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Controllability of a Generalized Damped Wave Equation

Hugo Leiva

Abstract

In this paper we give a necessary and sufficient algebraic condition for the controllability of
the following generalized damped wave equation on a Hilbert space X

.. - diur + - + dp Uy, if a>0

w+nA u)—&-vA'gu;—{u(t)7 i o=,

wheret > 0,7 > 0,7 > 0,3 > 0and d; € X; the scalar control functions u; € L%(0,t1; IR); the
distributed control u € L?(0,#1; X) and A : D(A) C X — X is a positive defined self-adjoint
unbounded linear operator in X with compact resolvent. The equation @ +nA%w+~yAPw = 0
can be written as a first order system in the space D(Aﬁ/ 2) x X with corresponding linear
operator A. Then, we prove the following statements: I) A generates a strongly continuous
semigroup {7'(t)}¢>0 such that for some positive constants M (n,~) and p we have || T'(t)]| <
M(n,y)e #t, t>0. II) If 2 > 3, then {T'(¢)};+>0 is analytic in the space D(A%) x X. III)
If 2o > > « or 2a < 3, the system is approximatelly controllable on [0,¢]. IV) If 2a < g,
then {T'(¢)}+>0 is not analytic. V) If a = 0, the system is exactly controllable on [0,%]. VI)
If « > B > 0, the question about the controllability of this system is opened.
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1 Introduction

In this paper we give a necessary and sufficient algebraic condition for both, approximate and

exact controllability for the following generalized damped wave equation on a Hilbert space X

zb+nAaw+’yAﬁw:dlul—i—"-—i—dmum, t>0, (1.1)

W+ i + yAPw = u(t) t>0, (1.2)

¥>0,7>0,a>0,6>0

di€ X, u; € L*(0,t;;R); i=1,2,....,m

u € L2(0,t1; X)

A: D(A) C X — X is a positive defined self-adjoint unbounded linear operator in X with

compact resolvent.

0 1
A= a0 ] (1.3

W+ nA% 4+ yAPw =0

on the space
D(A?) x X.

I) A generates a strongly continuous semigroup {T'(t)};>0 on D(A%/?) x X such that
IT()] < M, y)er, ¢ >0.
II) If 2ac > 3, then {T'(t)}+>0 is analytic on the space D(A%) x X.
III) If 2a > B > « or 2a < 3 the system is approximatelly controllable on [0, ¢1].
IV) If 2a < 3, then {T'(t) }+>0 is not analytic
V) If a = 0, the system is exactly controllable on [0, ¢;].
VI) If a > (3 > 0, the question about the controllability of this system is opened.

Rank | P BiA; P BiA?PB: - AT ' PiB| = 27, (1.4)




Controllability of a Generalized Damped Wave Equation 39

where B : R™ — %(Q, IR?)

0 1

3 P, 5 >1,
—7A; TnAY

BU =bUp + -+ - 4+ by, Upy, bi:[d']’ Aj:

The same algebraic condition (1.4) hols for the exact controllablity of the system (1.2) if we
change the operators B and A; by:

0 0 1
(2] e[
Ix _'YA]‘ -1

Also, condition (1.4) is equivalent that the operator W;(t1) : R(P;) — R(P;) given by

t1 .
Wj(tl):/ eiAstB*e_Ades, (1.5)
0
is invertible.
o * ik - —1
u(t) = BT (~) 3 Wy () P(T(~1)z1 — =) (16)
j=1

The uncontrolled equation has been studied by S. CHEN AND R. TRIGGIANTI in [3] 1998.
W+ Bw+ Aw =0 on X, (1.7)

B is positive self-adjoint operator with dense domain, and the following hypothesis holds:

There exists 0 < r < 1 and 0 < p1, p2 < oo such that
plAT S B S pgAT. (18)
The operator

(1.9)

-3 5]

—-A —-B
which corresponds to the equation w + Bw 4+ Aw = 0 written as a first order system in the space
D(AY?) x X, generates a strongly continuous semigroup {T'(t)};>o such that
DT <1, =0
ii) If 2a > 1, then {T'(¢) }+>0 is analytic.
iii) If 2a < 1, then {T(t) }+>0 is not analytic.

Results II) and IV) follow from this result if 3 > «. But, if § < « condition (1.8) is not
sastified.
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In [10] (1998) I. Lasiecka and R. Triggiani study the exact null controllability of the following

secon order equation

W+ pATw + Aw = u(t), p >0, <r<l1, t>0, (1.10)

DN |

u € L*(0,t1; X). If 3 <r <1, , then the system (1.10) is exactly null controllable on [0,#], but
if =1, the system (1.10) is not exactly null controllable.

A particular case of equation (1.1) is the following Vibration of the Spring Equation

wy — 2BAw; + A%w = ajug + -+ + apmim, t>0, in R, xQ (1.11)

w=Aw=0, on Ry x . (1.12)

Finally, our method can be applied to the following generalized thermoelastic plate equation

W+ hAYD + APw 4+ vA%0 = aqut + - + amt, t >0,
0 —nA*0 + 10 —vA“w = diur + -+ dpty,, t>0,

Some notations for our work can be found in [11], [12], [8] and [13].

2 The Uncontrolled System

a) for all z € D(A) we have

o0 Tn o]
Az = M <200k > Gng = Y AnEnt, (2.13)
n=1 k=1 n=1
where < -, - > is the inner product in X and
Tn
Bor =Y <&,¢nk > bni (2.14)
k=1

So, {E,} is a family of complete orthogonal projections in X and

r=> 1 Ex, xe€X.

b) the fraction power space X" are given by:

X" =D(A") ={z € X : Y ()| Enz|® < o0}, 7 >0,
n=1
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o0 1/2
[zl = | A" ]| = {Z/\irllEnxllz} , vEX,

n=1

A"z =Y A Ena. (2.15)
n=1

Also, for r > 0 we define Z,, = X" x X, which is a Hilbert Space with the norm and inner product

]

Now, making the following change of variable w’ = v, we can write the second order equation (1.1)

given by:

= JlullZ + Jv]*, <w,v>=<A"w,A"v >+ < w,v>.

