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Abstract

As we have announced in the title of this work, we show that a broad class of
linear evolution equations are exactly controllable. This class is represented by
the following infinite dimensional linear control system:

ż = Az + Bu(t), t > 0, z ∈ Z, u(t) ∈ U

where Z, U are Hilbert spaces, the control function u belong to L2(0, t1; U), t1 >
0, B ∈ L(U,Z), A generates a strongly continuous semigroup operator T (t)
according to [5]. We give necessary and sufficient condition for the exact con-
trollability of this system and apply this results to a linear controlled damped
wave equation.
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1 Introduction

In this work we prove that a broad class of linear evolution equations are exactly

controllable. This class is represented by the following linear infinite dimensional

control system:

ż = Az + Bu(t), z(t) ∈ Z, u(t) ∈ U, t > 0, (1.1)

where Z, U are infinite dimensional Hilbert spaces, the control function u belong

to L2(0, t1; U), t1 > 0, B ∈ L(U,Z), A generates a strongly continuous semigroup

operator T (t) according to [5].

As a motivation we shall consider the following finite dimensional linear control

system

ż = Az + Bu(t), z(t) ∈ IRn, u(t) ∈ IRm, t > 0, (1.2)

where A and B are matrices of dimension n × n and n × m respectively, and the

control function u belong to L2(0, t1; IR
m). The following Lemma can be found in [3].

Lemma 1.1 The following statements are equivalent:

(a) System (1.2) is controllable on [0, t1].

(b) B∗eA∗tz = 0, ∀t ∈ [0, t1], ⇒ z = 0,

(c) Rank
[
B

...AB
...A2B

... · · ·An−1B
]

= n

(d) The operator W(t1) : IRn → IRn given by:

W(t1) =
∫ t1

0
eA(t1−s)BB∗eA∗(t1−s)ds, (1.3)

is invertible.



EXACT CONTROLLABILITY of LINEAR SYSTEMS 3

Moreover, the control u ∈ L2(0, t1; IR
m) that steers an initial state z0 to a final

state z1 at time t1 > 0 is given by the following formula:

u(t) = B∗eA∗(t1−t)W−1(z1 − eAt1z0). (1.4)

In this work we generalize this result for the infinite dimensional linear system (1.1)

in Hilbert spaces , in the following way: The system (1.1) is exactly controllable on

[0, t1] iff the linear bounded operator W(t1) : Z → Z given by:

Wz =
∫ t1

0
T (t1 − s)BB∗T ∗(t1 − s)zds, (1.5)

is invertible. This result completes Theorem 4.1.7 from [2].

Moreover, the control u ∈ L2(0, t1; U) that steers an initial state z0 to a final state

z1 at time t1 > 0 is given by the following formula:

u(t) = B∗T ∗(t1 − t)W−1(z1 − T (t1)z0). (1.6)

Finally, we apply this result to the following controlled linear damped wave equa-

tion {
wtt + cwt − dwxx = u(t, x), 0 < x < 1
w(t, 0) = w(t, 1) = 0, t ∈ IR

(1.7)

where u ∈ L2(0, t1; L
2[0, 1]).

2 Exact Controllability

Now, we shall give the definition of controllability for the linear system

ż = Az + Bu(t) z ∈ Z, t ≥ 0. (2.1)

For all z0 ∈ Z the equation (2.1) has a unique mild solution given by

z(t) = T (t)z0 +
∫ t

0
T (t− s)Bu(s)ds, 0 ≤ t ≤ t1. (2.2)
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Definition 2.1 (Exact Controllability) We say that system (2.1) is exactly con-

trollable on [0, t1], t1 > 0, if for all z0, z1 ∈ Z there exists a control u ∈ L2(0, t1; U)

such that the solution z(t) of (2.2) corresponding to u, verifies: z(t1) = z1.

Consider the following bounded linear operators

G : L2(0, t1; U) → Z, Gu =
∫ t1

0
T (t1 − s)Bu(s)ds. (2.3)

W : Z → Z, Wz =
∫ t1

0
T (t1 − s)BB∗T ∗(t1 − s)zds. (2.4)

Then, the following proposition is a characterization of the exact controllability of

the system (2.1).

Proposition 2.1 The system (2.1) is exactly controllable on [0, t1] if and only if, the

operator G is surjective, that is to say

G(L2(0, t1; U)) = Range(G) = Z.

