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Abstract

We study alternative spaces structured by a distaincé/ith the help ofd, many functions can be
defined for which the input is a pair formed by an alternative a set of alternatives. We shall call
these functions “distances" between an alternative antad akternatives. The usual way to construct
these distances is via an aggregation function. Thesendisaallow the construction of structured
profiles. We propose a natural condition on these distaradksicichness propertywhich allows us
to prove Arrow’s Theorem for the class of profiles structubgddistances satisfying the condition.
Then we study two distancé&'*" andd” whend is the Hamming distance. We prove thdtsatisfies
the richness property bdt** does not.

key words. Social Choice Theory, Arrow’s Theorem, distances, stmactiprofiles, aggregation func-

tions.

Resumen

Estudiamos espacios de alternativas estructurados palistaaciad. Con ayuda d€ podemos con-
struir funciones con dominio el producto cartesiano dellasretivas por los subconjuntos no vacios
de alternativas. Llamaremos a esta funciones “distaf@i@salternativas y conjuntos de alternativas.
La manera estandard de construir estas distancias es usaadancion de agregacién. Estas dis-
tancias permiten construir perfiles estructurados. Entesit@jo proponemos una condicién natural
sobre esta distancias, llamgatapiedad de riquezda cual permite probar el Teorema de Arrow para
la clase de los perfiles estructurados por distancias gisfasan la propiedad de riqueza. En par-
ticular estudiamos las distancid%’” y d° cuandod es la distancia de Hamming. Probamos dtie
satisface la propiedad de riqueza y @iiE™ no la satisface.

Palabras claves:Teoria de eleccion social, Teorema de Arrow, distanciadilg® estructurados, fun-

ciones de agregacion.

1 Introduction

In the last years, Logic has been used in many successfulfaaepresenting and modelling knowledge.
One of the most inspiring approaches was proposed by AlchouGardenfors and Makinson and is
known as the AGM belief revision framework [1, 4, 8].
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With the work of Groves [7] and, in particular, the work of iKaho and Mendelzon [8] concerning
the representation theorems of revision operators, bexctear that the problem of revising a knowledge
base by a new piece of information is a problem of rationala@ahoosing the models of the new piece
of information that best fit the old knowledge base. This tiiggng” has a full meaning when we have a
distance between the models of a piece of information andlthknowledge base: the models that best
fit are those which minimalize such a distance.

The tight relations between rational choice, in particth@rSocial Choice Theory studied by Economists
[2, 9], and the logical models of the knowledge dynamicspbee more striking with the framework for
logical merging proposed by Konieczny and Pino-Perez in 11Q. Actually, with a distance between
worlds, we can define a translation of the framework used mgb&hoice Theory to the framework in
logical merging: alternatives (candidates) corresporitiéavorlds (models); a preference corresponds to
a knowledge base; a profile corresponds to a multi-set of ledgye bases; an agenda corresponds to an
integrity constraint; a social choice function correspotmla merging operator.

Recently, the strategy-proofness property -coming fromig@&hoice Theory- has been studied in
the framework of logical merging [3]. Unfortunately, in thmmework of logical merging, there is not
yet a general result in the style of Gibbard and Sattertte/gaiheorem [6, 14, 15] in the framework of
Social Choice Theory. It is well known that the proof of Gibthand Satterthwaite’s theorem is based on
the proof of Arrow’s Impossibility Theorem. Thus, in a firsep towards the establishment of a general
result in the framework of logical merging, we define the slagprofiles structured by a distance and
an aggregation function. Then, we find a natural conditi@lléd richness property) on these distances

which allow us to prove the Arrow’s Impossibility Theorent this class of profiles.

Some interesting questions arise when we have a concretaative setX, a concrete distancéon
the alternative seX and a concrete aggregation functipand we would like to know if the distane®
between an alternative and a set of alternatives satisfeesdhness property. In particular, we studied
the concrete case whexi is the set{0,1}", i.e. the set of vectors of zeros and ones of sizghis set
corresponds to set of worlds af propositional variables)] is the Hamming distancé.,e. the number
of positions in which two vectors differ; and the aggregationctions are thenin and thesum(denoted
here byo). We will prove that for alln > 2, d™" has not the richness property. Concernitigwe will
prove that it is rich for all, exceptn = 2.
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2 Preliminaries

Let N = {1,2,...,n} be a set of individuals. LeX be a finite set of alternatives. The preferences of the
individual i € N are given by a total pre-ordet; on X, that is a total and transitive binary relation on
X.