2
Z,
as first order system of ordinary differential equations in the Hilbert space Z3,9 = D(Aﬁ/ HxX =
XB/2 % X as follows:

Z=Az+Bu z€Zgp, t>0, (2.16)
where the control u € L%(0,t1; IR™) and

z_[“’v] BU = byU; + -+ + bUp, bi—[o ] A—[ 0 IX], (2.17)

is an unbounded linear operator with domain D(A) = D(A%) x D(A%).

In same way the equation (1.2) can be written as
7 = Az + Bu z € Zgjy, t=>0, (2.18)
where the control u € L?(0,t1; X) and
3 P ) R
Through this work we will assume the following condition:
n? # 47)\§_2O‘, n=12....

Theorem 2.1 The operator A given by (2.17), is the infinitesimal generator of an analytic semi-

group {T(t)},;>q given by

o
T(t)z=Y e Puz, 2€Zgs, t>0 (2.20)

n=1
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where {Pn}nzo is a complete family of orthogonal projections in the Hilbert space Zg/o given by

P, =diag[En, E,) ,n>1, (2.21)
and
= = n . .
n nd n, n 7)\& 77)\% ’ -

This semigroup decays exponentially to zero. In fact, we have the following estimate

IT@I < M(p,y)e, t>0, (2.23)
where
B—2a
n+y/m? — 4y An
O\ inf -
W= A{ Tllgl Re 5

and

M) _ o Ve -4y |, o

22 a1 | |2y — dyAP2e | N2 — 4y NI

Moreover,

I) If 2o > 3, then {T'(t) }+>0 is analytic on the space Zy = X x X.
II) If 20 < 3, then {T'(t) }+>0 is not analytic.

Proof Let us compute Az:

0 I w
Az = _—’yAB —nAa}[v]

v
| —vAPw — A }

Ziil nU ]
A M Ew — Y% A B

B i [ E,v }
n—1 _’VAgEnw - n)‘%Env

a i[—SAZ —nlAaHEOn EOnHH

n=1

oo
= Z A, P,z.
n=1
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It is clear that A, P, = P,A,. Now, we need to check condition (4.60) from Lemma 4.1. To
this end, we have to compute the spectrum of the matrix B,,. The characteristic equation of B,
is given by

A2+ nAOA+yAD =0,

and the roots of it are given by

+1/ 2—47)\ﬁ72a
Y = " n=1,2,....

2 i

On the other hand, et = eBr' P, and eP»! is given by:

P2 —A&prt P1 —AY pat 1 —A%pit 1 — A& pat
—F= e n —2 e n ——e n —e n
(Bt _ | A e X3p2p1) T X
2 ,—A%pit 2 ,— A% pat P1="N —Ap1t pP2="n —A%pat ’
S(n)\je n S(n)\je *n e it 4 e

where p; and py are given by:

n+\/n? —4yxn n—\n? —dyxi o N2
T ErSvES
n YAn

P1 = 9 y P2 = 9 s

Now, consider z = (z1,22)" € Zg, such that 2]z, = 1. Then,
oo [e.e]

l2l3e =D MBI <1 and |zlk = Y [1Bz)” < 1.
=1 j=1

Therefore, /|| Ejz1]| < 1, | Bjze <1, j=1,2,....
Then,
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_p2 —/\%mtE 21 —/\%pgtE Py
R A [ e e, B
5 . )\«
S(n)AZ e P E, 21 — S(n)AF e P E, 2
- 2
1 7)\np1 E 7)\ap2t
——— 29 + yar———e P2
+ X5 (p2—p1) © o 2+ X’(p pz& 2
L1770 o= npltE 29 + L2701 o= "pztE n<2
p2—p1 p1—p2
2

[ a(n )E 21 + /(\Q)E 29
c(n )/\nE 21 +d(n)E,z

Z

b
= |la(n)Enz1 + i\z)

Nt b(n
= ZA?HEJ <a(n)Enz1 + )(\a)E"Z?) 2

n

8
Enz2”2ﬁ + [le(n)Ai Enz1 + d(n)EnZQH?X
2

+—2NE< ,XEa+ﬂ)&@wP
8 b(n) 2 s 2
= A |la(n)Enz1 + )\TEnZQH + |le(n)A2 Epz1 + d(n)E, 22|
n
Az 2 2
< (la(m)[+ 53 0(m)))" + (je(m)] + |d(n)])%,
n
where
a(n) = P2 Nty P At
P2 — P P1 — P2
1 (e 1 «@
b(n) = = eMamt g © o Aupat
(p2 — p1) (p1— p2)
c(n) = S(n)e Pt — §(n)e Mnrzt
d(n) = P1L—1 T L p2—1 o Anpat
P2 — p1 P1— P2
2 v
—b(n)| = e
AR N2 — 4y
Then, if we put
+ 4 )\B 2o
p = Aysups Re = i
n>1
M) o)y Ve 4y An %
22 n>1 Vn? — 4y N2 7 n® — 47)\5 2ol 7

we get that
le!]| < M(n,y)e™, t>0 n=1,2,....
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Hence, applying Lemma 4.1 we obtain that A generates a strongly continuous semigroup given

by (2.1). Next, we prove this semigroup decays exponentially to zero. In fact,

)
IT@)=* < > lle Pazl®
n=1

IN

)
D e P Pz
n=1

IN

o0
M?(n,7)e 0> || P2 f?
n=1
= M?*(n,y)e *|z|*.