The following Theorem is a version of Theorem 2.1 from [1], pg. 56 in Hilbert spaces.

Theorem 2.1 If u ∈ L2(0, t1; U) and U , Z are Hilbert spaces, then (2.1) is exactly

controllable iff there exists γ > 0 such that

γ‖B∗T ∗(t1 − ·)z‖L2(0,t;U) ≥ ‖z‖Z , z ∈ Z. (2.5)

Now, we are ready to formulate the main result on exact controllability of the

linear system (2.1).

Theorem 2.2 The system (2.1) is exactly controllable on [0, t1] if and only if the

operator W is invertible. Moreover, the control u ∈ L2(0, t1; U) steering an initial

state z0 to a final state z1 at time t1 > 0 is given by the following formula:

u(t) = B∗T ∗(t1 − t)W−1(z1 − T (t1)z0). (2.6)
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Proof Suppose the system (2.1) is exactly controllable on [0, t1]. Then, from the

foregoing Theorem we obtain

γ2‖B∗T ∗(t1 − ·)z‖2
L2 ≥ ‖z‖2

Z , z ∈ Z.

i.e.,

γ2
∫ t1

0
‖B∗T ∗(t1 − s)z‖2

U ≥ ‖z‖2
Z , z ∈ Z.

i.e.,

γ2
∫ t1

0
< B∗T ∗(t1 − s)z,B∗T ∗(t1 − s)z >U,U≥ ‖z‖2

Z , z ∈ Z.

i.e.,

γ2
∫ t1

0
< T (t1 − s)BB∗T ∗(t1 − s)z, z >U,U≥ ‖z‖2

Z , z ∈ Z.

Therefore,

< Wz, z >≥ 1

γ2
‖z‖2

Z , z ∈ Z. (2.7)

This implies that W is one to one. Now, we shall prove that W is surjective. That is

to say

R(W) = Range(W) = Z.

For the purpose of contradiction, let us assume that R(W) is estrictly contained in

Z. Using Cauchy Schwarz‘s inequality and (2.7)we get

‖Wz‖ ≥ 1

γ2
‖z‖Z , z ∈ Z,

which implies that R(W) is closed. Then, from Hahn Banachs Theorem there exists

z0 ∈ Z with z0 6= 0 such that

< Wz, z0 >= 0, ∀z ∈ Z.
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In particular, putting z = z0 we get from (2.7) that

0 =< Wz0, z0 >≥ 1

γ2
‖z0‖2

Z .

Then z0 = 0, which is a contradiction. Hence, W is a bijection and from the open

mapping Theorem W−1 is a bounded linear operator.

Now, suppose W is invertible. Then, given z ∈ Z we shall prove the existence of

a control u ∈ L2 such that Gu = z. This control u can be taking as follows

u(t) = B∗T ∗(t1 − t)W−1z.

In fact,

Gu =
∫ t1

0
T (t1 − s)Bu(s)ds =

∫ t1

0
T (t1 − s)BB∗T ∗(t1 − s)W−1zds = WW−1z = z.

In the same way we can prove that the control u given by (2.6) steers the initial state

z0 to the final state z1 in time t1.

Lemma 2.1 Suppose system(2.1) is exactly controllable. Consider z ∈ Z, the control

u0(t) = B∗T ∗(t1 − t)W−1z

and the set

Sz = {u ∈ L2(0, t1; U) : Gu = z}.

Then

‖u0‖ = inf{‖u‖ : u ∈ Sz}

Proof Consider the following equalities

‖u‖2 = ‖u0 + (u− u0)‖2 = ‖u0‖2 + 2Re < u0, u− u0 > +‖u− u0‖2, u ∈ Sz.
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on the other hand,

< u0, u− u0 > = <
∫ t1

0
B∗T ∗(t1 − s)W−1z, u(s)− u0(s) > ds

= <
∫ t1

0
W−1z, T (t1 − s)Bu(s)− T (t1 − s)Bu0(s) > ds

= < W−1z,Gu−Gu0 >=< W−1z, z − z >= 0.

Hence,

‖u‖2 − ‖u0‖2 = ‖u− u0‖2 ≥ 0, u ∈ Sz.

Therefore, ‖u0‖ ≤ ‖u‖, u ∈ Sz and ‖u0‖ = ‖u‖ iff u0 = u.