The relation=; expresses when an alternativaideast as good aanother one. Thusg; <; y means
that for the individual, z is at least as good as The relation of strict preference; is defined byr <; y
andy A; x. Thus,z <; y means that for the individual x is strictly preferred tay.

The set of total pre-orders ovér will be denotedP. An element. of P™ (the cartesian product af,
n times) is called grofile. In the profileu = (=<4, ...,=<,), the preferencel; denotes the preference of
the individuali. A nonempty set oX is called aragenda(the names profile and agenda are the technical
terms used by economists in Social Choice Theory). The say@fidas will be denotef* (X).

If V' is an agenda and is a total pre-order ovek, we define the set of minimal elementsiofwith
respect to<, denotednin(V, <) as follows:

min(V,X)={z eV : Vyly<z=y¢V)}

Definition 1 A social choice functioiis a functionf : P x P*(X) — P*(X) such thatf (u, V) C V.
Often f (u, V) will be denotedf, (V).

Let < be a preference relation. The relatien called indifference relation, is defined by putting
r~yiffr 2y Ay

The graphical representation of preference relations \midds very useful. In one particular level
are all the indifferent alternatives. The lower the leved inore preferred are the alternatives. For instance

whenX = {z,y, z, w}, the total pre-ordetr ~ y < z ~ w will be represented by

zZ w
zy
and the total pre-ordey < = < z < w will be represented by

e 8 w 8

2.1 Postulates and Arrow’s Theorem

We set the postulates that a good social choice fundgtibas to satisfy:
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Standard Domain condition (SOhere are at leastelements inX and f is defined for all the pairs
in P x P*(X). The totality of the function is a desirable property beeaws want to have a procedure
that gives a result in any given situation.

The individuali is a dictator forf if for all w € P™ and allV € P*(X), if z <; y andx € V then
y & fulV).

No Dictator condition (ND)There is no individuat € N such that is a dictator forf. The absence
of dictator is also a desirable property.

Weak Pareto Condition (WHjor all profilew and for all agendd&” if z € V andVi,x <; y then
y ¢ fu(V). In particular, if f satisfies the Domain Standard Condition ane= {z,y}, the Weak Pareto
Condition says that if for all the individualsis preferred tay, then selecting the best elements/afwill
give only x.

Let V be a nonempty subset df. Let < a preference. We denote ¥y the restriction toV of
the relation=. If u = (=4,...,=,,) thenu [y= (Z1v,..., <, ]v). A social choice functiory satisfies
the Independence of Irrelevant Alternatives (IAjoperty if and only if for all € P*(X) and for all
u,u' € Pif u [y=14 |y thenf, (V) = fu (V). This condition states that the result of selecting on an
agendd’ depends only on the individual preferenceslon

A social choice functiorf satisfiesTransitive Explanations (TE)for all profile « there exists a total
pre-order=, such thatf, (V) = min(V, <,), for any agendd’. This is a very interesting property. It
says that there is a very uniform way for choosing the bestefts of agendas when the profile is fixed.
In other words, the social choice function can be seen dpgrat two steps: the first step in the process
consists in giving an aggregation total pre-orggrto the inputu and the second step consists in taking
the minimal elements (the preferred ones) of the agéndath respect to this relatior,,.

Now, having stated the previous properties, we can forradta Arrow’s Impossibility Theorem [2].
It tells us that it is impossible to have a function for whitiese five good properties hold (for a proof
we can also see [9, 5] or [13]; in the last reference one carafivety interesting analysis of the proof).
More precisely, it can be stated as follows.

Theorem 1 If a social choice functiory satisfies the Domain Standard Condition, the Independehce o
Irrelevant Alternatives Property, the Weak Pareto Comdlitend Transitive Explanations, thehhas a
dictator.