Therefore,

IT@)]] < M(n,v)e ™, t>0.

Proof of the analyticity:

We have the following situation:

a) Re(p1(n) > 0, Re(pa(n)) >0, n=1,2,...
b) if 2a = 3, then p1(n), p2(n) are constants.
c) if 2a > (3 then

lim Re(pi(n)) =n and lim Re(pa(n)) =0 (2.24)
d) if 2a < 3, then
lim Re(pi(n)) = lim Re(p2(n)) :g and lim Im(p;(n)) = oco. (2.25)

Therefore, for 2a < 3 the operator —A can not be sectorial which implies that the semigroup

{T'(t) }+>0 can never be analytic.

Claim 1. If 2o > 3, then A generates a semigroup {7'(t)}+>0 on the space Z, = X* x X
given by (2.20). In fact, we can apply Lemma 4.1 to prove this claim. To this end we shall find

a uniform bound for [le**||(yay x).

Now, consider z = (21, 22)7 € Z, such that ||z| xexx = 1. Then,

o0 o0
iz = YN IE =P < 1 and [lz2)} = Y [I1Ej=|* < 1.
=1 =1
Therefore, \}||Ejz1|| <1, |[[Ejzel <1, j=1,2,..., and using the foregoing notation we obtain

the following estimate
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a(n)Enz + @Enzg

8
c(n)A\g Epz1 + d(n)Epzo

b(n 8
= Jla(n)Epz1 + ;Q)En22|’i + ||e(n)A2 Epzy + d(n)Enz||%

> b(n
— Z)\JZO‘HE]- (a(n)Enzl + ( )En22> H2

An —
le®*2]%axx = H[

Za

Aoz
j=1 "

e 8
+ 2N@<d@MEmﬁ%mﬂm»W
j=1

b(n)
o

n

B
= Nla(n)Enz1 + <57 Bnzol” + [[e(n)AZ Enz1 + d(n) Enzolf?
< (la(n)| + [b())* + A2 Enz1llle(n)] + [d(n)])?,
Now, since a > g, then X c XP/2 is a continuous inclusion. Therefore, there exists a constant
R, > 0 such that
Izllg/2 < Ragllzlla, 2 € X%

Hence,
le 2] %ax < (la()] + [b(n)])* + (le(n)|Rag + [d(n)])*.
Then, there exists a constant M (n,~) > 0 such that
||6AntH SM(”77)67Mt7 tZO n = ]‘727"'7
and
1T < M(n,7)e™, t=0.

To prove the analyticity of {T'(¢)};>0 on X x X, we apply Lemma 4.2 to prove that —A is a
sectorial operator. From the first part of the proof we know that the spectrum of A, : R(P,) —
R(P,), n=1,2,... is given by

+ 2 _ 4y )\g—Qa
ody) — e [V Y

n 2
ey =i
= e 5

Then,
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Since 2« > 3, then there exists a bounded set S in the complex plane such that Re(S) > 0 and

—)\iaa(An) cS, n=12,....

Then, Lemma 4.2 can be applied. 0
Remark 2.1 The analyticity of the operator —A given by the foregoing Theorem, can be proved
directly by constracting a sector where it is analytic. This constraction gives us some ideas to

prove the exact controllability of the equation (2.18) and for that and others purpose we will give
this other poof.

Indeed, consider the following 2 X 2 matrices

oot ol st 7] e

(n) oa(n) " oa(n) —o1(n) | —o1(n) 1
where
o1(n) = =Xypi(n) and o1(n) = —A0p2(n),n=1,2,.... (2.27)
Then,
By=K, J,Knn=123,..., (2.28)
with

Next, we define the following two linear bounded operators
Kp: XxX—-X"%xX, K;': X*%xX - X xX, (2.29)

as follows K,, = F:Pn and K, = F;an.

Let us find bounds for |K; || and |[Ky||. Consider z = (21,22)7 € Z = X® x X, such that
lzlz = 1. Then,

oo o0
lzullZ =Y AFIEBz > <1 and |zal% =) [Ezl® < 1.
j=1 j=1

Therefore, A{||Ejzil| <1, ||Ejzel <1, j=1,2,....
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Then,
Klef2,y = — L [o2<n>Enzl—Enz2] ’
RO T A — i [ ou(n) Bz + Bz [y
1
= Nl {lloa(n)Epz1 — Epza|® + |lo1(n) Enz1 + Epzo*}
1 2
< S o LI Bzi 4 Bz}
1 2
3o = U OIN Bzt + 1 Bzal)
=L eI+ 1+ (pr(m)] + 1)
- 2= pi?
<
Therefore,

— F1 7y
1K e xx xxx) < ()\a ).
n

(2.30)

Now, we will find a bound for || Kyl (xxx,xexx)- To this end we consider z = (z1,22)T €
7Z = X x X, such that ||z||z = 1. Then,

(e 9]

o0
1 =D APIE =P <1 and 2]k =) IEjz|® <1.
j=1 j=1

Therefore, ||E;z1]| <1, ||Ejze| <1, j=1,2,....

