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Abstract

In this paper we give a necessary and sufficient algebraic condition for the controllability of
the following generalized damped wave equation on a Hilbert space X

ẅ + ηAαẇ + γAβw =

{

d1u1 + · · · + dmum, if α > 0
u(t), if α = 0,

where t ≥ 0, γ > 0, η > 0, β ≥ 0 and di ∈ X; the scalar control functions ui ∈ L2(0, t1; IR); the
distributed control u ∈ L2(0, t1;X) and A : D(A) ⊂ X → X is a positive defined self-adjoint
unbounded linear operator in X with compact resolvent. The equation ẅ+ηAαẇ+γAβw = 0
can be written as a first order system in the space D(Aβ/2) × X with corresponding linear
operator A. Then, we prove the following statements: I) A generates a strongly continuous
semigroup {T (t)}t≥0 such that for some positive constants M(η, γ) and µ we have ‖T (t)‖ ≤
M(η, γ)e−µt, t ≥ 0. II) If 2α ≥ β, then {T (t)}t≥0 is analytic in the space D(Aα) × X. III)
If 2α ≥ β > α or 2α ≤ β, the system is approximatelly controllable on [0, t1]. IV) If 2α < β,
then {T (t)}t≥0 is not analytic. V) If α = 0, the system is exactly controllable on [0, t1]. VI)
If α ≥ β > 0, the question about the controllability of this system is opened.
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1 Introduction

In this paper we give a necessary and sufficient algebraic condition for both, approximate and

exact controllability for the following generalized damped wave equation on a Hilbert space X

ẅ + ηAαẇ + γAβw = d1u1 + · · · + dmum, t ≥ 0, (1.1)

ẅ + ηẇ + γAβw = u(t) t ≥ 0, (1.2)

γ > 0, η > 0, α > 0, β ≥ 0

di ∈ X, ui ∈ L2(0, t1; IR); i = 1, 2, . . . , m

u ∈ L2(0, t1; X)

A : D(A) ⊂ X → X is a positive defined self-adjoint unbounded linear operator in X with

compact resolvent.

A =

[

0 IX

−γAβ −ηAα

]

, (1.3)

ẅ + ηAαẇ + γAβw = 0

on the space

D(Aβ/2) × X.

.

I) A generates a strongly continuous semigroup {T (t)}t≥0 on D(Aβ/2) × X such that

‖T (t)‖ ≤ M(η, γ)e−µt, t ≥ 0.

II) If 2α ≥ β, then {T (t)}t≥0 is analytic on the space D(Aα) × X.

III) If 2α ≥ β > α or 2α ≤ β the system is approximatelly controllable on [0, t1].

IV) If 2α < β, then {T (t)}t≥0 is not analytic

V) If α = 0, the system is exactly controllable on [0, t1].

VI) If α ≥ β > 0, the question about the controllability of this system is opened.

Rank

[

PjB
...AjPjB

...A2
jPjB

... · · ·A2γj−1
j PjB

]

= 2γj , (1.4)
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where B : IRm → 2(Ω, IR2)

BU = b1U1 + · · · + bmUm, bi =

[

0
di

]

, Aj =

[

0 1

−γλβ
j −ηλα

j

]

Pj , j ≥ 1,

The same algebraic condition (1.4) hols for the exact controllablity of the system (1.2) if we

change the operators B and Aj by:

B =

[

0
IX

]

, Aj =

[

0 1

−γλβ
j −η

]

Pj , j ≥ 1.

Also, condition (1.4) is equivalent that the operator Wj(t1) : R(Pj) → R(Pj) given by

Wj(t1) =

∫ t1

0
e−AjsBB∗e−A∗

j sds, (1.5)

is invertible.

u(t) = B∗T ∗(−t)

∞
∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0). (1.6)

The uncontrolled equation has been studied by S. CHEN AND R. TRIGGIANI in [3] 1998.

ẅ + Bẇ + Aw = 0 on X, (1.7)

B is positive self-adjoint operator with dense domain, and the following hypothesis holds:

There exists 0 < r < 1 and 0 < ρ1, ρ2 < ∞ such that

ρ1A
r ≤ B ≤ ρ2A

r. (1.8)

The operator

A =

[

0 IX

−A −B

]

, (1.9)

which corresponds to the equation ẅ + Bẇ + Aw = 0 written as a first order system in the space

D(A1/2) × X, generates a strongly continuous semigroup {T (t)}t≥0 such that

i) ‖T (t)‖ ≤ 1, t ≥ 0

ii) If 2α ≥ 1, then {T (t)}t≥0 is analytic.

iii) If 2α < 1, then {T (t)}t≥0 is not analytic.

Results II) and IV) follow from this result if β ≥ α. But, if β < α condition (1.8) is not

sastified.
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In [10] (1998) I. Lasiecka and R. Triggiani study the exact null controllability of the following

secon order equation

ẅ + ρArẇ + Aw = u(t), ρ > 0,
1

2
≤ r ≤ 1, t ≥ 0, (1.10)

u ∈ L2(0, t1; X). If 1
2 ≤ r < 1, , then the system (1.10) is exactly null controllable on [0, t1], but

if α = 1, the system (1.10) is not exactly null controllable.

A particular case of equation (1.1) is the following Vibration of the Spring Equation

wtt − 2β∆wt + ∆2w = a1u1 + · · · + amum, t ≥ 0, in IR+ × Ω (1.11)

w = ∆w = 0, on IR+ × ∂Ω. (1.12)

Finally, our method can be applied to the following generalized thermoelastic plate equation

{

ẅ + hAαẅ + Aβw + γAαθ = a1u1 + · · · + amum, t ≥ 0,

θ̇ − ηAαθ + Γθ − γAαẇ = d1u1 + · · · + dmum, t ≥ 0,

Some notations for our work can be found in [11], [12], [8] and [13].