3 Applications

As we have announced in the introduction of this work we apply this result to the

following controlled linear damped wave equation

{
wtt + cwt − dwxx = u(t, x), 0 < x < 1
w(t, 0) = w(t, 1) = 0, t ∈ IR

(3.1)

where u ∈ L2(0, t1; L
2[0, 1]).

In the space X = L2[0, 1] this system can be written as an abstract second order

ordinary differential equation. To this end, we consider the linear unbounded operator

A : D(A) ⊂ X → X defined by Aφ = −φxx, where

D(A) = {φ ∈ X : φ, φx, are a.c, φxx ∈ X; φ(0) = φ(1) = 0}. (3.2)

The operator A has the following very well known properties: the spectrum of A

consists of only eigenvalues

0 < λ1 < λ2 < · · · < λn →∞,



8 E. ITURRIAGA and H. LEIVA

each one with multiplicity one. Therefore,

a) There exists a complete orthonormal set {φn} of eigenvectors of A.

b) For all x ∈ D(A) we have

Ax =
∞∑

n=1

λn < x, φn > φn =
∞∑

n=1

λnEnx, (3.3)

where < ·, · > is the inner product in X and

Enx =< x, φn > φn. (3.4)

So, {En} is a family of complete orthogonal projections in X and

x =
∑∞

n=1 Enx, x ∈ X.

c) −A generates an analytic semigroup {e−At} given by

e−Atx =
∞∑

n=1

e−λntEnx. (3.5)

d) The fractional powered spaces Xr are given by:

Xr = D(Ar) = {x ∈ X :
∞∑

n=1

(λn)2r‖Enx‖2 < ∞}, r ≥ 0,

with the norm

‖x‖r = ‖Arx‖ =

{ ∞∑

n=1

λ2r
n ‖Enx‖2

}1/2

, x ∈ Xr,

and

Arx =
∞∑

n=1

λr
nEnx. (3.6)

Also, for r ≥ 0 we define Zr = Xr×X, which is a Hilbert Space with norm given by:

∥∥∥∥∥

[
w
v

]∥∥∥∥∥
2

Zr

= ‖w‖2
r + ‖v‖2.
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Using the change of variables w′ = v, the second order equation (3.1) can be written

as a first order system of ordinary differential equations in the Hilbert space

Z1/2 = D(A1/2)×X = X1/2 ×X as:

z′ = Az + Bu, z ∈ Z1/2, t ≥ 0, (3.7)

where

z =

[
w
v

]
, B =

[
0
IX

]
, A =

[
0 IX

−dA −cIX

]
. (3.8)

A is an unbounded linear operator with domain D(A) = D(A)×X.

We shall use the following Lemma from [4] to prove the next Theorem:

Lemma 3.1 Let Z be a separable Hilbert space and {An}n≥1, {Pn}n≥1 two families

of bounded linear operators in Z with {Pn}n≥1 being a complete family of orthogonal

projections such that

AnPn = PnAn, n = 1, 2, 3, . . . (3.9)

Define the following family of linear operators

T (t)z =
∞∑

n=1

eAntPnz, t ≥ 0. (3.10)

Then:

(a) T (t) is a linear bounded operator if

‖eAnt‖ ≤ g(t), n = 1, 2, 3, . . . (3.11)

for some continuous real-valued function g(t).

(b) under the condition (3.11) {T (t)}t≥0 is a C0-semigroup in the Hilbert space Z

whose infinitesimal generator A is given by

Az =
∞∑

n=1

AnPnz, z ∈ D(A) (3.12)
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with

D(A) = {z ∈ Z :
∞∑

n=1

‖AnPnz‖2 < ∞} (3.13)

(c) the spectrum σ(A) of A is given by

σ(A) =
∞⋃

n=1

σ(Ān), (3.14)

where Ān = AnPn.

Theorem 3.1 The operator A given by (3.8), is the infinitesimal generator of a

strongly continuous group {T (t)}
t∈IR given by

T (t)z =
∞∑

n=1

eAntPnz, z ∈ Z1/2, t ≥ 0 (3.15)

where {Pn}n≥0 is a complete family of orthogonal projections in the Hilbert space Z1/2:

Pn = diag [En, En] , n ≥ 1 , (3.16)

and

An = BnPn, Bn =

[
0 1

−dλn −c

]
, n ≥ 1. (3.17)

This group decays exponentially to zero. In fact, we have the following estimate

‖T (t)‖ ≤ M(c, d)e−
c
2
t, t ≥ 0, (3.18)

where

M(c, d)

2
√

2
= sup

n≥1



2

∣∣∣∣∣
c+
√

4dλn − c2

√
c2 − 4dλn

∣∣∣∣∣ ,
∣∣∣∣∣∣
(2 + d)

√
λn

4dλn − c2

∣∣∣∣∣∣



 .