It is interesting to note the following proposition that iaseful tool in the proof and it is reminiscent

of representation theorems in knowledge dynamics:
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Proposition 1 If f satisfies Transitive explanationg, (V) = min(V, <,)) then=,, is unique and it is
defined by putting

r 2,y <=z € fu({z,y})

2.2 Structured profiles

We are going to define a subset of the the set of profiles overda sdternativesX. Such a subset will
have a sort of structure given by a distance a¥elFirst, let us recall the notion afistance
Definition 2 Let X be a set. The functiosh: X x X — R*, withR™ = {z € R: z > 0}, is a distance
over X if :

o d(r,y) =d(y,z),

o d(z,y) =0z =y,

o d(z,y) <d(z,z)+d(z,vy).
Example 1 ConsiderX = {0,1}" withn € N. Defined : X x X — R™ by putting

d(x, z) = # of positions in which: and z are different

It is easy to see that this function is a distance. It is catle@lHamming distance.

Definition 3 ¢ : U (RT)" — R* is an aggregation functidnif the following conditions holdy(0) =
n>1
0, andg(Z) = ¢(y) if 7 is a permutation of.

Letd: X x X — R* be a distance oveX. Letg : U (RT)™ — R be an aggregation function.
n>1
Now we can definel? : X x P*(X) — R* a “distance? between elements oX and non empty

subsets ofX in the following way:

d(x, V) = g(d(z,v1),...,d(z,vy,)), whereV = {vq,...,v, }

Note that due to the fagtis an aggregation function (in particular, the output doatsdepend upon
the order in which the arguments are presentétjs well defined.

Associated to the most common aggregation functions we thavillowing distances:

IActually, we are not asking for all the properties of aggtegmfunctions in the literature.
2Strictly speaking this is not a distance but, by abuse, weoail this kind of functions distances.
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o d°(z,V) Zdwy
yev

whereo =: | J (R)" — R* is defined by (z1, ..., 2n) = Y _ x;
n>1 i=1

o A" (x,V) :=min{d(z,y):y €V},

wheremin : U (RT)* — RT is defined bymin(z1, ..., z,,) = min{x; : 1 <i < n}
n>1

o d"(x,V) :=max{d(z,y) :y € V},

wheremaz : U (RT)" — R* is defined bymaz(x1, ..., v,) = maz{z; : 1 <i < n}
n>1

Definition 4 Let X be a set of alternatives. Lédtbe a distance ovek . Letg be an aggregation function.
A preference (a total pre-orderX is d9 —consistent if there existd € P*(X) such that

2y <= d(z,A) < d(y, A)
Example 2 Let X = {0, 1} and Letd be the Hamming distance.

e The following total preorder ig™" —consistent, wittd = {(0,0,0)}.
1,1
1,0,0)

¢ The following total preorder ig” —consistent, wittd = {(0, 0,0), (0,0,1)}.

(1,1,1) (1,1,0)
(1,0,1) (0,1,1) (0,1,0) (1,0,0)
(0,0,1) (0,0,0)
e The following total preorder ig” —consistent, wittd = {( ),(1,0,0)}
(0,0,1) (0,1,1) (0,1,0) (0,0,0)
(1,1,1) (1,1,0) (1,0,1) (1,0,0)
Definition 5 A profileu = (=<1, <9, ... ,=,) iIs d?—consistent if for all, <; is d?—consistent.

In [12] appears the notion af-consistent preference (profile). Is easy to see that themof d-
consistent preference is a particular casd"®f’ —consistent in which the set is the lowest level of the
preference<. Actually, the profiles used in logical mergind ¥ or A®max) are alld™"—consistent, in
fact d-consistent (see [10]).



66 Dubraska Salcedo and Ramén Pino-Pérez

3 Arrow’s Theorem for structured profiles

Because we want to study the social choice functiongiferconsistent profiles we will modify conse-

guently some of the postulates.

A social choice functiory satisfies thel-consistent domain conditiafi X has at least 3 elements

and f is defined for alldY —consistent profiles.

A social choice functiory satisfies the? —consistent Transitive Explanatiorigor any d9 —consistent
profile u there exists a total pre-ordet,, such that for all agend¥, f,,(V') = min(V, <,).

What is interesting here is that if we modify the hypothede&roow’s Theorem, changing Standard
Domain byd?-consistent domain and Transitive Explanationsi®yconsistent Transitive Explanations,
then the theorem will be true whel satisfies some properties. In particular, the richnessagotgpvhich

we define as follows:

Definition 6 (Richness Property) A distance functior? : X x P*(X) — R™ (whered is a distance
andg is an aggregation function) satisfies the richness propéftr every triplex, v, z € X all different
between them, the following conditions hold:

i) Y C X [d9(2,Y) < d9(y,Y) < d9(2, V)],

i) Y C X [d9(z,Y) = d9(y,Y) < d9(2,Y)

i) Y C X [d9(2,Y) < dI(y,Y) = d9(z,Y)]
In such a case, we will say that is a rich distance.