2 The Uncontrolled System

a) for all x ∈ D(A) we have

Ax =
∞
∑

n=1

λn

γn
∑

k=1

< x, φn,k > φn,k =
∞
∑

n=1

λnEnx, (2.13)

where < ·, · > is the inner product in X and

Enx =

γn
∑

k=1

< x, φn,k > φn,k. (2.14)

So, {En} is a family of complete orthogonal projections in X and

x =
∑∞

n=1 Enx, x ∈ X.

b) the fraction power space Xr are given by:

Xr = D(Ar) = {x ∈ X :
∞
∑

n=1

(λn)2r‖Enx‖2 < ∞}, r ≥ 0,
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‖x‖r = ‖Arx‖ =

{

∞
∑

n=1

λ2r
n ‖Enx‖2

}1/2

, x ∈ Xr,

Arx =
∞
∑

n=1

λr
nEnx. (2.15)

Also, for r ≥ 0 we define Zr = Xr×X, which is a Hilbert Space with the norm and inner product

given by:
∥

∥

∥

∥

[

w
v

]∥

∥

∥

∥

2

Zr

= ‖u‖2
r + ‖v‖2, < w, v >r=< Arw, Arv > + < w, v > .

Now, making the following change of variable w′ = v, we can write the second order equation (1.1)

as first order system of ordinary differential equations in the Hilbert space Zβ/2 = D(Aβ/2)×X =

Xβ/2 × X as follows:

z′ = Az + Bu z ∈ Zβ/2, t ≥ 0, (2.16)

where the control u ∈ L2(0, t1; IR
m) and

z =

[

w
v

]

, BU = b1U1 + · · · + bUm, bi =

[

0
di

]

, A =

[

0 IX

−γAβ −ηAα

]

, (2.17)

is an unbounded linear operator with domain D(A) = D(Aβ) × D(Aα).

In same way the equation (1.2) can be written as

z′ = Az + Bu z ∈ Zβ/2, t ≥ 0, (2.18)

where the control u ∈ L2(0, t1; X) and

z =

[

w
v

]

, B =

[

0
IX

]

, A =

[

0 IX

−γAβ −ηIX

]

. (2.19)

Through this work we will assume the following condition:

η2 6= 4γλβ−2α
n , n = 1, 2, . . . .

Theorem 2.1 The operator A given by (2.17), is the infinitesimal generator of an analytic semi-

group {T (t)}t≥0 given by

T (t)z =

∞
∑

n=1

eAntPnz, z ∈ Zβ/2, t ≥ 0 (2.20)
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where {Pn}n≥0 is a complete family of orthogonal projections in the Hilbert space Zβ/2 given by

Pn = diag [En, En] , n ≥ 1 , (2.21)

and

An = BnPn, Bn =

[

0 1

−γλβ
n −ηλα

n

]

, n ≥ 1. (2.22)

This semigroup decays exponentially to zero. In fact, we have the following estimate

‖T (t)‖ ≤ M(η, γ)e−µt, t ≥ 0, (2.23)

where

µ = λα
1 inf

n≥1







Re





η+

√

η2 − 4γλβ−2α
n

2











and

M(η, γ)

2
√

2
= sup

n≥1







2

∣

∣

∣

∣

∣

η+
√

η2 − 4γ

2
√

η2 − 4γλβ−2α

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

2γ

√

λβ−2α
n

η2 − 4γλβ−2α
n

∣

∣

∣

∣

∣

∣







.

Moreover,

I) If 2α ≥ β, then {T (t)}t≥0 is analytic on the space Zα = Xα × X.

II) If 2α < β, then {T (t)}t≥0 is not analytic.

Proof Let us compute Az:

Az =

[

0 I
−γAβ −ηAα

] [

w
v

]

=

[

v
−γAβw − ηAαv

]

=

[ ∑∞
n=1 Env

−γ
∑∞

n=1 λβ
nEnw − η

∑∞
n=1 λα

nEnv

]

=
∞
∑

n=1

[

Env

−γλβ
nEnw − ηλα

nEnv

]

=
∞
∑

n=1

[

0 1

−γλβ
n −ηλα

] [

En 0
0 En

] [

w
v

]

=
∞
∑

n=1

AnPnz.
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It is clear that AnPn = PnAn. Now, we need to check condition (4.60) from Lemma 4.1. To

this end, we have to compute the spectrum of the matrix Bn. The characteristic equation of Bn

is given by

λ2 + ηλα
nλ + γλβ

n = 0,

and the roots of it are given by

λ = −λα
n





η+

√

η2 − 4γλβ−2α
n

2



 , n = 1, 2, . . . .

On the other hand, eAnt = eBntPn and eBnt is given by:

eBnt =

[ ρ2

ρ2−ρ1
e−λα

nρ1t + ρ1

ρ1−ρ2
e−λα

nρ2t 1
λα

n(ρ2−ρ1)e
−λα

nρ1t + 1
λα

n(ρ1−ρ2)
e−λα

nρ2t

S(n)λ
β
2
n e−λα

nρ1t − S(n)λ
β
2
n e−λα

nρ2t ρ1−η
ρ2−ρ1

e−λα
nρ1t + ρ2−η

ρ1−ρ2
e−λα

nρ2t

]

,

where ρ1 and ρ2 are given by:

ρ1 =
η +

√

η2 − 4γλβ−2α
n

2
, ρ2 =

η −
√

η2 − 4γλβ−2α
n

2
, S = γ

√

λβ−2α
n

η2 − 4γλβ−2α
n

Now, consider z = (z1, z2)
T ∈ Zβ/2 such that ‖z‖Zβ/2

= 1. Then,

‖z1‖2
β/2 =

∞
∑

j=1

λβ
j ‖Ejz1‖2 ≤ 1 and ‖z2‖2

X =

∞
∑

j=1

‖Ejz2‖2 ≤ 1.