It is known that the linear damped wave equation

z′ = Az + Bu z ∈ Z1/2, t ≥ 0, (3.19)
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is controllable on [0, t1] for t1 > 0(see [1] and [2]). Nevertheless, we will give here

a different and nicer proof of it, for better understanding of the reader and self-

contained work. To this end, we project the system (3.19) on the range R(Pj) of Pj

to obtain the following family of finite dimensional systems

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (3.20)

Then, the following proposition can be shown the same way as Lemma 1 from [3].

Proposition 3.1 The following statements are equivalent:

(a) System (3.20) is controllable on [0, t1].

(b) B∗P ∗
j eA∗j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0,

(c) Rank
[
PjB

...AjPjB
]

= 2

(d) The operator Wj(t1) : R(Pj) →R(Pj) given by:

Wj(t1) =
∫ t1

0
e−AjsBB∗e−A∗j sds, (3.21)

is invertible.

Now, we are ready to prove the exact controllability of the linear system (3.19).

Theorem 3.2 The system (3.19) is exactly controllable on [0, t1] and the control

u ∈ L2(0, t1; X) that steers an initial state z0 to a final state z1 at time t1 > 0 is given

by the following formula:

u(t) = B∗T ∗(−t)
∞∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0). (3.22)

Moreover,

W(t1)z =
∫ t1

0
T (−s)BB∗T ∗(−s)zds =

∞∑

j=1

Wj(t1)Pjz,
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and

W−1(t1)z =
∞∑

j=1

W−1
j (t1)Pjz.

Proof . First, we shall prove that each of the following finite dimensional systems is

controllable on [0, t1]

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (3.23)

In fact, we can check the condition for controllability of the systems

B∗P ∗
j eA∗j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0.

In this case the operators Aj = BjPj and A are given by

Bj =

[
0 1

−dλj −c

]
, A =

[
0 IX

−dA −cI

]
,

and the eigenvalues σ1(j), σ2(j) of the matrix Bj are given by

σ1(j) = −µ + ilj, σ2(j) = −µ− ilj,

where,

µ =
c

2
and lj =

1

2

√
4dλj − c2.

Therefore, A∗
j = B∗

j Pj with

B∗
j =

[
0 −1

dλj −c

]
,

and

eBjt = e−µt

{
cos ljtI +

1

lj
sin ljt (Bj + cI)

}

= e−µt


 cos ljt + c

2lj
sin ljt

sin ljt

lj

−dS(j)λ
1/2
j sin ljt cos ljt− c

2lj
sin ljt


 ,
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eB∗j t = e−µt

{
cos ljtI +

1

lj
sin ljt

(
B∗

j + µI
)}

= e−µt


 cos ljt + c

2lj
sin ljt − sin ljt

lj

dS(j)λ
1/2
j sin ljt cos ljt− c

2lj
sin ljt


 ,

B =

[
0
IX

]
, B∗ = [0, IX ] and BB∗ =

[
0 0
0 IX

]
.

Now, let y = (y1, y2)
T ∈ R(Pj) such that

B∗P ∗
j eA∗j ty = 0, ∀t ∈ [0, t1].

Then,

e−µt

[
dS(j)λ

1/2
j sin ljty1 +

(
cos ljt− c

2lj
sin ljt

)
y2

]
= 0, ∀t ∈ [0, t1],

which implies that y = 0.

From Proposition 3.1 the operator Wj(t1) : R(Pj) →R(Pj) given by:

Wj(t1) =
∫ t1

0
e−AjsBB∗e−A∗j sds = Pj

∫ t1

0
e−BjsBB∗e−B∗j sdsPj = PjW j(t1)Pj

is invertible.

Since

‖e−Ajt‖ ≤ M(c, d)eµt, ‖e−A∗j t‖ ≤ M(c, d)eµt,

‖e−AjtBB∗e−A∗j t‖ ≤ M2(c, d)‖BB∗‖e2µt,

we have

‖Wj(t1)‖ ≤ M2(c, d)‖BB∗‖e2µt1 ≤ L(c, d), j = 1, 2, . . . .

