Revista Notas de Matemática
Vol.3(1), No. 248, 2007, pp.1-12
http://www.matematica/ula.ve
Comisión de Publicaciones
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

Exact Controllability for Semilinear Difference Equation and Application.

Hugo Leiva and Jahnett Uzcátegui

Abstract

In this paper we study the exact controllability of the following semilinear difference equation $$
z(n+1)=A(n) z(n)+B(n) u(n)+f(z(n), u(n)), n \in \mathbb{N}
$$ $z(n) \in Z, u(n) \in U$, where Z, U are Hilbert spaces, $A \in l^{\infty}(\mathbb{N}, L(Z)), B \in l^{\infty}(\mathbb{N}, L(U, Z))$, $u \in l^{2}(I N, U)$ and the nonlinear term $f: Z \times U \longrightarrow Z$ satisfies: $$
\left\|f\left(z_{2}, u_{2}\right)-f\left(z_{1}, u_{1}\right)\right\| \leq L\left\{\left\|z_{2}-z_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}
$$

We prove the following statement: If the linear equation is exactly controllable and $L \ll 1$, then the nonlinear equation is also exactly controllable. That it to say, the controllability of the linear equation is preserved under nonlinear perturbation $f(z, u)$. Finally, we apply this result to a discrete version of the semilinear wave equation.

Resumen

En este articulo estudiamos la controlabilidad exacta de la siguiente ecuación en diferencias semilineal

$$
z(n+1)=A(n) z(n)+B(n) u(n)+f(z(n), u(n)), \quad n \in \mathbb{N}^{*}
$$

$z(n) \in Z, u(n) \in U$, donde Z, U son espacios de Hilbert, $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}, A \in l^{\infty}(\mathbb{I N}, L(Z))$, $B \in l^{\infty}(\mathbb{I N}, L(U, Z)), u \in l^{2}(\mathbb{I N}, U)$ y el termino no lineal $f: Z \times U \longrightarrow Z$ satisface:

$$
\left\|f\left(z_{2}, u_{2}\right)-f\left(z_{1}, u_{1}\right)\right\| \leq L\left\{\left\|z_{2}-z_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}
$$

Probamos la siguiente afirmación: Si la ecuación lineal es exactamente controlable y $L \ll 1$, entonces ecuación no lineal es también exactamente controlable. Es decir, la controlabilidad de la ecuación lineal se preserva bajo la perturbación no lineal $f(z, u)$. Finalmente, aplicamos este resultado a una versión discreta de la ecuación del calor semilineal.
key words. difference equations, exact controllability, wave equation.
AMS(MOS) subject classifications. primary: 93B05; secondary: 93C25.

1 Introduction

In this paper we study the exact controllability of the following semilinear difference equation

$$
z(n+1)=A(n) z(n)+B(n) u(n)+f(z(n), u(n)), \quad z(n) \in Z, u(n) \in U, n \in \mathbb{N}
$$

where Z, U are Hilbert spaces, $A \in l^{\infty}(\mathbb{I N}, L(Z)), B \in l^{\infty}(\mathbb{N}, L(U, Z)), u \in l^{2}(\mathbb{N}, U), L(U, Z)$ denotes the space of all bounded linear operators $L: U \longrightarrow Z$ and $L(Z, Z)=L(Z)$. The nonlinear term $f: Z \times U \longrightarrow Z$ is a continuous Lipschitzian function such that:

$$
\left\|f\left(z_{2}, u_{2}\right)-f\left(z_{1}, u_{1}\right)\right\| \leq L\left\{\left\|z_{2}-z_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\} .
$$