Therefore, λ
β/2
j ‖Ejz1‖ ≤ 1, ‖Ejz2‖ ≤ 1, j = 1, 2, . . . .

Then,
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‖eAntz‖2
Z =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[ ρ2

ρ2−ρ1
e−λα

nρ1tEnz1 + ρ1

ρ1−ρ2
e−λα

nρ2tEnz1

S(n)λ
β
2
n e−λα

nρ1tEnz1 − S(n)λ
β
2
n e−λα

nρ2tEnz1

]

+

[

1
λα

n(ρ2−ρ1)e
−λα

nρ1tEnz2 + 1
λα

n(ρ1−ρ2)e
−λα

nρ2tEnz2
ρ1−η
ρ2−ρ1

e−λα
nρ1tEnz2 + ρ2−η

ρ1−ρ2
e−λα

nρ2tEnz2

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Z

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

a(n)Enz1 + b(n)
λα

n
Enz2

c(n)λ
β
2
n Enz1 + d(n)Enz2

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Z

= ‖a(n)Enz1 +
b(n)

λα
n

Enz2‖2
β
2

+ ‖c(n)λ
β
2
n Enz1 + d(n)Enz2‖2

X

=
∞
∑

j=1

λβ
j ‖Ej

(

a(n)Enz1 +
b(n)

λα
n

Enz2

)

‖2

+
∞
∑

j=1

‖Ej

(

c(n)λ
β
2
n Enz1 + d(n)Enz2

)

‖2

= λβ
n‖a(n)Enz1 +

b(n)

λα
n

Enz2‖2 + ‖c(n)λ
β
2
n Enz1 + d(n)Enz2‖2

≤ (|a(n)| + |λ
β
2

λα
n

b(n)|)2 + (|c(n)| + |d(n)|)2,

where

a(n) =
ρ2

ρ2 − ρ1
e−λα

nρ1t +
ρ1

ρ1 − ρ2
e−λα

nρ2t

b(n) =
1

(ρ2 − ρ1)
e−λα

nρ1t +
1

(ρ1 − ρ2)
e−λα

nρ2t

c(n) = S(n)e−λα
nρ1t − S(n)e−λα

nρ2t

d(n) =
ρ1 − η

ρ2 − ρ1
e−λα

nρ1t +
ρ2 − η

ρ1 − ρ2
e−λα

nρ2t

|λ
β
2

λα
n

b(n)| =

∣

∣

∣

∣

∣

∣

√

λβ−2α
n

η2 − 4γλβ−2α
n

∣

∣

∣

∣

∣

∣

.

Then, if we put

µ = λα
1 sup

n≥1







Re





η+

√

η2 − 4γλβ−2α
n

2











,

M(η, γ)

2
√

2
= sup

n≥1







2

∣

∣

∣

∣

∣

η+
√

η2 − 4γ
√

η2 − 4γλβ−2α

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

2γ

√

λβ−2α
n

η2 − 4γλβ−2α
n

∣

∣

∣

∣

∣

∣







,

we get that

‖eAnt‖ ≤ M(η, γ)e−µt, t ≥ 0 n = 1, 2, . . . .
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Hence, applying Lemma 4.1 we obtain that A generates a strongly continuous semigroup given

by (2.1). Next, we prove this semigroup decays exponentially to zero. In fact,

‖T (t)z‖2 ≤
∞
∑

n=1

‖eAntPnz‖2

≤
∞
∑

n=1

‖eAnt‖2‖Pnz‖2

≤ M2(η, γ)e−2µt
∞
∑

n=1

‖Pnz‖2

= M2(η, γ)e−2µt‖z‖2.

Therefore,

‖T (t)‖ ≤ M(η, γ)e−µt, t ≥ 0.

Proof of the analyticity:

We have the following situation:

a) Re(ρ1(n)) > 0, Re(ρ2(n)) > 0, n = 1, 2, . . .

b) if 2α = β, then ρ1(n), ρ2(n) are constants.

c) if 2α > β then

lim
n→∞

Re(ρ1(n)) = η and lim
n→∞

Re(ρ2(n)) = 0 (2.24)

d) if 2α < β, then

lim
n→∞

Re(ρ1(n)) = lim
n→∞

Re(ρ2(n)) =
η

2
and lim

n→∞
Im(ρ1(n)) = ∞. (2.25)

Therefore, for 2α < β the operator −A can not be sectorial which implies that the semigroup

{T (t)}t≥0 can never be analytic.

Claim 1. If 2α ≥ β, then A generates a semigroup {T (t)}t≥0 on the space Zα = Xα × X

given by (2.20). In fact, we can apply Lemma 4.1 to prove this claim. To this end we shall find

a uniform bound for ‖eAnt‖L(Xα×X).

Now, consider z = (z1, z2)
T ∈ Zα such that ‖z‖Xα×X = 1. Then,

‖z1‖2
α =

∞
∑

j=1

λ2α
j ‖Ejz1‖2 ≤ 1 and ‖z2‖2

X =
∞
∑

j=1

‖Ejz2‖2 ≤ 1.

Therefore, λα
j ‖Ejz1‖ ≤ 1, ‖Ejz2‖ ≤ 1, j = 1, 2, . . . , and using the foregoing notation we obtain

the following estimate
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‖eAntz‖2
Xα×X =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

a(n)Enz1 + b(n)
λα

n
Enz2

c(n)λ
β
2
n Enz1 + d(n)Enz2

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Zα

= ‖a(n)Enz1 +
b(n)

λα
n

Enz2‖2
α + ‖c(n)λ

β
2
n Enz1 + d(n)Enz2‖2

X

=

∞
∑

j=1

λ2α
j ‖Ej

(

a(n)Enz1 +
b(n)

λα
n

Enz2

)

‖2

+

∞
∑

j=1

‖Ej

(

c(n)λ
β
2
n Enz1 + d(n)Enz2

)

‖2

= λ2α
n ‖a(n)Enz1 +

b(n)

λα
n

Enz2‖2 + ‖c(n)λ
β
2
n Enz1 + d(n)Enz2‖2

≤ (|a(n)| + |b(n)|)2 + (λβ/2
n ‖Enz1‖|c(n)| + |d(n)|)2,

Now, since α ≥ β
2 , then Xα ⊂ Xβ/2 is a continuous inclusion. Therefore, there exists a constant

Rαβ > 0 such that

‖z‖β/2 ≤ Rαβ‖z‖α, z ∈ Xα.