Now we are ready to set the modified Arrow’s Theorem:

Theorem 2 (Arrow’s Theorem for d9-consistent profiles) Letd? be a rich distance between elements
of X and non empty subsets &fand let f be a social choice function satisfying the following coioahis:

1. d9—consistent domain,
2. d9—consistent Transitive Explanations ,
3. Independence of Irrelevant Alternatives and

4. \Weak Pareto condition.

Thenf has a dictator.
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The proof of this theorem is not difficult. It is enough to @il a standard proof of the classical
Arrow’s Theorem and to remark that the richness propertynaito build the preferences required in

such a classical proof.

It is interesting to remark that, in general, the clasgatonsistent profiles is a proper class of the
class of all the profiles. Thus, the previous theorem is navialt one. In order to see that, we establish

the following theorem.

Theorem 3 Let X = {0, 1}® andd the Hamming distance ove¥. Then for each non empty C X,
there arey,, y2 € X, y1 # y2 such that

d’ (yb A) =d’ (y27 A) (1)

The following observations concernidg = {0,1}", N = {1,...,n} andd -the Hamming distance

on X - are very useful:

Ol z = (x1,...,xy) € X iff z; € {0,1},Vi € N.

For eachi ¢ N we define

b 1 si z; =0
If z = (z1,...,x,) € X then we defing = (771, ..., 7,,)
02 If d(x,y) = tthend(Z,y) =n —t.

O3 For any vectorr = (z1,...,z,) € X there is a unique vectay € X such thatd(z,y) = n.

Actually, y = 7.

The following lemma summarizes some observations exprgdsie symmetry in the hypercube
structure given by the Hamming distance and the sum.

Lemmal Let X = {0,1}" and letd be the Hamming distance ok; then the following conditions
hold:

(i) Forany A, B € P*(X) and anyz € X suchthatAnB = (), d’ (¢, AUB) = d’(z, A)+d? (z, B).

(i) Foranyz,y € X, d°(z, X) = d°(y, X ). More precisely, for any: € {0,1}" we have
& n .
d(a:,X):;<Z, )-z (2)

In particular, if n = 3, thend? (z, X) = 12, for anyz € X.
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(i) Let A e P*(X)andz,y € X.Ifd?(z,A) =d’(y,A) thend? (z, X \ A) = d’(y, X \ A4).

Proof. (i) is straightforward by definition of°.

In order to prove (ii), it is enough to see that the equatigrh(ilds. Notice that for a fix vectar there

are hay exactl;( :L > vectors having distancefrom x. From this observation the equation (2) follows.
In order to prove (iii), we use (i) and (ii). Actually, by (ind (ii) for anyz € X and anyA € P*(X),
d7(x, A)+d?(z, X \A) =d(x,X) =>1" ( :L ) -4. Now suppose that’ (z, A) = d’(y, A). Then,

Eﬁ(?)i—f@A)

i=1

- (2 (5)-rws
= d7(y, X'\ 4)

d°(z, X \ A)

]

Proof of Theorem 3.et A be a nonempty subset &f. First we consider th& possible cases accord-
ing to the cardinality of4, i.e.|A| =ifori=1,...,8.

The case = 8, i.e. A = X, follows from part (ii) of Lemma 1.

By part (iii) of Lemma 1, it is enough to consideE= 1, ..., 4.

We adopt the following notation: i € {0,1} thena € {0,1} is defined by 0 iffa = 1. If z is a
vector in{0, 1}3, sayz = (a1, az,as), we definer = (a7, az, a3)

Case|A| = 1. That is,A = {(a1,a2,a3)}. Takingy; = (a1,a2,a3) andys = (a1, az,as3) the
equation (1) holds.

Case|A| = 2. Thatis,A = {a,b}. Takingy; = a andy, = b the equation (1) holds.

Case/A| = 3. In this cased = {a, b, c}.