We prove the following statement: If the linear equation is exactly controllable and $L \ll 1$, then the nonlinear equation is also exactly controllable. That it to say, the controllability of the linear equation is preserved under nonlinear perturbation $f(z, u)$. Finally, we apply this result to a discrete version of the following semilinear wave equation:

$$
\left\{\begin{array}{l}
w_{t t}-w_{x x}=u(t, x)+f\left(w, w_{t}, u(t, x)\right), \quad 0<x<1 \tag{1.1}\\
w(t, 0)=w(t, 1)=0, \quad t \in \mathbb{R}
\end{array}\right.
$$

where the distributed control $u \in L^{2}\left(0, t_{1} ; L^{2}(0,1)\right)$ and the nonlinear term $f(w, v, u)$ is a continuous function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left|f\left(w_{2}, v_{2}, u_{2}\right)-f\left(w_{1}, v_{1}, u_{1}\right)\right| \leq L\left\{\left|w_{2}-w_{1}\right|+\left|v_{2}-v_{1}\right|+\left|u_{2}-u_{1}\right|\right\} . \tag{1.2}
\end{equation*}
$$

Finally, our technique can be used in a more general problem since it is based on the following Theorem use to characterize center manifolds in dynamical system theory.

Theorem 1.1 Let Z be a Banach space and $K: Z \rightarrow Z$ a Lipschitz function with a Lipschitz constant $k<1$ and consider $G(z)=z+K z$. Then G is an homemorphis whose inverse is a Lipschitz function with a Lipschitz constant $(1+k)^{-1}$.

2 Exact Controllability of the Linear Equation

In this section we shall study the exact controllability of the linear difference equation

$$
\begin{equation*}
z(n+1)=A(n) z(n)+B(n) u(n), n \in \mathbb{N}, z(0)=z_{0} \tag{2.3}
\end{equation*}
$$

To this end, we shall give a variation constant formula for the solution of (2.3), the definition of exact controllability and prove some characterization of exact controllability needed to prove our main theorem.

Consider the set $\Delta=\{(m, n) \in \mathbb{N} \times \mathbb{N}: m \geq n\}$ and let $\Phi=\{\Phi(m, n)\}_{(m, n) \in \Delta}$ be the evolution operator associated to A, i.e., $\Phi(m, n)=A(m-1) \cdots A(n)$ and $\Phi(m, n)=I$, for $m=n$.

Then the solution of (2.3) is given by the discrete variation constant formula:

$$
\begin{equation*}
z(n)=\Phi(n, 0) z(0)+\sum_{k=1}^{n} \Phi(n, k) B(k-1) u(k-1), n \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

Definition 2.1 (Exact Controllability) The system (2.3) is said to be exactly controlable if there is $n_{0} \in \mathbb{N}$ such that for every $z_{0}, z_{1} \in X$ there exists $u \in l^{\infty}(\mathbb{I N}, U)$ such that $z(0)=z_{0}$ and $z\left(n_{0}\right)=z_{1}$.

Definition 2.2 For the system (2.3) we define the following concepts:
a) The controllability map $($ for $n \in \mathbb{N})$ is define as follows $B^{n}: l^{2}(\mathbb{N}, U) \longrightarrow Z$ by

$$
\begin{equation*}
B^{n} u=\sum_{k=1}^{n} \Phi(n, k) B(k-1) u(k-1) \tag{2.5}
\end{equation*}
$$

b) The grammian map (for $n \in \mathbb{N}$) is define by $L_{B^{n}}=B^{n} B^{n *}$

The following theorem is a discrete version of theorem 4.1.7 from [2].
Theorem 2.1 The equation (2.3) is exactly controllable for some $n_{0} \in \mathbb{N}$ if, and only if, one of the following statements holds:
a) $\operatorname{Ran}\left(B^{n_{0}}\right)=Z$
b) There exists $\gamma>0$ such that

$$
\left\langle L_{B^{n_{0}}} z, z\right\rangle \geq \gamma\|z\|_{Z}^{2}
$$

c) There exists $\gamma>0$ such that

$$
\left\|B^{n_{0} *} z\right\|_{l^{2}(N, U)} \geq \gamma\|z\|_{Z}, z \in Z
$$

The following proposition is easy to prove.
Proposition 2.1 The adjoint $B^{n_{0} *}$ of the operator $B^{n_{0}}$ is given by $B^{n_{0 *}}: Z \longrightarrow l^{2}(\mathbb{N}, U)$