Hence,

‖eAntz‖2
Xα×X ≤ (|a(n)| + |b(n)|)2 + (|c(n)|Rαβ + |d(n)|)2.

Then, there exists a constant M(η, γ) > 0 such that

‖eAnt‖ ≤ M(η, γ)e−µt, t ≥ 0 n = 1, 2, . . . ,

and

‖T (t)‖ ≤ M(η, γ)e−µt, t ≥ 0.

To prove the analyticity of {T (t)}t≥0 on Xα × X, we apply Lemma 4.2 to prove that −A is a

sectorial operator. From the first part of the proof we know that the spectrum of An : R(Pn) →
R(Pn), n = 1, 2, . . . is given by

σ(An) =







−λα
n





η+

√

η2 − 4γλβ−2α
n

2











= −λα
n











η+

√

η2 − 4γλβ−2α
n

2











.

Then,

− 1

λα
n

σ(An) =











η+

√

η2 − 4γλβ−2α
n

2











.
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Since 2α > β, then there exists a bounded set S in the complex plane such that Re(S) > 0 and

− 1

λα
n

σ(An) ⊂ S, n = 1, 2, . . . .

Then, Lemma 4.2 can be applied.

Remark 2.1 The analyticity of the operator −A given by the foregoing Theorem, can be proved

directly by constracting a sector where it is analytic. This constraction gives us some ideas to

prove the exact controllability of the equation (2.18) and for that and others purpose we will give

this other poof.

Indeed, consider the following 2 × 2 matrices

Kn =

[

1 1
σ1(n) σ2(n)

]

, K
−1
n =

1

σ2(n) − σ1(n)

[

σ2(n) −1
−σ1(n) 1

]

, (2.26)

where

σ1(n) = −λα
nρ1(n) and σ1(n) = −λα

nρ2(n), n = 1, 2, . . . . (2.27)

Then,

Bn = K
−1
n JnKn, n = 1, 2, 3, . . . , (2.28)

with

Jn =

[

σ1(n) 0
0 σ2(n)

]

.

Next, we define the following two linear bounded operators

Kn : X × X → Xα × X, K−1
n : Xα × X → X × X, (2.29)

as follows Kn = K
−1
n Pn and Kn = K

−1
n Pn.

Let us find bounds for ‖K−1
n ‖ and ‖Kn‖. Consider z = (z1, z2)

T ∈ Z = Xα × X, such that

‖z‖Z = 1. Then,

‖z1‖2
α =

∞
∑

j=1

λα
j ‖Ejz1‖2 ≤ 1 and ‖z2‖2

X =
∞
∑

j=1

‖Ejz2‖2 ≤ 1.

Therefore, λα
j ‖Ejz1‖ ≤ 1, ‖Ejz2‖ ≤ 1, j = 1, 2, . . . .
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Then,

‖K−1
n z‖2

X×X =
1

λ2α
n |ρ2 − ρ1|2

∣

∣

∣

∣

∣

∣

∣

∣

[

σ2(n)Enz1 − Enz2

σ1(n)Enz1 + Enz2

]∣

∣

∣

∣

∣

∣

∣

∣

2

X×X

=
1

λ2α
n |ρ2 − ρ1|2

{

‖σ2(n)Enz1 − Enz2‖2 + ‖σ1(n)Enz1 + Enz2‖2
}

≤ 1

λ2α
n |ρ2 − ρ1|2

{

(|ρ2(n)|‖λα
nEnz1‖ + ‖Enz2‖)2

}

+
1

λ2α
n |ρ2 − ρ1|2

{

(|ρ1(n)|‖λα
nEnz1‖ + ‖Enz2‖)2

}

≤ 1

λ2α
n

· (|ρ2(n)| + 1)2 + (|ρ1(n)| + 1)2

|ρ2 − ρ1|2

≤ Γ2
1(η, γ)

λ2α
n

.

Therefore,

‖K−1
n ‖L(Xα×X,X×X) ≤

Γ1(η, γ)

λα
n

. (2.30)

Now, we will find a bound for ‖Kn‖L(X×X,Xα×X). To this end we consider z = (z1, z2)
T ∈

Z = X × X, such that ‖z‖Z = 1. Then,

‖z1‖2 =
∞
∑

j=1

λ2α
j ‖Ejz1‖2 ≤ 1 and ‖z2‖2

X =
∞
∑

j=1

‖Ejz2‖2 ≤ 1.

Therefore, ‖Ejz1‖ ≤ 1, ‖Ejz2‖ ≤ 1, j = 1, 2, . . . .

Then,

‖Knz‖2
Xα×X =

∣

∣

∣

∣

∣

∣

∣

∣

[

Enz1 + Enz2

σ1(n)Enz1 + σ2(n)Enz2

]∣

∣

∣

∣

∣

∣

∣

∣

2

Xα×X

= λ2α
n ‖Enz1 + Enz2‖2 + ‖σ1(n)Enz1 + σ2(n)Enz2‖2

≤ λ2α
n

{

4 + (|ρ1(n)| + |ρ2(n)|)2
}

≤ Γ2
2(η, γ)λ2α

n .