Then,
2
HK ZHQ _ |: Enz1 + Enzo ]
XX o1(n)Enz1 + 02(n)Enze ||| yayy
= Nl Enz1 + Enzal* + lo1(n) Enzi + 02(n) Epzo|?
< A2 {4 ()] + ()
< T(n, A
Therefore,

||Kn|\L(XxX,XaxX) <Ta(n,v)Ay. (2.31)

Now, to prove that A is sectorial, we first prove that the operator
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A = —A + € is sectorial for € > 0. With this purpose, we consider the 2 X 2 matrices

a 10 a
= (g +9 | |+ Ogmm 1 |
= (Anpi(n) +€) a1+ (Ayp2(n) + €) go,
and the operators Jpe = JnePp @ Z — Zg

Let Sy be the following sector:

Se={AeC:0<|arg(\)| <m, \#0},

Jne = —Jn+e=diag[X;pi(n) + € X p2(n) + €]

0 0
0 1

where
T
sup{|arg(p1(n))|} <0 < 5.
n>1
If A € Sy, then X is distinct than A\ pi(n),i = 1,2. Therefore,
_ -1 2 1 2 1 2
[ (A="Tne) yll” = lqiyll® + g2y l”-
( ) (A — (Agpr(n) +€))? (A — (Agpa(n) + €))?

Then, if we put

2]'

I\l . }
N =su TAESy, n>1;i=1,2. 5,
p{u—umn)m ’
we obtain
T L1 2 N\’ 2
1= 012 < () llanwl?+ e
Hence,
— N
I ()\—J ) | < |)\| A€ Sp.
Now, if X\ € Sy, then
RAA)z = D (A+A,—€) ' Pz
n=1

— Z KyA+J,—e) 'K 'P,2

n=1

= ZK (N = Jne)” 1Pz
Then,

IR Az? < D IEAlP I P A = Tne)
n=1

() () v

-1
121 Pazl?

(2.32)
(2.33)

(2.34)

(2.35)
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Therefore,

R
R, A < o A€ Sp.

Finally, if we define the following sector
So A€ C:0 <|argA+¢€)| <, A# —e},

then,

R
A — <— A .
RO A < (75 A€ S

3 The Controlled System

Now, we shall give the definition of controllability in terms of systems (2.16)-(2.18). To this end,
forall zo € Z, (r=a or r= g) the equation (2.16) or (2.18) has a unique mild solution given
by

2(t) = T(t)20 + /0 "T(t— ) Buls)ds, 0<t<ty. (3.36)

Definition 3.1 (Exact Controllability) We shall say that the system (2.16) (or (2.18) ) is
ezactly controllable on [0,t1], t1 > 0, if for all zo, 21 € Z, there exists a control u € L*(0,t1; IR™)
(oru € L*(0,t1; X) ) such that the solution z(t) of (3.36) corresponding to u, verifies: z(t1) = z1.

Consider the following bounded linear operator
t1
G:L*0,t1;U) — Z,, Gu :/ T(t—s)B(s)u(s)ds, U=R" or U=X. (3.37)
0

Then, the following proposition is a characterization of the exact controllability of the sytem
(2.16).

Proposition 3.1 The system (2.16) (or (2.18) ) is exactly controllable on [0,t1] if and only if,

the operator G is surjective, that is to say
GL*(0,t1;U) = Range(G) = Z,.

Definition 3.2 (Approximate Controllability) We say that (2.16) is approzimately control-
lable in [0,t1] if for all 29,21 € Z, and € > 0, there exists a control u € L*(0,t1; IR™) such that
the solution z(t) given by (3.36) satisfies

2(t1) — 20l < e
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The following theorem can be found in [5] and [6].

Theorem 3.1 (2.16) is approxzimately controllable on [0, t1] iff

B*T*(t)z2 =0, Vte[0,t1], = 2=0. (3.38)

3.1 Results on Approximate Controllability

20> 0F>a or 0<2a<j (3.39)
we will prove the following Theorem.

Theorem 3.2 (2.16) is approximately controllable on [0,t1] iff the finite dimensional systems are

controllable on [0, ]

Yy = A;jPjy+ PjBu, yeR(P)); j=12,...,00. (3.40)
Proposition 3.2 The following statements are equivalent:
(a) system (3.40) is controllable on [0,4],
(b) B Pty =0, vtel0,tr], =y=0,
(¢c) Rank PjBfAijBEA?PjBf---AEWleB} = 2
(d) the operator W;(t1) : R(Pj) — R(P;) given by:

Wj(ty) = /Ot1 e A BB*e 4% ds, (3.41)

is invertible.

Lemma 3.1 Let {aj}j>1 and {B;; : i = 1,2,...,m};j>1 be two sequences of complex numbers

such that: a1 > g > g~ - - .

Then

[o.¢]
Zeajtﬁi,j:(L VtE[O,hL ’L:1727 ,m
7j=1

@',j:O, i=1,2,---,m;j=1,2,---, 00.

Proof of Theorem 3.2- case 2a > (3 > «a. Suppose that each system (3.40) is controllable
in [0,t1]. It is easy to see that

B*:Z,— R", B'z=(<b,z>-,<bpn,z>),
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and

[ee]
T*(t)z = ZeAJ*'tP;z, 2 € Zy, t>0.
j=1
Therefore,
B*T*(t)z = (< by, T (t)z >, -+, < by, T"(t)z >).
Hence, system (2.16) is approximately controllable on [0, ¢1] iff

< b, T*(t)z>=0, Vte[0,t1], i=1,2,---,m, = 2z=0. (3.42)

Now, we shall check condition (3.42):
o0
<b T*(t)z >= Y <bj,ei'Prz>=0, i=12-,m; te[0t].
j=1

Without loss of generality, we can assume that n? — 47)@ Ty 0, which implies that the eigen-
values o1(j) and o2(j) of the 2 x 2 matrix B; given by

/ ) / -2
01(j) = =] , 02(j) = =S n=12,.

2 2

cey

are real and

hm Ul(j) = —0Q,
j—00
-1 _ — _
lim 09(j) = — lim )\?‘(47/\5 2y = “imj — oo)\f “=—00, (B8>a).
J—00 T] J—00 n

Hence,

o1(1) > 01(2)>--->01()) > ...

o2(1) > 09(2) > >02()) >....