$$
\left(B^{n_{0} *} z\right)(k-1)=\left\{\begin{array}{cc}
B^{*}(k-1) \Phi^{*}\left(n_{0}, k\right) z, & k \leq n_{0} \tag{2.6}\\
0 & k>n_{0}
\end{array}\right.
$$

and

$$
\begin{equation*}
L_{B^{n_{0}}} z=\sum_{k=1}^{n_{0}} \Phi\left(n_{0}, k\right) B(k-1) B^{*}(k-1) \Phi^{*}\left(n_{0}, k\right) z, z \in Z \tag{2.7}
\end{equation*}
$$

Lemma 2.1 The equation (2.3) is exactly controllable for $n_{0} \in \mathbb{N}$ if, and only if, $L_{B^{n}}$ is invertible. Moreover, in this case $S=B^{n_{0} *} L_{B_{n_{0}}}^{-1}$ is right inverse of $B^{n_{0}}$ and the control $u \in$ $l^{2}(I N, U)$ steering an initial state z_{0} to a final state z_{1} is given by:

$$
\begin{equation*}
u=B^{n_{0} *} L_{B^{n_{0}}}^{-1}\left(z_{1}-\Phi\left(n_{0}, 0\right) z_{0}\right) . \tag{2.8}
\end{equation*}
$$

Proof Suppose the system (2.3) is exactly controlable. Then from theorem (2.1) part c) there is $\gamma>0$ such that $\left\|B^{n_{0} *} z\right\| \geq \gamma\|z\|$, for all $z \in Z$, i.e.,

$$
\left\|B^{n_{0} *} z\right\|^{2} \geq \gamma^{2}\|z\|^{2}, z \in Z
$$

i.e.,

$$
\left\langle B^{n_{0}} B^{n_{0} *} z, z\right\rangle \geq \gamma^{2}\|z\|^{2}, z \in Z
$$

i.e.,

$$
\begin{equation*}
\left\langle L_{B^{n_{0}}} z, z\right\rangle \geq \gamma^{2}\|z\|^{2}, z \in Z \tag{2.9}
\end{equation*}
$$

This implies that $L_{B^{n_{0}}}$ is one to one. Now, we shall prove that $L_{B^{n_{0}}}$ is surjective. That is to say

$$
R\left(L_{B^{n_{0}}}\right)=\operatorname{Range}\left(L_{B^{n_{0}}}\right)=Z .
$$

For the purpose of contradiction, let us assume that $R\left(L_{B^{n_{0}}}\right)$ is strictly contained in Z. On the other hand, using Cauchy Schwarz's inequality and (2.9) we get

$$
\left\|L_{B^{n_{0}}} z\right\|_{l^{2}} \geq \gamma^{2}\|z\|^{2}, z \in Z
$$

which implies that $R\left(L_{B^{n_{0}}}\right)$ is closed. Then, from Hahn Banach's Theorem there exist $z_{0} \neq 0$ such that

$$
\left\langle L_{B^{n_{0}}} z, z_{0}\right\rangle=0, \forall z \in Z
$$

In particular, putting $z=z_{0}$ we get from (2.9) that

$$
0=\left\langle L_{B^{n_{0}}} z_{0}, z_{0}\right\rangle \geq \gamma^{2}\left\|z_{0}\right\|^{2}
$$

Then $z_{0}=0$, which is a contradiction. Hence, $L_{B^{n_{0}}}$ is a bijection and from the Open Mapping Theorem, $L_{B^{n_{0}}}^{-1}$ is a bounded linear operator.

Now suppose $L_{B^{n_{0}}}$ is invertible. Then, from Theorem (2.1) it is enough to prove that $R\left(B^{n_{0}}\right)=Z$. For $z \in Z$ we define the control $u_{z} \in l^{2}(\mathbb{N}, U)$ as follows

$$
u_{z}=S z=B^{n_{0} *} L_{B^{n_{0}}}^{-1} z .
$$

Then $B^{n_{0}} u_{z}=z$. The rest of the proof follows from here.