Therefore,

‖Kn‖L(X×X,Xα×X) ≤ Γ2(η, γ)λα
n. (2.31)

Now, to prove that A is sectorial, we first prove that the operator
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Aǫ = −A + ǫ is sectorial for ǫ > 0. With this purpose, we consider the 2 × 2 matrices

Jnǫ = −Jn + ǫ = diag [λα
nρ1(n) + ǫ, λα

nρ2(n) + ǫ] (2.32)

= (λα
nρ1(n) + ǫ)

[

1 0
0 0

]

+ (λα
nρ2(n) + ǫ)

[

0 0
0 1

]

(2.33)

= (λα
nρ1(n) + ǫ) q1 + (λα

nρ2(n) + ǫ) q2, (2.34)

and the operators Jnǫ = JnǫPn : Z → Zα

Let Sθ be the following sector:

Sθ = {λ ∈ C : θ ≤ |arg(λ)| ≤ π, λ 6= 0}, (2.35)

where

sup
n≥1

{|arg(ρ1(n))|} < θ <
π

2
.

If λ ∈ Sθ, then λ is distinct than λα
nρi(n), i = 1, 2. Therefore,

‖
(

λ − Jnǫ

)−1
y‖2 =

1

(λ − (λα
nρ1(n) + ǫ))2

‖q1y‖2 +
1

(λ − (λα
nρ2(n) + ǫ))2

‖q2y‖2.

Then, if we put

N = sup

{ |λ|
|λ − (λα

nρi(n) + ǫ)| : λ ∈ Sθ, n ≥ 1; i = 1, 2.

}

,

we obtain

‖
(

λ − Jnǫ

)−1
y‖2 ≤

(

N

|λ|

)2
[

‖q1y‖2 + ‖q2y‖2
]

.

Hence,

‖
(

λ − Jnǫ

)−1 ‖ ≤ N

|λ| , λ ∈ Sθ.

Now, if λ ∈ Sθ, then

R(λ,Aǫ)z =
∞
∑

n=1

(λ + An − ǫ)−1 Pnz

=
∞
∑

n=1

Kn (λ + Jn − ǫ)−1 K−1
n Pnz

=
∞
∑

n=1

Kn (λ − Jnǫ)
−1 K−1

n Pnz.

Then,

‖R(λ,Aǫ)z‖2 ≤
∞
∑

n=1

‖Kn‖2‖K−1
n ‖2‖ (λ − Jnǫ)

−1 ‖2‖Pnz‖2

≤
(

Γ1(η, γ)

Γ2(η, γ)

)2(N

|λ|

)2

‖z‖2
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Therefore,

‖R(λ,Aǫ)‖ ≤ R

|λ| , λ ∈ Sθ.

Finally, if we define the following sector

Sθ,ǫ{λ ∈ C : θ ≤ |arg(λ + ǫ)| ≤ π, λ 6= −ǫ},

then,

‖R(λ,−A)‖ ≤ R

|λ + ǫ| , λ ∈ Sθ,ǫ.

3 The Controlled System

Now, we shall give the definition of controllability in terms of systems (2.16)-(2.18). To this end,

for all z0 ∈ Zr (r = α or r = β
2 ) the equation (2.16) or (2.18) has a unique mild solution given

by

z(t) = T (t)z0 +

∫ t

0
T (t − s)Bu(s)ds, 0 ≤ t ≤ t1. (3.36)

Definition 3.1 (Exact Controllability) We shall say that the system (2.16) (or (2.18) ) is

exactly controllable on [0, t1], t1 > 0, if for all z0, z1 ∈ Zr there exists a control u ∈ L2(0, t1; IR
m)

(or u ∈ L2(0, t1; X) ) such that the solution z(t) of (3.36) corresponding to u, verifies: z(t1) = z1.

Consider the following bounded linear operator

G : L2(0, t1; U) → Zr, Gu =

∫ t1

0
T (t − s)B(s)u(s)ds, U = IRm or U = X. (3.37)

Then, the following proposition is a characterization of the exact controllability of the sytem

(2.16).

Proposition 3.1 The system (2.16) (or (2.18) ) is exactly controllable on [0, t1] if and only if,

the operator G is surjective, that is to say

GL2(0, t1; U) = Range(G) = Zr.

Definition 3.2 (Approximate Controllability) We say that (2.16) is approximately control-

lable in [0, t1] if for all z0, z1 ∈ Zr and ǫ > 0, there exists a control u ∈ L2(0, t1; IR
m) such that

the solution z(t) given by (3.36) satisfies

‖z(t1) − z0‖ ≤ ǫ.
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The following theorem can be found in [5] and [6].

Theorem 3.1 (2.16) is approximately controllable on [0, t1] iff

B∗T ∗(t)z = 0, ∀t ∈ [0, t1], ⇒ z = 0. (3.38)

3.1 Results on Approximate Controllability

2α ≥ β > α or 0 < 2α ≤ β (3.39)

we will prove the following Theorem.

Theorem 3.2 (2.16) is approximately controllable on [0, t1] iff the finite dimensional systems are

controllable on [0, t1]

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (3.40)

Proposition 3.2 The following statements are equivalent:

(a) system (3.40) is controllable on [0, t1],

(b) B∗P ∗
j eA∗

j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0,

(c) Rank

[

PjB
...AjPjB

...A2
jPjB

... · · ·A2γj−1
j PjB

]

= 2γj

(d) the operator Wj(t1) : R(Pj) → R(Pj) given by:

Wj(t1) =

∫ t1

0
e−AjsBB∗e−A∗

j sds, (3.41)

is invertible.

Lemma 3.1 Let {αj}j≥1 and {βi,j : i = 1, 2, . . . , m}j≥1 be two sequences of complex numbers

such that: α1 > α2 > α3 · · · .

Then
∞
∑

j=1

eαjtβi,j = 0, ∀t ∈ [0, t1], i = 1, 2, · · · , m

iff

βi,j = 0, i = 1, 2, · · · , m; j = 1, 2, · · · ,∞.