Now, we shall prove that the family of linear operators,

W−1
j (t1) = W

−1
j (t1)Pj : Z1/2 → Z1/2
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is bounded and ‖W−1
j (t1)‖ is uniformly bounded. To this end, we shall compute

explicitly the matrix W
−1
j (t1). From the above formulas we obtain that

eBjt = e−µt

[
a(j) b(j)
−a(j) c(j)

]
, eB∗j t = e−µt

[
a(j) −b(j)
d(j) c(j)

]
,

where

a(j) = cos ljt +
c

2lj
sin ljt, b(j) =

sin ljt

lj
,

c(j) = dS(j)λ
1/2
j sin ljt, d(j) = cos ljt− c

2lj
sin ljt,

and

S(j) =

√√√√ λj

4dλj − c2
.

Then

e−BjsBB∗e−B∗j s =

[
b(j)c(j)λ

1/2
j I −b(j)d(j)I

−d(j)c(j)λ
1/2
j I d2(j)I

]
.

Therefore,

W j(t1) =




dS(j)λ
1/2
j

lj
k11(j)

1
lj
k12(j)

−dS(j)λ
1/2
j k21(j) k22(j)


 ,

where

k11(j) =
∫ t1

0
e2cs sin2 ljsds

k12(j) = −
∫ t1

0
e2cs

[
sin ljs cos ljs− c sin2 ljs

2lj

]
ds

k21(j) =
∫ t1

0
e2cs

[
sin ljs cos ljs− c sin2 ljs

2lj

]
ds

k22(j) =
∫ t1

0
e2cs

[
cos ljs− c sin ljs

2lj

]2

ds.

The determinant ∆(j) of the matrix W j(t1) is given by

∆(j) =
dS(j)λ

1/2
j

lj
[k11(j)k22(j)− k12(j)k21(j)]
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=
dS(j)λ

1/2
j

lj
{
(∫ t1

0
e2µs sin2 ljsds

) 


∫ t1

0
e2µs

[
cos ljs− c sin ljs

2lj

]2

ds




−
(∫ t1

0
e2µs

[
sin ljs cos ljs− c sin2 ljs

2lj

]
ds

)2

}.

Passing to the limit as j goes to ∞, we obtain,

lim
j→∞

∆(j) =
(e2µt1 − 1)(1− 2eµt1 + e2µt1)

24µ3
.

Therefore, there exist constants R1, R2 > 0 such that

0 < R1 < |∆(j)| < R2, j = 1, 2, 3, . . .

Hence,

W
−1

(j) =
1

∆(j)




k22(j) − 1
lj
k12(j)

dS(j)λ
1/2
j k21(j)

dS(j)λ
1/2
j

lj
k11(j)




=

[
b11(j) b12(j)

b21(j)λ
1/2
j b22(j)

]
,

where bn,m(j), n = 1, 2; m = 1, 2; j = 1, 2, . . . are bounded. We can prove the

existence of constant L2(c, d) such that

‖W−1
j (t1)‖Z1/2

≤ L2(c, d), j = 1, 2, . . . .

Now, we define the following linear bounded operators

W(t1) : Z1/2 → Z1/2, W−1(t1) : Z1/2 → Z1/2,

by

W(t1)z =
∞∑

j=1

Wj(t1)Pjz, W−1(t1)z =
∞∑

j=1

W−1
j (t1)Pjz.

Using the definition we see that, W(t1)W−1(t1)z = z and

W(t1)z =
∫ t1

0
T (−s)BB∗T ∗(−s)zds.



16 E. ITURRIAGA and H. LEIVA

Next, we will show that given z ∈ Z1/2 there exists a control u ∈ L2(0, t1; X) such

that Gu = z. In fact, let u be the following control

u(t) = B∗T ∗(−t)W−1(t1)z, t ∈ [0, t1].

Then,

Gu =
∫ t1

0
T (−s)Bu(s)ds

=
∫ t1

0
T (−s)BB∗T ∗(−s)W−1(t1)zds

=
(∫ t1

0
T (−s)BB∗T ∗(−s)ds

)
W−1(t1)z

= W(t1)W−1(t1)z = z.

Then, the control steering an initial state z0 to a final state z1 in time t1 > 0 is given

by

u(t) = B∗T ∗(−t)W−1(t1)(T (−t1)z1 − z0)

= B∗T ∗(−t)
∞∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0).
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