Subcase 1.0ne of the three vectors is equidistant from the other twadorecWithout loss of generality,
supposel(a,b) = d(a,c). Then,

d’(b,A) = d(b,a)+d(b,b) + d(b,c)
d?(c,A) = d(c,a)+d(c,b)+d(c,c)

Thus, takingy; = b and y, = ¢, the equation (1) holds.
Subcase 2.None of the vectors is equidistant from the other two vectbhat is,

d(a,b) # d(a,c) A d(a,b) # d(e,b) A d(a,c)# d(c,b)
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Without loss of generality, we may suppose
d(a,b) =1 A d(b,c) =2 A d(a,c) =3
and that the situation is as follows:
a = (ay1,as,a3)

b= (ar,az,as)

¢ = (a1, a3, a3)

Considery;,y2 € X to be the only two vectors such théty;,a) = 1 = d(y2,b). Then, by the
observatior02, d(y;,c) = d(ya,c) = 2.

But then it is clear that
d(y, A) =1+ 142 =d(y2, A)

Therefore, the equation (1) holds.

CaselA| = 4. We consider subcases mutually exclusive. We use the symynfeéhe cube to simplify
the reasoning.

Subcase 1 There exisisc A such thatz € A.
Then,A = {a,a,b, c} and defing; = b, y, = c.

Thus, we have:

d°(y1,A) = d(b,a)+d(b,a)+ d(b,b) + d(b,c)

= n+db,c) (by O2)
d?(y2,A) = d(c,a) +d(c,a)+ d(c,b) + d(c,c)

= n+d(cb) (by O2)

Therefore, the equation (1) holds.

Subcase 2. There is moc A suchthat € A. Thatis,d(z,y) < 3, forany pairz,y € A. PutA = {a,b,c,d}.

Now we consider three possibilities that cover all the goktés un this subcase:

e The four points of4 are in the same face of the cube.

Without loss of generality, by the symmetry of the cube, wg sippose that the situation is
as in the following figure:
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that is,d(a,b) = d(a,c) = d(b,d) = d(c,d) = 1y d(a,d) = d(b,c) = 2.
Puttingy; = a Y y» = b, the equation (3) holds.
e Three points in a face (say ¢ andd are in the same face).

Without loss of generality, due to the symmetry of the cubemay suppose that the situation
is as in the following figure:

d

In this situation, we put; = d and y» = b. A straightforward verification shows that the
equation (3) holds.
e Two points in a face.

Without loss of generality, due to the symmetry of the cubemay suppose that the situation
is as in the following figure:

d

that is,d(a, c) = d(b,c) = d(c,d) = d(a,b) = d(a,d) = d(b,d) = 2.
Puttingy; = a y y2 = b, the equation (3) holds. .

As a straightforward corollary, we obtain the following thhem:

Theorem 4 There is no a linear order ovef0, 1}3 that isd”-consistent.

As a consequence of that, we have the following:

Theorem 5 The class ofi” -consistent profiles is a proper class of the class of all tudiles.
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4 Some rich distances and some not rich distances

In this section we will consideK = {0,1}" withn € N\ {0} andd will be the Hamming distance.

Remark 1 Itis clear that ifn = 1, X has only two elements. Therefore, for any aggregation fongt,
d9 is trivially rich.

However, the following result shows that in casé> 2 there are distances that don't satisfy the richness
property:
Theorem 6 If d is the Hamming distance thefi*" is not rich for everyn > 2.

Unlike the previous theorem, if we change the aggregatiantfon, we get a rich distance for almost

all the cases.

Theorem 7 Let X = {0, 1}" withn > 3 andd the Hamming distance o. Thend? is rich.

By Remark 1 and Theorem 7, the only integer for which we donow if d° is rich isn = 2.
Actually, forn = 2, d° fails to be rich; this is our next theorem:

Theorem 8 Let X = {0, 1}? andd the Hamming distance o . Thend? is not rich.

5 Concluding remarks

In this work, we have set some first bases in order to establighneral impossibility theorem and a
general manipulability theorem for structured profiles.

Theorem 2 tells us that the richness property is a sufficientlition ond? for the impossibility for
the class otY-consistent profiles. Unfortunately, we don’t know if thelmess property is a necessary
condition. Thus, even in presence of Theorem 6 we don’t knewifyArrow’s Theorem holds for the

class ofd™"-consistent profiles.
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