Proof of Theorem 3.2- case 2α ≥ β > α. Suppose that each system (3.40) is controllable

in [0, t1]. It is easy to see that

B∗ : Zα → IRm, B∗z = (< b1, z >, · · · , < bm, z >),
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and

T ∗(t)z =
∞
∑

j=1

eA∗

j tP ∗
j z, z ∈ Zα, t ≥ 0.

Therefore,

B∗T ∗(t)z = (< b1, T
∗(t)z >, · · · , < bm, T ∗(t)z >).

Hence, system (2.16) is approximately controllable on [0, t1] iff

< bi, T
∗(t)z >= 0, ∀t ∈ [0, t1], i = 1, 2, · · · , m, ⇒ z = 0. (3.42)

Now, we shall check condition (3.42):

< bi, T
∗(t)z >=

∞
∑

j=1

< bi, e
A∗

j tP ∗
j z >= 0, i = 1, 2, · · · , m; t ∈ [0, t1].

Without loss of generality, we can assume that η2 − 4γλβ−2α
1 > 0, which implies that the eigen-

values σ1(j) and σ2(j) of the 2 × 2 matrix Bj given by

σ1(j) = −λα
j





η +
√

η2 − 4γλβ−2α
j

2



 , σ2(j) = −λα
j





η −
√

η2 − 4γλβ−2α
j

2



n = 1, 2, . . . ,

are real and

lim
j→∞

σ1(j) = −∞,

lim
j→∞

σ2(j) =
−1

η
lim

j→∞
λα

j (4γλβ−2α
j ) =

−γ

η
lim j → ∞λβ−α

j = −∞, (β > α).

Hence,

σ1(1) > σ1(2) > · · · > σ1(j) > . . .

σ2(1) > σ2(2) > · · · > σ2(j) > . . . .

Since the eigenvalues of the matrix Bj are simple, there exists a complete family of complemen-

taries projections {q1(j), q2(j)} on IR2 such that

eB∗

j t = eσ1(j)tq1(j) + eσ2(j)tq2(j).

Therefore,

eA∗

j t = eσ1(j)tP1,j + eσ2(j)tP2,j .

where Ps,j = qs(j)Pj = Pjqs(j).
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Hence,

< bi, T
∗(t)z >α =

∞
∑

j=1

< bi, e
A∗

j tP ∗
j z >α=

∞
∑

j=1

< bi,
2
∑

s=1

eσs(j)tP ∗
s,jz >α

=
∞
∑

j=1

2
∑

s=1

eσs(j)t < bi, P
∗
s,jz >α= 0 i = 1, 2, · · · , m; t ∈ [0, t1].

Applying Lemma 3.1, we conclude that

< bi, P
∗
s,jz >α= 0 i = 1, 2, · · · , m; j = 1, 2, · · · ,∞, t ∈ [0, t1].

Then,

< bi, e
A∗

j tP ∗
j z >= 0 i = 1, 2, · · · , m; j = 1, 2, · · · ,∞, t ∈ [0, t1],

iff

B∗eA∗

j tP ∗
j z = 0; j = 1, 2, · · · ,∞, t ∈ [0, t1].

Since P ∗
j A∗

j = A∗
jP

∗
j and (P ∗

j )2 = P ∗
j , we obtain

(PjB)∗eA∗

j tP ∗
j z = 0; j = 1, 2, · · · ,∞, t ∈ [0, t1].

From the controllability of the system (3.40), we get that P ∗
j z = 0, j = 1, 2, · · · ,∞. Since

{P ∗
j }j≥1 is a complete family of orthogonal projections on Zα, we conclude that z = 0.

Conversely, assume that system (2.16) is approximately controllable on [0, t1] and there exists

J such that the system

y′ = −λJPJAJy + PJBu, y ∈ R(PJ),

is not controllable on [0, t1]. Then, there exists VJ ∈ R(PJ) such that

(PJB)∗eA∗

j tVJ = 0, t ∈ [0, t1] and VJ 6= 0.

Letting z = P ∗
J VJ , we obtain

B∗T ∗(t)z = (< b1, T
∗(t)z >, · · · , < bm, T ∗(t)z >)

= (< b1, e
A∗

j tVJ >, · · · , < bm, eA∗

j tVJ >)

= B∗eA∗

J tVJ = (PJB)∗eA∗

J tVJ = 0,

which contradicts the assumption.

Proof of Theorem 3.2- case 2α ≤ β > α. Suppose that each system (3.40) is controllable

in [0, t1]. It is easy to see that

B∗ : Zβ/2 → IRm, B∗z = (< b1, z >, · · · , < bm, z >),
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and

T ∗(t)z =
∞
∑

j=1

eA∗

j tP ∗
j z, z ∈ Zα, t ≥ 0.

Therefore,

B∗T ∗(t)z = (< b1, T
∗(t)z >, · · · , < bm, T ∗(t)z >).

Hence, system (2.16) is approximately controllable on [0, t1] iff

< bi, T
∗(t)z >= 0, ∀t ∈ [0, t1], i = 1, 2, · · · , m, ⇒ z = 0. (3.43)

Now, we shall check condition (3.43):

< bi, T
∗(t)z >=

∞
∑

j=1

< bi, e
A∗

j tP ∗
j z >= 0, i = 1, 2, · · · , m; t ∈ [0, t1].

Without loss of generality, we can assume that η2 − 4γλβ−2α
1 < 0, which implies that the eigen-

values σ1(j) and σ2(j) of the 2 × 2 matrix Bj given by

σ1(j) = rj + ilj and σ2(j) = rj − ilj

where

rj = −λα
j

η

2
and lj = λα

j

√

η2 − 4γλβ−2α
j

2
, j = 1, 2, . . . .

Hence,

r1 > r2 > r3 > · · · −∞.