3 Exact Controllability of the Nonlinear Equation.

Through this section we shall assume that the linear system is exactly controllable for some $n_{0} \in \mathbb{I N}$. Now, we shall give the definition of controllability in terms of the non-linear systems In this section we shall study the exact controllability of the nonlinear difference equation

$$
\begin{equation*}
z(n+1)=A(n) z(n)+B(n) u(n)+f(z(n), u(n)), z(0)=z_{0}, \quad n \in \mathbb{N} \tag{3.10}
\end{equation*}
$$

where the nonlinear term $f: Z \times U \longrightarrow Z$ satisfies:

$$
\left\|f\left(z_{2}, u_{2}\right)-f\left(z_{1}, u_{1}\right)\right\| \leq L\left\{\left\|z_{2}-z_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\} .
$$

To this end, we shall assume that the equation (2.3) is controllable for some n_{0}, i.e., $R\left(B^{n_{0}}\right)=Z$.
For $z_{0} \in Z$ the equation (3.10) has a unique solution given by

$$
\begin{equation*}
z(n)=\Phi(n, 0) z(0)+\sum_{k=1}^{n} \Phi(n, k)[B(k-1) u(k-1)+f(z(k-1), u(k-1))], n \in \mathbb{N} \tag{3.11}
\end{equation*}
$$

Definition 3.1 (Exact Controllability) The system (3.10) is said to be exactly controlable if there is $n_{0} \in \mathbb{N}$ such that for every $z_{0}, z_{1} \in X$ there exists $u \in l^{\infty}(\mathbb{N}, U)$ such that $z(0)=z_{0}$ and $z\left(n_{0}\right)=z_{1}$.

Consider the following non-linear operator $B_{f}^{n_{0}}: l^{2}(\mathbb{I N}, U) \longrightarrow Z$ define by

$$
\begin{align*}
B_{f}^{n_{0}} u & =\sum_{k=1}^{n_{0}} \Phi\left(n_{0}, k\right) B(k-1) u(k-1)+\sum_{k=0}^{n_{0}} \Phi\left(n_{0}, k\right) f(z(k-1), u(k-1)) \\
& =B^{n_{0}} u+\sum_{k=0}^{n_{0}} \Phi\left(n_{0}, k\right) f(z(k-1), u(k-1)) \tag{3.12}
\end{align*}
$$

Then, following proposition is a characterization of the exact controllability of the nonlinear system (3.10).

Proposition 3.1 The system (3.10) is exactly controllable for n_{0} if, and only if, $R\left(B_{f}^{n_{0}}\right)=Z$.
Lemma 3.1 Let $u_{1}, u_{2} \in l^{2}(I N, U)$ and z_{1}, z_{2} the corresponding solutions of (3.10). Then, the following estimate holds:

$$
\begin{equation*}
\left\|z_{1}(j)-z_{2}(j)\right\|_{X} \leq M\left[\left\|B^{n_{0}}\right\|+L\right] \sqrt{n_{0}} e^{M L n_{0}}\left\|u_{1}-u_{2}\right\|_{l^{2}(N, U)} \tag{3.13}
\end{equation*}
$$

where $j \leq n_{0}$ and $M=\sup _{1 \leq j, k \leq n_{0}}\{\|\Phi(j, k)\|\}$.
Proof Let z_{1}, z_{2} be solutions of (3.10) corresponding to u_{1}, u_{2} respectively. Then

$$
\begin{align*}
\left\|z_{1}(j)-z_{2}(j)\right\| & =\sum_{k=0}^{j}\|\Phi(j, k)\|\left\|B^{n_{0}}\right\|\left\|u_{1}(k-1)-u_{2}(k-1)\right\| \\
& +\sum_{k=0}^{j}\|\Phi(j, k)\|\left\|f\left(z_{1}(k-1), u_{1}(k-1)\right)-f\left(z_{2}(k-1), u_{2}(k-1)\right)\right\| \tag{3.14}\\
& \leq M\left[\left\|B^{n_{0}}\right\|+L\right] \sum_{k=1}^{j-1}\left\|u_{1}(k)-u_{2}(k)\right\|+M L \sum_{k=1}^{j-1}\left\|z_{1}(k)-z_{2}(k)\right\| \\
& \leq M\left[\left\|B^{n_{0}}\right\|+L\right] \sqrt{n_{0}}\left\|u_{1}-u_{2}\right\|+M L \sum_{k=1}^{j-1}\left\|z_{1}(k)-z_{2}(k)\right\| .
\end{align*}
$$

