ∈ P∗(X),

dσ(x,A)+ dσ(x,X \A) = dσ(x,X) =
∑n

i=1

(

n
i

)

· i. Now suppose thatdσ(x,A) = dσ(y,A). Then,

dσ(x,X \ A) =

[

n
∑

i=1

(

n
i

)

· i

]

− dσ(x,A)

=

[

n
∑

i=1

(

n
i

)

· i

]

− dσ(y,A)

= dσ(y,X \ A)

Proof of Theorem 3.Let A be a nonempty subset ofX. First we consider the8 possible cases accord-

ing to the cardinality ofA, i.e. |A| = i for i = 1, . . . , 8.

The casei = 8, i.e.A = X, follows from part (ii) of Lemma 1.

By part (iii) of Lemma 1, it is enough to consideri = 1, . . . , 4.

We adopt the following notation: ifa ∈ {0, 1} thena ∈ {0, 1} is defined by 0 iffa = 1. If x is a

vector in{0, 1}3, sayx = (a1, a2, a3), we definex = (a1, a2, a3)

Case|A| = 1. That is,A = {(a1, a2, a3)}. Taking y1 = (a1, a2, a3) and y2 = (a1, a2, a3) the

equation (1) holds.

Case|A| = 2. That is,A = {a, b}. Takingy1 = a andy2 = b the equation (1) holds.

Case|A| = 3. In this caseA = {a, b, c}.

Subcase 1.One of the three vectors is equidistant from the other two vectors. Without loss of generality,

supposed(a, b) = d(a, c). Then,

dσ(b,A) = d(b, a) + d(b, b) + d(b, c)
dσ(c,A) = d(c, a) + d(c, b) + d(c, c)

Thus, takingy1 = b and y2 = c, the equation (1) holds.

Subcase 2.None of the vectors is equidistant from the other two vectors. That is,

d(a, b) 6= d(a, c) ∧ d(a, b) 6= d(c, b) ∧ d(a, c) 6= d(c, b)
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Without loss of generality, we may suppose

d(a, b) = 1 ∧ d(b, c) = 2 ∧ d(a, c) = 3

and that the situation is as follows:

a = (a1, a2, a3)

b = (a1, a2, a3)

c = (a1, a2, a3)

Considery1, y2 ∈ X to be the only two vectors such thatd(y1, a) = 1 = d(y2, b). Then, by the

observationO2, d(y1, c) = d(y2, c) = 2.

But then it is clear that

d(y1, A) = 1 + 1 + 2 = d(y2, A)

Therefore, the equation (1) holds.

Case|A| = 4. We consider subcases mutually exclusive. We use the symmetry of the cube to simplify

the reasoning.

Subcase 1 There existsa ∈ A such thata ∈ A.

Then,A = {a, a, b, c} and definey1 = b, y2 = c.

Thus, we have:

dσ(y1, A) = d(b, a) + d(b, a) + d(b, b) + d(b, c)
= n + d(b, c) (by O2)

dσ(y2, A) = d(c, a) + d(c, a) + d(c, b) + d(c, c)
= n + d(c, b) (by O2)

Therefore, the equation (1) holds.

Subcase 2. There is noa ∈ A such thata ∈ A. That is,d(x, y) < 3, for any pairx, y ∈ A. PutA = {a, b, c, d}.

Now we consider three possibilities that cover all the possibilities un this subcase:

• The four points ofA are in the same face of the cube.

Without loss of generality, by the symmetry of the cube, we may suppose that the situation is

as in the following figure:
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a b

c d

that is,d(a, b) = d(a, c) = d(b, d) = d(c, d) = 1 y d(a, d) = d(b, c) = 2.

Puttingy1 = a y y2 = b, the equation (3) holds.

• Three points in a face (saya, c andd are in the same face).

Without loss of generality, due to the symmetry of the cube, we may suppose that the situation

is as in the following figure:

d

b

a c

In this situation, we puty1 = d and y2 = b. A straightforward verification shows that the

equation (3) holds.

• Two points in a face.

Without loss of generality, due to the symmetry of the cube, we may suppose that the situation

is as in the following figure:

d

b

a

c

that is,d(a, c) = d(b, c) = d(c, d) = d(a, b) = d(a, d) = d(b, d) = 2.

Puttingy1 = a y y2 = b, the equation (3) holds.

As a straightforward corollary, we obtain the following theorem:

Theorem 4 There is no a linear order over{0, 1}3 that isdσ-consistent.

As a consequence of that, we have the following:

Theorem 5 The class ofdσ-consistent profiles is a proper class of the class of all the profiles.
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4 Some rich distances and some not rich distances

In this section we will considerX = {0, 1}n with n ∈ N \ {0} andd will be the Hamming distance.

Remark 1 It is clear that ifn = 1, X has only two elements. Therefore, for any aggregation function g,

dg is trivially rich.

However, the following result shows that in casen ≥ 2 there are distances that don’t satisfy the richness

property:

Theorem 6 If d is the Hamming distance thendmin is not rich for everyn ≥ 2.

Unlike the previous theorem, if we change the aggregation function, we get a rich distance for almost

all the cases.

Theorem 7 LetX = {0, 1}n with n ≥ 3 andd the Hamming distance onX. Thendσ is rich.

By Remark 1 and Theorem 7, the only integer for which we don’t know if dσ is rich is n = 2.

Actually, for n = 2, dσ fails to be rich; this is our next theorem:

Theorem 8 LetX = {0, 1}2 andd the Hamming distance onX. Thendσ is not rich.

5 Concluding remarks

In this work, we have set some first bases in order to establisha general impossibility theorem and a

general manipulability theorem for structured profiles.

Theorem 2 tells us that the richness property is a sufficient condition ondg for the impossibility for

the class ofdg-consistent profiles. Unfortunately, we don’t know if the richness property is a necessary

condition. Thus, even in presence of Theorem 6 we don’t know yet if Arrow’s Theorem holds for the

class ofdmin-consistent profiles.
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