Since the eigenvalues of the matrix Bj are simple, there exists a complete family of complemen-

taries projections {q1(j), q2(j)} on IR2 such that

eB∗

j t = eσ1(j)tq1(j) + eσ2(j)tq2(j).

Therefore,

eA∗

j t = erjt−iljtP1,j + erjt+iljtP2,j .

where Ps,j = qs(j)Pj = Pjqs(j).

Hence,

< bi, T
∗(t)z >α =

∞
∑

j=1

< bi, e
A∗

j tP ∗
j z >α=

∞
∑

j=1

< bi, e
rjt−iljtP ∗

1,jz + erjt+iljtP ∗
2,jz >α

=
∞
∑

j=1

erjt
{

e−iljt < bi, P
∗
1,jz > +eiljt < bi, P

∗
2,jz >

}

= 0,

= i = 1, 2, · · · , m; t ∈ [0, t1].
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Applying Lemma 3.1, we conclude that

e−iljt < bi, P
∗
1,jz > +eiljt < bi, P

∗
2,jz >= 0 i = 1, 2, · · · , m; j = 1, 2, · · · ,∞, t ∈ [0, t1].

Since the two funcitions eiljt, e−iljt are linearly independent we obtain that

< bi, P
∗
1,jz >=< bi, P

∗
2,jz >= 0

Then,

< bi, e
A∗

j tP ∗
j z >= 0 i = 1, 2, · · · , m; j = 1, 2, · · · ,∞, t ∈ [0, t1].

From here, the proof follows in the same way as the foregoing case.

Theorem 3.3 If < di, φjk >6= 0, j = 1, 2, . . . ,∞, i = 1, 2, . . . , m, k = 1, 2, . . . , γj, then

system (2.16) is approximately controllable on [0, t1].

Proof From the foregoing Theorem, it is enough to prove the controllability of the family of finite

dimensional system (3.40). In order to check the algebraic condition (1.4) we have to find the

matrix representation of the operators:

AjPj : R(Pj) → R(Pj), PjB : IRm → R(Pj).

To this end, we shall consider the canonical base B = {e1, e2, . . . , em, } in IRm and the following

base in R(Pj)

Bj = {φ1
jl, φ

2
jl : l = 1, 2, . . . , γj},

where

φ1
jl =

[

φjl

0

]

, φ1
jl =

[

0
φjl

]

,

and for all x ∈ X we have that

Ejx =

γj
∑

k=1

< x, φj,k > φj,k.

Therefore,

AjPjφ
1
jl = −γλβ

j φ2
jl, AjPjφ

2
jl = φ1

jl − ηλα
j φ2

jl, l = 1, 2, . . . , γj ,

and

PjBel =

γj
∑

k=1

< dl, φj,k > φ2
j,k.
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Therefore,

AjPj =































0 0 . . . . . . 0 1 0 . . . . . . 0
0 0 . . . . . . 0 0 1 . . . . . . 0
...

...
...

...
...

...
0 0 . . . . . . 0 0 0 . . . . . . 1

−γλβ
j 0 . . . . . . 0 −ηλα

j 0 . . . . . . 0

0 −γλβ
j . . . . . . 0 −ηλα

j . . . . . . 0
...

...
...

...
...

...

0 0 . . . . . . −γλβ
j 0 0 . . . . . . −γλβ

j































(3.44)

i.e.,

AjPj =









Oγj×γj

... Iγj×γj

. . . . . . . . . . . . . . . . . .

−γλβ
j Iγj×γj

... −ηλα
j Iγj×γj









2γj×2γj

, (3.45)

and

PjB =





























0 0 . . . . . . 0
0 0 . . . . . . 0
...

...
...
...

...
0 0 . . . . . . 0

< d1, φj1 > < d2, φj1 > . . . . . . < dm, φj1 >
< d1, φj2 > < d2, φj2 > . . . . . . < dm, φj2 >

...
...

...
...

...
< d1, φjγj > < d2, φjγj > . . . . . . < dm, φjγj >





























2γj×m

. (3.46)

From here we can check the algebraic condition given by proposition 3.1 part (c). .

As a special case we can consider the scalar strongly damped wave equation with a single

control
{

wtt + η(−∆)1/2wt + γ(−∆)w = b(x)u, t ≥ 0, 0 ≤ x ≤ 1,
w(t, 1) = w(t, 0) = 0, t ≥ 0, 0 ≤ x ≤ 1,

(3.47)

In this case λj = −j2π2 and φj(x) = sin jπx. Therefore, the equation (3.47) is approximately

controllable iff

Rank[PjB
...AjPjB] = Rank

[

0 < b, φj >

< b, φj > −ηλ
1/2
j < b, φj >

]

= 2, j = 1, 2, . . . ,∞.

Which is equivalent to:

< b, φj >=

∫ 1

0
b(x) sin jπxdx 6= 0, j = 1, 2, . . . ,∞.
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3.2 Results on Exact Controllability

Now, we are ready to formulate the main result about exact controllability of the system (2.18).

Theorem 3.4 The system (2.18) is exactly controllable on [0, t1].

Moreover, the control u ∈ L2(0, t1; X) steering an initial state z0 to a final state z1 in time

t1 > 0 is given by the following formula:

u(t) = B∗T ∗(−t)
∞
∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0). (3.48)

Proof .

G : L2(0, t1; X) → Zβ/2, Gu =

∫ t1

0
T (−s)B(s)u(s)ds. (3.49)

GL2(0, t1; X) = Range(G) = Zβ/2?.

First, we shall prove that each of the following finite dimensional systems is controllable on

[0, t1]

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (3.50)

B∗P ∗
j eA∗

j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0?.

In this case the operators Aj = BjPj and A are given by

Bj =

[

0 1

−γλβ
j −η

]

, A =

[

0 IX

−γAβ −ηI

]

,

and the eigenvalues σ1(j), σ2(j) of the matrix Bj are given by

σ1(j) = −c + ilj , σ2(j) = −c − ilj ,

where,

c =
η

2
and lj =

1

2

√

4γλβ
j − η2.