Using Discrete Gronwall inequality [see Laksmikanham and Trigiante Cor. 1.6.2.] we obtain

$$
\left\|z_{1}(j)-z_{2}(j)\right\|_{X} \leq M\left[\left\|B^{n_{0}}\right\|+L\right] \sqrt{n_{0}} e^{M L n_{0}}\left\|u_{1}-u_{2}\right\|_{l^{2}(N, U)}, j \leq n_{0}
$$

Now, we are ready to formulate and prove the main result of this work.
Theorem 3.1 If the following estimate holds

$$
\begin{equation*}
L_{H}=M L(\Gamma+1)\left\|B^{n_{0} *}\right\|\left\|L_{B^{n_{0}}}^{-1}\right\| n_{0}<1, \tag{3.15}
\end{equation*}
$$

where $\Gamma=M\left[\left\|B^{n_{0}}\right\|+L\right] \sqrt{n_{0}} e^{M L n_{0}}$, then the nonlinear system (3.10) is exactly controllable in n_{0}.

Proof want to prove that

$$
B_{f}^{n_{0}} l^{2}(I N ; U)=\operatorname{Range}\left(B_{f}^{n_{0}}\right)=Z
$$

But, from the exact controllability of the linear system (2.3) we know due lemma (2.1) that the operator $S=B^{n_{0} *} L_{B_{n_{0}}}^{-1}$ is a right inverse of $B^{n_{0}}$. Then, it is enough to prove that the operator
$\widetilde{B}_{f}^{n_{0}}=B_{f}^{n_{0}} \circ S$ is surjective. From the equation (3.12) we obtain the following expression for this oparator

$$
\begin{equation*}
\widetilde{B}_{f}^{n_{0}} \xi=\xi+\sum_{k=1}^{n_{0}} \Phi\left(n_{0}, k\right) f(z(k-1), S(\xi)(k-1)) . \tag{3.16}
\end{equation*}
$$

Now, if we define the operator $K: Z \longrightarrow Z$ by

$$
\begin{equation*}
K \xi=\sum_{k=1}^{n_{0}} \Phi\left(n_{0}, k\right) f(z(k-1), S(\xi)(k-1)), \tag{3.17}
\end{equation*}
$$

then the equation (3.16) takes the nice form

$$
\begin{equation*}
\widetilde{B}_{f}^{n_{0}}=I+K \tag{3.18}
\end{equation*}
$$

The function H is globally Lipschitz. In fact, let z_{1}, z_{2} be solutions of (3.10) corresponding to the controls $S \xi_{1}, S \xi_{2}$ respectively. Then

$$
\begin{aligned}
\left\|K \xi_{1}-K \xi_{2}\right\| & \leq \sum_{k=1}^{n_{0}}\left\|\Phi\left(n_{0}, k\right)\right\|\left\|f\left(z_{1}(k-1), S\left(\xi_{1}\right)(k-1)\right)-f\left(z_{2}(k-1), S\left(\xi_{2}\right)(k-1)\right)\right\| \\
& \leq \sum_{k=1}^{n_{0}} M L\left\{\left\|z_{1}(k-1)-z_{2}(k-1)\right\|+\left\|\left(S \xi_{1}\right)(k-1)-\left(S \xi_{2}\right)(k-1)\right\|\right\} \\
& \leq \sum_{k=1}^{n_{0}} M L(\Gamma+1)\left\|\left(S \xi_{1}\right)(k-1)-\left(S \xi_{2}\right)(k-1)\right\| \\
& \leq M L(\Gamma+1)\left\|B^{n_{0} *}\right\|\left\|L_{B^{n_{0}}}^{-1}\right\| \sum_{k=1}^{n_{0}}\left\|\xi_{1}-\xi_{2}\right\| \\
& =M L(\Gamma+1)\left\|B^{n_{0} *}\right\|\left\|L_{B^{n_{0}}}^{-1}\right\| n_{0}\left\|\xi_{1}-\xi_{2}\right\| .
\end{aligned}
$$