Since the eigenvalues of the matrix B; are simple, there exists a complete family of complemen-

taries projections {q1(j), q2(j)} on IR? such that
et = e Wlgy(j) + €Dy ().

Therefore,

eAit = e”l(j)tPLj + 602(j)tp27j‘

where P ; = q5(7)P; = Pjqs(j).
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Hence,

o) o) 2
<bi, T*(t)z >4 = Z < b, e3Pz > 0= Z < bi,Ze”S(j)tP;jz >a
=1 j=1 s=1

co 2

_ e”s(j)t<bi,P;jZ >0=0 i=1,2,---,m; te][0,t].

7j=1s=1
Applying Lemma 3.1, we conclude that

<b, Pliz>a=0 i=1,2,--- ,m; j=1,2,---,00, t€l0t].
Then,

<bi,e'Plz>=0 i=12-,m; j=1,2,---,00, te0,t],
iff

B*eAﬁP;z =0; j=1,2,---,00, t€l0,t].
. . 2 _ .
Since Pf A} = AJP; and (P})* = P, we obtain
(PiB)*e'Prz=0; j=1,2,--,00, tel0t].

From the controllability of the system (3.40), we get that P;‘z =0, j=12,---,00. Since
{PJ* }j>1 is a complete family of orthogonal projections on Z,, we conclude that z = 0.

Conversely, assume that system (2.16) is approximately controllable on [0, 1] and there exists
J such that the system
y' = —\jPjAyy+ PjBu, y€ R(Py),

is not controllable on [0, ¢1]. Then, there exists V; € R(Py) such that
(P;B)*ei'V; =0, te[0,t)] and Vy #0.
Letting z = P7V;, we obtain
B*T*(t)z = (<b,T"(t)z >, -+, < by, T*(t)z >)
= (<b,eiVy > < by, etV >)
= BN, = (PyB)* eV, =0,
which contradicts the assumption. 0

Proof of Theorem 3.2- case 2a < 3 > «a. Suppose that each system (3.40) is controllable
in [0,;]. It is easy to see that

B*:Zgy — IR™, B'z=(<by,z>,,<bp,z>),
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and

o0
T*(t)z = ZeAJ*'tP;z, 2 € Zy, t>0.
j=1
Therefore,
B*T*(t)z = (< by, T*(t)z >, -+, < by, T*(t)z >).
Hence, system (2.16) is approximately controllable on [0, ¢1] iff
< b, T*(t)z >=0, Vte[0,t1], i=1,2,---,m, = 2=0. (3.43)

Now, we shall check condition (3.43):

o0
<bi, T*(t)z >=>  <b,eti'Prz>=0, i=12-,m tel0t].
j=1

Without loss of generality, we can assume that n? — 47)\f 2 < 0, which implies that the eigen-

values o1(j) and o2(j) of the 2 x 2 matrix B; given by

o1(j) =r; +il; and o9(j) =r; —il;

where
2 B—2a
n% — Ay
rj= A0 and ;= \? 5 I i=1,2,
Hence,
T >"r9 >13 > — OQ.

Since the eigenvalues of the matrix B; are simple, there exists a complete family of complemen-

taries projections {q1(j), ¢2(j)} on IR? such that
ePit = e Wlgy (5) + e Digy(5).

Therefore,

ATt — erjt—z‘ljtPLj + eTjt+iljtP27j‘
where P ; = q5(j)P; = Pjqs(j).

Hence,

o0 o0
Art t—iljt il it
< b, T*(t)z >0 = g < by, eI Pz >0= g < by, € TTIPT 2 4 el Tl Py iz >q
=1 j=1

[e.o]
= > et {e*“ﬂ < by, Pfyz > +eit < b;, Py 2 >} =0,
j=1

= z:1,2,,m, tE[O,tl]
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Applying Lemma 3.1, we conclude that

et < bi, Py jz > +ellit < bi, Pyj2>=0 i=1,2,--- ,m; j=1,2,---,00, t€l0,t1].

1t !

Since the two funcitions e?i?, e=%i are linearly independent we obtain that

< by, Py jz >=<b;, P ;2 >=0
Then,
<bi,ei'Plz>=0 i=1,2,-,m; j=1,2,---,00, t€0,t].
From here, the proof follows in the same way as the foregoing case.
0
Theorem 3.3 If < d;, ¢ ># 0, j = 1,2,...,00, i =1,2,...,m, k= 1,2,...,7;, then

system (2.16) is approzimately controllable on [0,4].

Proof From the foregoing Theorem, it is enough to prove the controllability of the family of finite
dimensional system (3.40). In order to check the algebraic condition (1.4) we have to find the

matrix representation of the operators:
A;Pj : R(Pj) = R(P)), P;jB:IR™ — R(F)).

To this end, we shall consider the canonical base B = {e1, ea,...,€n, } in IR™ and the following
base in R(F;)
Bj ={¢j, 05 :1=1,2,...,7},

¢}l:|:¢él:|7 ¢;l:|:¢(jl:|7

where

and for all # € X we have that

i
EjZL' = Z < ZC,(}Sng > (Z)j,k'
k=1

Therefore,
and

Vi
2
PjBel = Z < dl, ¢j,k > ¢j,k'
k=1
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Therefore,
[0 0 0 1 0 0

0 0 0 1 0

0 0 cee e 0 0 0 cee e 1
ABi=1 0 0o .. 0 - 0 ... 0 (3.44)

0 =W . .0 A\ .. .0

0 0 —\] 0 0 —\7 |
ie.,
O'ij’y] I’YjX’YJ
AjPj=| ... oo ) (3.45)
¢
_'Y)‘] Ly %y, _77)‘1 Iy, % 2y, %27
and
i 0 o ... 0 i
0 o ... 0
0 o ... 0
P.B = 3.46
7 < d1,¢j1 > < dg, d)jl > ... < dm7¢j1 > ( )
< dl,gbjz > <d, qug > ... < dm,qbﬂ >
| <d1,04y; > <d2,Qjy; > ... < dm, Qjy; > | 2y X