Therefore, K is Lipschitzian with lipschitz constant $L_{K}=M L(\Gamma+1)\left\|B^{n_{0} *}\right\|\left\|L_{B^{n_{0}}}^{-1}\right\| n_{0}$, and the assumption (3.15) implies that $L_{K}<1$. Hence, from Theorem 1.1 we get that $\widetilde{B}_{n_{0}}^{f}=I+K$ is an homeomorphism and consequently the operator $B_{n_{0}}^{f}$ is surjective, that is to say

$$
B_{f}^{n_{0}} l^{2}(I N ; U)=\operatorname{Range}\left(B_{f}^{n_{0}}\right)=Z .
$$

Corollary 3.1 The control steering an initial state z_{0} to a final state z_{1} is given by

$$
u=B^{n_{0} *} L_{B^{n_{0}}}^{-1}(I+K)^{-1}\left(z_{1}-\Phi\left(n_{0}, 0\right) z_{0}\right) .
$$

Corollary 3.2 The The operator $\Gamma: Z \rightarrow Z$ define by $\Gamma=S \circ\left(I+K_{\alpha_{0}}\right)^{-1}$ is a right inverse of the non linear operator $B_{f}^{n_{0}}$. That is to say, $B_{f}^{n_{0}} \circ \Gamma=I$.

4 Applications

As an application of the main results of this paper we shall consider a discrete version of the controlled nonlinear wave equation in 1 dimension.

$$
\left\{\begin{array}{l}
y_{t t}=y_{x x}+u(t, x)+g(y, u(t, x)) \tag{4.19}\\
y(t, 0)=y(t, 1)=0 \\
y(0, x)=y_{0}, y_{t}(0, x)=y_{1}(x)
\end{array}\right.
$$

The system (4.19) can be written as an abstract second order equation in the Hilbert space $X=L^{2}[0,1]$ as follows:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=-A y+u(t)+g(y, u(t)) \tag{4.20}\\
y(0)=y_{0}, y^{\prime}(0)=y_{1}
\end{array}\right.
$$

where the operator A is given by $A \phi=-\phi_{x x}$ with domain $D(A)=H^{2} \cap H_{0}^{1}$, and has the following spectral decomposition.

For all $x \in D(A)$ we have

$$
A x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, \phi_{n}\right\rangle \phi_{n}=\sum_{n=1}^{\infty} \lambda_{n} E_{n} x
$$

where $\lambda_{n}=n^{2} \pi^{2}, \phi_{n}(x)=\sin n \pi x,\langle\cdot, \cdot\rangle$ is the inner product in X and $E_{n} x=\left\langle x, \phi_{n}\right\rangle \phi_{n}$.
So, $\left\{E_{n}\right\}$ is a family of complete orthogonal projections in X and $x=\sum_{n=1}^{\infty} E_{n} x, x \in X$.
Using the change of variables $y^{\prime}=v$. the second order equation (4.20) can be written as a first order system of ordinary differential equations in the Hilbert space $Z=X^{1 / 2} \times X$ as

$$
\left\{\begin{array}{l}
z^{\prime}=\mathcal{A} z+B u(t)+f(z, u(t)), z \in Z \tag{4.21}\\
z(0)=z_{0}
\end{array}\right.
$$

where

$$
z=\left[\begin{array}{l}
w \tag{4.22}\\
v
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
I
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{rr}
0 & I \\
-A & 0
\end{array}\right],
$$

is an unbounded linear operator with domain $D()=D(A) \times X$ and

$$
f(z, u)=\left[\begin{array}{c}
0 \\
g(y, u)
\end{array}\right], u \in L^{2}(0, \tau, X)=U .
$$

The proof of the following theorem follows from Theorem 3.1 (see, [4]) by putting $c=0$ and $d=1$.