From here we can check the algebraic condition given by proposition 3.1 part (c). o

As a special case we can consider the scalar strongly damped wave equation with a single

control
wyy + (=) 2w, + y(=A)w = b(z)u, t>0, 0<z<1, (3.47)
w(t,1) =w(t,0)=0, t>0, 0<x<1, '
In this case \j = — j2m? and ¢j(x) = sinjmz. Therefore, the equation (3.47) is approximately

controllable iff

Rank[P; B'A; P; B] = Rank . <héi> =2, j=1,2
ank|P;B:A;P;B] = Ran by > —77)\;/2<b,¢>j> =2, j=1,2,...,00.

Which is equivalent to:

1
<b,¢j>:/ b(x)sinjraxdr #0, j=1,2,...,00.
0
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3.2 Results on Exact Controllability

Now, we are ready to formulate the main result about exact controllability of the system (2.18).

Theorem 3.4 The system (2.18) is exactly controllable on [0,1;].

Moreover, the control u € L?(0,t1; X) steering an initial state 2o to a final state z1 in time

t1 > 0 is given by the following formula:

u(t) = B*T* (=) > W; (1) P(T(~t1)z1 — 20). (3.48)
j=1
Proof .
G:L*0,t1;X) — Zgs9, Gu= /Otl T(—s)B(s)u(s)ds. (3.49)

GL?(0,t1; X) = Range(G) = Zgo?.

First, we shall prove that each of the following finite dimensional systems is controllable on

[Ovtl]
Yy = A;jPjy+ PjBu, yeR(P;); j=1,2,...,00. (3.50)
B*Prelity =0, Vte[0,t1], =y=07.

In this case the operators A; = B;P; and A are given by

0 1 A—{ 0 IX}
—\ g —y APl |

and the eigenvalues o1(j), 02(j) of the matrix B; are given by

B; =

01(j) = —c+ilj, o02(j) = —c—ily,

1
c:g and [; = 5\/47>\]ﬂ.—772.

where,

Therefore, A7 = B} P; with

B =

0o -1
W\ = |
and

1
eBit = ¢ {cos Litl + R (Bj + CI)}
J

. L/ . sinl;t
_ cosljt + 5728111 It TJ |
—yS(§)A; “sinljt  cosljt — % sinlj;t
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* 1
ijt — et {cOS lth + 7 (B;k + CI)}
J

) N T, __sinljt
_ ot [ cosljt + 2 sin l;t -

75(]’))\?/2 sinljt  cosl;t — %sin it ] ’

0 . « |00
B_[Ix]’ B*=[0,Ix] and BB —[0 IX:|.

Now, let y = (y1,92)7 € R(P;) such that
B*Pretily =0, vt e [0,t).

Then,
et VS(j))\f/z sin [ty B [ 0
(cos It — % sin ljt> Y2

which implies that y = 0.

From Proposition 3.2 the operator Wj(t1) : R(P;) — R(FP;) given by:
t1 . t1 . o
W;(t1) :/ e A BB* e Nds = Pj/ e PisBBre PitdsPy = P,W,(t1)P;
0 0

is invertible.
Since
et < M(n,7)et, [le™ 5| < M(n,7)e,
le= 4" BB* e~ " || < M?(n, )| BB*[|e*,
then

W)l < M?(n,)IBB*[|e*™ < L(n,v), j=1,2,....

Now, we shall prove that the following family of linear operators
_ -1
W) =W, ()P 2 Zgs — Zg)2

is bounded and ||W;1(t1)\| is uniformly bounded. To this end we shall compute explicity the

matrix Wj_l(tl). From the above formulas we obtain that

GBit _ et { _6158) fc)gg } Bt et [ a(j)  —b(j) ] ’
where

a(j) = coslt + isinljt‘, b(j) = ——,
21, I
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c(j) = 'yS(j))\?/Q sinljt, d(j) = cosl;t — T in lt,

21;
and
5(j) =
Then »
e BisBB* e Pi® = b(])'c(]).)\]&)n b(g)d(])
—d(j)c(H)N;T  d*(G)I
Therefore,
SGNE ,
Wit = - Jlj]ﬁ/’fzn(y) 1 k12(7) 7
_’YS(]))‘] k?l(]) kgg(j)
where

t1
ki1(j) = /0 ?° sin? ;sds

t1 : 2lA
ki2(j) = —/0 e%es [sinljscosljs—n&;b]s} ds
J
t1 : 21,
koi1(y) = /0 e2cs [Sinljscosljs—W} ds
J

t1 nsinl;s 2
koa(3) = /0 e%es [cosljs— 2lv] ] ds
J

The determinant A(j) of the matrix W (¢;) is given by

¥S(G)N?

A(j) = lij (k11 (5)k22(5) — K12(5)k21(J)]

1\ B/2 . 2
S(HN t t L
= %{ / e** sin? 1;sds / e’ |cosljs — TSGR ds
lj 0 0 21

t1 : 2[4 2
— </ e%es {sinljs cosljs — T]SIHJS] ds) 1.
0 2L

Passing to the limit when j goes to oo we obtain that

) L (62ct1 o 1)(1 o zectl + 620t1)
Jlingo A(j) = 24,3 )

Therefore, there exist constants R, Re > 0 such that

0< Ry <|A(J)| < Re, 7=1,2,3,...
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Hence,
. 1 k22 (7) —k12())
W () = = 8/2 75(3‘);5/2
A@7) VSN k1 (G)  ——kn(j)
B bii(j)  bi2(d)
bar (AT baa(i) |
where by, 1 (7), n=1,2;m =1,2;j =1,2,... are bounded. From here using the same compu-

tation as in Theorem 2.1 we can prove the existence of constant La(n, ) such that
W )|z, < La(n,y), G=1,2,....
Now, we define the following linear and bounded operators
W (t1) : Zgjo — Zgra, W) : Zgja — Zga,
o0 [e.e]
W(t)z=> Wit)Pz, Wlt)z=Y W;'(t1)Pz

j=1 j=1

Therefore, W (t1)W ~1(t1)z = z and

W(t1)z = /Otl T(—s)BB*T*(—s)zds.