Theorem 4.1 The operator given by (4.22), is the infinitesimal generator of a strongly continuous semigroup $\{T(t)\}_{t \in \mathbb{R}}$ given by

$$
\begin{equation*}
T(t) z=\sum_{n=1}^{\infty} e^{A_{n} t} P_{n} z, z \in Z, t \geq 0 \tag{4.23}
\end{equation*}
$$

where $\left\{P_{n}\right\}_{n \geq 1}$ is a complete family of orthogonal projections in the Hilbert space Z given by

$$
\begin{equation*}
P_{n}=\operatorname{diag}\left[E_{n}, E_{n}\right], n \geq 1 \tag{4.24}
\end{equation*}
$$

and

$$
A_{n}=B_{n} P_{n}, \quad B_{n}=\left[\begin{array}{cc}
0 & 1 \tag{4.25}\\
-\lambda_{n} & 0
\end{array}\right], n \geq 1 .
$$

Now, the discretization of (4.21) on flow is given by

$$
\left\{\begin{array}{l}
z(n+1)=T(n) z(n)+B(n) u(n)+f(z(n), u(n)), z \in Z \tag{4.26}\\
z(0)=z_{0}
\end{array}\right.
$$

where

$$
f: Z \times U \longrightarrow Z, \quad u \in l^{2}(\mathbb{N}, U), \quad B: U \longrightarrow Z, \quad B u=\left[\begin{array}{l}
0 \\
u
\end{array}\right]
$$

In this case, the evolution operator associated to $T(\cdot)$, is given by $\Phi(m, n)=T(m-1) T(m-$ 2) $\ldots T(n), n<m$ and $\Phi(m, m)=I$.

Note that $\phi(m, n)=T(\Theta(m, n))$ where $\Theta(m, n)=\frac{m^{2}-n^{2}+n-m}{2} \in \mathbb{N}, m>n$.
We considere the linear difference equation

$$
\left\{\begin{array}{l}
z(n+1)=T(n) z(n)+B(n) u(n), z \in Z \tag{4.27}\\
z(0)=z_{0}
\end{array}\right.
$$

We want to show that (4.27) is exactly controllable. In this case, we have

$$
B^{n}: l^{2}(I N, U) \longrightarrow Z, \quad B^{n} u=\sum_{k=1}^{n} T(\Theta(n, k)) B u(k-1)
$$

and

$$
L_{B^{n}}: Z \longrightarrow Z, \quad L_{B^{n}}=B^{n} B^{n *}
$$

Now we considere the following family of finite dimensional systems:

$$
\left\{\begin{array}{l}
P_{j} z(n+1)=e^{A_{j} n} P_{j} z(n)+P_{j} B(n) u(n), z \in Z \tag{4.28}\\
P_{j} z(0)=P_{j} z_{0}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
y(n+1)=e^{A_{j} n} y(n)+B_{j} u(n), y \in R\left(P_{j}\right) \tag{4.29}\\
y(0)=y_{0} \in R\left(P_{j}\right)
\end{array}\right.
$$

where $R\left(P_{j}\right)=\operatorname{Range}\left(P_{j}\right), B_{j}=P_{j} B$.
For (4.29) we have:

$$
B_{j}^{n} u=\sum_{k=1}^{n} e^{A_{j} \Theta(n, k)} B_{j} u(k-1)=P_{j} B^{n} u
$$

and $L_{B_{j}^{n}}=B_{j}^{n} B_{j}^{n *}$.
The verification that $P_{n} B B^{*}=B B^{*} P_{n}$ and $T^{*}(t)=T(-t)$ is trivial.
Then

$$
\begin{aligned}
L_{B^{n}} z & =\sum_{k=1}^{n} T(\Theta(n, k)) B B^{*} T^{*}(\Theta(n, k)) z \\
& =\sum_{k=1}^{n} \sum_{j=1}^{\infty} e^{A_{j} \Theta(n, k)} P_{j} B B^{*} \sum_{i=1}^{\infty} e^{-A_{j} \Theta(n, k)} P_{j} z \\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{n} e^{A_{j} \Theta(n, k)} B B^{*} e^{-A_{j} \Theta(n, k)} P_{j} z \\
& =\sum_{j=1}^{\infty} L_{B_{j}^{n}} P_{j} z .
\end{aligned}
$$