Finally, we will show that given z € Z/, there exists a control u € L?(0,t1; X) such that Gu = 2.

In fact, let u be the following control
u(t) = B*T* (=)W Yt1)z, te€[0,t1].

Then,

t1 t1

Gu = / T(—s)Bu(s)ds = / T(—8)BB*T*(—s)W L(t1)2ds
0 0
t1
= (/ T(—s)BB*T*(—s)ds> Wtz = W(t)W )z = 2.

0

Then, the control steering an initial state zg to a final state z; in time ¢; > 0 is given by

u(t) = B*T*(—t)W L (t1)(T(—t1) 21 — 20) = B*T*(—t) Z W (1) Pj(T(—t1)z1 — 20)-

J=1
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4 Appendix: Some Results About Cjy-Semigroups

In this section we prove a lemma that characterizes a very large class of Cy-semigroup appearing
in many systems of partial differential equations, like reaction diffusion systems, second order
systems wih dissipation, thermoelastic plate equations, beam equations, damped vibration of the
string and others systems of partial differential equations. These first Lemma can be found in H.
Leiva [14].

Definition 4.1 A family {T'(¢)}+>0 of bounded linear operators mapping the Banach space Z in
to Z is called a Cy-semigroup if the following three conditions are satisfied:

(1) T(t+s)=T(t)T(s), t,s>0;

(ii) T(0) = I (I is the identity operator in Z);

(iii) for each z € Z, we have that
lim ||T'(h)z — z|| = 0.
hl o 1T(h)z — =]

Definition 4.2 (The infinitesimal generator) Let {T'(t)}+>0 be a Cp-semigroup in Z. Then the
operator A : D(A) C Z — Z defined by the limit

T(h)z — =z

= i D(A 4.51
Az = lim ————, z € D(4), (4.51)
where
B L T(h)z — z )
D(A)={z€ Z: hli%lJr - exists} (4.52)

is called the infinitesimal generator or simply the generator of the semigroup {7'(t)}+>o.

The following theorem characterizes the fundamental properties of the infinitesimal generator of

a Cp-semigroup.

Theorem 4.1 Let {T'(t)}+>0 be a Co-semigroup in Z and A its infinitesimal generator with
domain D(A). Then
(a) D(A) is a linear subspace in Z and A on D(A) is a linear operator;

(b) if z € D(A), then T(t)z € D(A), t >0 is differentiable in t and

ST(1)z = AT(1)z =T(1) Az, +20; (4.53)
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(c)if z € D(A), then
(4.54)

t
T(t)z—T(s)z = / T(u)Azdu, t,s>0;

(d) the linear subspace D(A) is dense in Z, and A on D(A) is a closed operator.

Theorem 4.2 Let {T(t)}+>0 be a Co-semigroup in Z and A its infinitesimal generator with

domain D(A). Then the Cauchy problem
Z(t) = Az(t), t>0
{ 2(0) = 20, z0€ D(A) (455)
has the unique solution
z(t) =T(t)zo (4.56)
Definition 4.3 (Analytic semigroup) A Cp-semigroup {7(t) }+>0 on Z is called analytic if for all
z € Z the function t — T'(t)z € D(.A) is real analytic on 0 < ¢t < oo and
d
ﬁT(t)z =AT(t)z=T(t)Az, t>0. (4.57)

Therefore, T'(t)z € D(A) for t > 0 and z € Z.
Lemma 4.1 Let Z be a separable Hilbert space and {Ap}n>1, {Pn}tn>1 two families of bounded

linear operators in Z with { Py, }n>1 being a complete family of orthogonal projections such that
(4.58)

AnP, = PyA,, n=1,2.3,...

Define the following family of linear operators
T(t)z =Y e Pz, t>0. (4.59)
n=1

Then:
(a) T(t) is a linear bounded operator if
||€Ant|| Sg(t)a n=123,... (460)

for some continuous real-valued function g(t).
(b) under the condition (4.60) {T'(t)}+>0 is a Co-semigroup in the Hilbert space Z whose infini-

tesimal generator A is given by
(4.61)

Az = ZAnPnz, z € D(A)
n=1
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with

D(A)={z€Z:) [[AnPuz|® < o0}

n=1

(c) the spectrum o(A) of A is given by

o(A) = | o(dn),

where A,, = A, P,.

Proof . (a) Since A, P, = P,A,, then for all z € Z, {eA”tPnz},?f:l

vectors in Z. Therefore,

IT(t)=]* = ZH@MPZII2 CIOIE D

So,
1T(t)=]l < g(®)]|=]]-
(b) we first check condition (i) from definition (4.1)

[e.9]

T(HT(s)z = > e™'PT(s)z

(e 9] (e 9]
= E et ( E eAms P, 2)
n=1 m=1

(4.62)

(4.63)

is an orthogonal family of

00
- Z eI P,z = T(t+ s)z.
n=1

Condition (ii) from definition (4.1) follows from the completness of the family {P,},>1. That is:

2= Pz, z€Z.