Hence, $L_{B^{n}}=\sum_{j=1}^{\infty} L_{B_{j}^{n}}$.
In consequence, to show that (4.27) is exactly controllable we shall prove that (4.29) is exactly controllable, i.e., we shall prove that $L_{B_{j}^{n}}$ satisface Theorem 2.1 (b), i.e., the exist $\gamma>0$ such that $\left\langle L_{B_{j}^{n}} y, y\right\rangle \geq \gamma\|y\|^{2} . . .$.

References

[1] R.F. CURTAIN and A.J. PRITCHARD, "Infinite Dimensional Linear Systems", Lecture Notes in Control and Information Sciences, Vol. 8. Springer Verlag, Berlin (1978).
[2] R.F. CURTAIN and H.J. ZWART, "An Introduction to Infinite Dimensional Linear Systems Theory", Tex in Applied Mathematics, Vol. 21. Springer Verlag, New York (1995).
[3] V. LAKSHMIKANTHAM and D. TRIGIANTE, Theory of Difference Equations: Numerical Methods and Applications, Mathematics in Science and Engineering, Vol. 181.
[4] H. LEIVA, "A Lemma on C_{0}-Semigroups and Applications PDEs Systems" Quaestions Mathematicae, Vol. 26, pp. 247-265 (2003).
[5] H. LEIVA and H. ZAMBRANO "Rank condition for the controllability of a linear timevarying system" International Journal of Control, Vol. 72, 920-931(1999)
[6] H. LEIVA, "Exact controllability of the suspension bridge model proposed by Lazer and McKenna", J. Math. Anal. Appl. 309 (2005), 404-419.
[7] L. LI and X. ZHANG, "Exact controllability for semilinear wave equations" J. Math. Anal. Appl., Vol. 250, pp. 589-597 (1991).
[8] W. LIU and G.H. WILLIAMS, "Exact internal controllability for the semilinear heat equation" J. Math. Analysis and Appl. 211, 258-272(19997).
[9] K. NAITO, "On controllability for a nonlinear volterra equation" Nonlinear Analysis,Theory,Methods and Applications, Vol. 18,Nž1 pp. 99-108(1992).
[10] K. NAITO, "Controllability of semilinear control systems dominated by the linear part", SIAM J. CONTROL OPTIM. Vol. 25, N0. 3,(1987)
[11] A.L. SASU, "Stabilizability and controllability for systemms of difference equations", Journal of Difference Equations and Applications, Vol. 12, Nž 8, August 2006, 821-826.
[12] L. DE TERESA, "Approximate controllabity of a semilinear heat equation in \mathbb{R}^{N} ", SIAM J. CONTROL OPTIM. Vol. 36, N0. 6, pp. 2118-2147,(1998)
[13] X. ZHANG, "A remark on null exact controllability of the heat equation", SIAM J. CONTROL OPTIM. Vol. 40, N0. 1, pp. 39-53(2001)
[14] E. ZUAZUA, "Exact controllability for semilinear wave equation" J. Math. pures et appl., 69, pp. 1-31 (1990).
[15] E. ZUAZUA, "Exact controllability for semilinear wave equations in one space dimension" Ann. Inst. Henri Poncare Anal. Non Lineaire, Vol. 10, N0 1, pp. 109-129,(1993)

HUGO LEIVA

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes
Mérida 5101, Venezuela
e-mail: hleiva@ula.ve

JAHNETT UZCÁTEGUI
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes
Mérida 5101, Venezuela
e-mail: jahnettu@ula.ve