Let us check condition (iii) of definition (4.1).

oo
Ttz = 21> < Dl = 17| Pozlf?

o0

N

Anp A

= D et =T IPzlP+ D le
n=1

n=N-+1

From (4.60) there exists a continuous function k(¢) such that

"= I Pae]?

o0

N
IT#)z =27 < sup le™ = T2 [Pzl + k(&) Y [Pozl?
n=1

n=1,2,...,

n=N-+1
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Given € > 0 we can find N large enough such that

o0

Bt S 1Pzl < e

n=N+1
for t € [0,6], 0 > 0. On the other hand, lim, o+ sup,_; 5 n |eAnt — I = 0.
Hence, lim; o+ ||T(t)z —z|| =0.

Let A be the infinitesimal generator of this semigroup. Then from definition 4.2, we have for

all z € D(A)
_ i Apt _
Az = lim M = lim ZuPnz.

t—0t t t—0t =1 t
Therefore,
o S )
P,Az = P, <tlir(€1+ 2 anz
n=1
(et 1)
= lim —%*P,z=A,,P,z.
t—0+
Hence,
o [o.¢]
Az =) PoAz =) APz,
n=1 n=1
and

D(A) C{z€ Z: ) [AnPuz|? < oo},

n=1
Now, suppose z € {z € Z : D 5o [[AxPez|> < oo}. Then Y72 [|AxPrz||? < oo and y =
22021 AkPkZ € Z.

Next, if we put z, = > ._; Piz, then z, € D(A) and Az, = ,_, ArPxz.

Hence, lim,, .~ 2z, = 2z and lim,_. Az, = y, and since A is a closed linear operator we get

that z € D(A) and Az = y.

Proof of (c). It is equivalent to prove the following
p(A) = () p(An).
n=1

It is clear that (7", p(A4,) C p(A). We shall prove that p(A) C 02 p(A4,). In fact, let A be in
p(A). Then (A — A)~1: Z — D(A) is a bounded linear operator. We need to prove that

A=A, R(Py) — R(Py)
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exists and is bounded for m > 1. Suppose that (A — A4,,) ' P,z = 0. Then

A=A)Ppz = Y (A= Ay)PPpz
n=1
(A= Ap) Pz = (A= Ay) Pz = 0.

Which implies that, P,z = 0. So, (A — A,,) is one to one.

Now, given y in R(P,,) we want to solve the equation (A — A,,)w = y. In fact, since A € p(A)
there exists z € Z such that

[e.e]
A=A)z=> (A—A)Pz=1y.
n=1
Then, applying P,, to the both side of this equation we obtain
PoA=Az=\N—A)Ppz=(\—A,)Pnz = Ppy =y.

Therefore, (A — Ay,) : R(Py,) — R(P,,) is a bijection, and since R(P,,) is a closed, it is a Banach
space. So, we can invoke the Open Mapping Theorem to coclude that (A—A4,,) : R(P) — R(Pn)

exists and is a bounded linear operator. Hence, A € p(A,,) for all m > 1. We have proved that

p(A) C () p(An) = ] o(4n) Co(A).
n=1

n=1
O

Lemma 4.2 Suppose the conditions of Lemma 4.1 holds and S is a bounded subset of C' with
Re(S) > 0 such that

1
—)\—U(An)CS, A >0 for n=1,2,...,

Then, the operator A given by (4.61) generates an analytic Cy-semigroup.

Proof If we put D,, = —)\%An, then A,, = =\, D,,, 0(D,,) C S and the operator A can be written

as follows

—Az = "ADyPnz, z€ D(A)

n=1
From Theorem 3.2 it is enough to prove the operator —A is sectorial. In fact, let 6 € (0,7/2)
such that for any A € o(S) we have that |argA| < 0.

We shall prove the sector

Sp={AeC:0<|arg\ <m, X#O0}
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is in the resolvent set of —A and there exists a constant M such that

M
IO+ A7 < o

A E Sy. 4.64

Since A € Sy., then % is not in o(D,,) for all n > 1 and the operator A — A\, D,, is invertible.

Moreover, we shall prove the existence of constant M > 0 such that

M
1A = AnDn)7H| <

=1,2,....
A’
In fact, for such A\ we have the following estimate
RN, Dn)|| = II(/\—D )" 1H =A== (Dy = DA= D)7}
< H {1- D=0
1 1Dn = I)1 7
< 1-—
- |A=1] A —1]
_ CUDl)
Al

if |A| is sufficiently large.

On the other hand, we have that

1Dyl = \/T(DnD;kl) = \/sup{A AN€o(D,Di)} <K, n=1,2,....

where 7(D,,D}) denotes the spectral radius of D, D). From here, we obtain the existence of M
such that

M
I(A = D)1 < A€ Sp, n=1.

[A]
Hence,
1 A
A=XNDn)7H = —|I(=-D,)""
I = ol -
1 M M
< ———=_——_)\ES >1

Now, we consider the equation
M+ Az=y, z€ D(A), yeZ

If y =377, Pyy, then the foregoing equation is equivalent to

i()\ — MDp)Ppz = i Py
n=1 n=1
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ie.,

A= MDp)Ppz =Py < Poz=(\—\Dy) Py, n=1,2,...

Therefore, z = > °° | (A=A, Dy,) "1 P,y is well defined and (A+.4) ! is a bounded linear operator.
So, A is in the resolvent set of —A for all A in the sector Sy, and (4.64) holds. 0

Corollary 4.1 Suppose the conditions of Lemma 4.1 holds and o(A,) = —Mo(Dy), Dy €
L(R(Py)), o(Dy) C S forn = 1,2,..., where S is a bounded subset of C with Re(S) > 0
and

D<M < < - <\, — 0.

Then, the operator A given by (4.61) generates an analytic Cy-semigroup.
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