Therefore, A∗
j = B∗

j Pj with

B∗
j =

[

0 −1

γλβ
j −η

]

,

and

eBjt = e−ct

{

cos ljtI +
1

lj
(Bj + cI)

}

= e−ct

[

cos ljt + η
2lj

sin ljt
sin ljt

lj

−γS(j)λ
β/2
j sin ljt cos ljt − η

2lj
sin ljt

]

,
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eB∗

j t = e−ct

{

cos ljtI +
1

lj

(

B∗
j + cI

)

}

= e−ct

[

cos ljt + η
2lj

sin ljt − sin ljt
lj

γS(j)λ
β/2
j sin ljt cos ljt − η

2lj
sin ljt

]

,

B =

[

0
IX

]

, B∗ = [0, IX ] and BB∗ =

[

0 0
0 IX

]

.

Now, let y = (y1, y2)
T ∈ R(Pj) such that

B∗P ∗
j eA∗

j ty = 0, ∀t ∈ [0, t1].

Then,

e−ct

[

γS(j)λ
β/2
j sin ljty1

(

cos ljt − η
2lj

sin ljt
)

y2

]

=

[

0
0

]

, ∀t ∈ [0, t1],

which implies that y = 0.

From Proposition 3.2 the operator Wj(t1) : R(Pj) → R(Pj) given by:

Wj(t1) =

∫ t1

0
e−AjsBB∗e−A∗

j sds = Pj

∫ t1

0
e−BjsBB∗e−B∗

j sdsPj = PjW j(t1)Pj

is invertible.

Since

‖e−Ajt‖ ≤ M(η, γ)ect, ‖e−A∗

j t‖ ≤ M(η, γ)ect,

‖e−AjtBB∗e−A∗

j t‖ ≤ M2(η, γ)‖BB∗‖e2ct,

then

‖Wj(t1)‖ ≤ M2(η, γ)‖BB∗‖e2ct1 ≤ L(η, γ), j = 1, 2, . . . .

Now, we shall prove that the following family of linear operators

W−1
j (t1) = W

−1
j (t1)Pj : Zβ/2 → Zβ/2

is bounded and ‖W−1
j (t1)‖ is uniformly bounded. To this end we shall compute explicity the

matrix W
−1
j (t1). From the above formulas we obtain that

eBjt = e−ct

[

a(j) b(j)
−a(j) c(j)

]

, eB∗

j t = e−ct

[

a(j) −b(j)
d(j) c(j)

]

,

where

a(j) = cos ljt +
η

2lj
sin ljt, b(j) =

sin ljt

lj
,
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c(j) = γS(j)λ
β/2
j sin ljt, d(j) = cos ljt −

η

2lj
sin ljt,

and

S(j) =

√

√

√

√

λβ
j

4γλβ
j − η2

.

Then

e−BjsBB∗e−B∗

j s =

[

b(j)c(j)λ
β/2
j I −b(j)d(j)I

−d(j)c(j)λ
β/2
j I d2(j)I

]

.

Therefore,

W j(t1) =





γS(j)λ
β/2

j

lj
k11(j)

1
lj

k12(j)

−γS(j)λ
β/2
j k21(j) k22(j)



 ,

where

k11(j) =

∫ t1

0
e2cs sin2 ljsds

k12(j) = −
∫ t1

0
e2cs

[

sin ljs cos ljs −
η sin2 ljs

2lj

]

ds

k21(j) =

∫ t1

0
e2cs

[

sin ljs cos ljs −
η sin2 ljs

2lj

]

ds

k22(j) =

∫ t1

0
e2cs

[

cos ljs −
η sin ljs

2lj

]2

ds.

The determinant ∆(j) of the matrix W j(t1) is given by

∆(j) =
γS(j)λ

β/2
j

lj
[k11(j)k22(j) − k12(j)k21(j)]

=
γS(j)λ

β/2
j

lj
{
(∫ t1

0
e2cs sin2 ljsds

)

(

∫ t1

0
e2cs

[

cos ljs −
η sin ljs

2lj

]2

ds

)

−
(∫ t1

0
e2cs

[

sin ljs cos ljs −
η sin2 ljs

2lj

]

ds

)2

}.

Passing to the limit when j goes to ∞ we obtain that

lim
j→∞

∆(j) =
(e2ct1 − 1)(1 − 2ect1 + e2ct1)

24c3
.

Therefore, there exist constants R1, R2 > 0 such that

0 < R1 < |∆(j)| < R2, j = 1, 2, 3, . . .
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Hence,

W
−1

(j) =
1

∆(j)





k22(j) − 1
lj

k12(j)

γS(j)λ
β/2
j k21(j)

γS(j)λ
β/2

j

lj
k11(j)





=

[

b11(j) b12(j)

b21(j)λ
β/2
j b22(j)

]

,

where bn,m(j), n = 1, 2; m = 1, 2; j = 1, 2, . . . are bounded. From here using the same compu-

tation as in Theorem 2.1 we can prove the existence of constant L2(η, γ) such that

‖W−1
j (t1)‖Zβ/2

≤ L2(η, γ), j = 1, 2, . . . .

Now, we define the following linear and bounded operators

W (t1) : Zβ/2 → Zβ/2, W−1(t1) : Zβ/2 → Zβ/2,

by

W (t1)z =
∞
∑

j=1

Wj(t1)Pjz, W−1(t1)z =
∞
∑

j=1

W−1
j (t1)Pjz.

Therefore, W (t1)W
−1(t1)z = z and

W (t1)z =

∫ t1

0
T (−s)BB∗T ∗(−s)zds.

Finally, we will show that given z ∈ Zβ/2 there exists a control u ∈ L2(0, t1; X) such that Gu = z.

In fact, let u be the following control

u(t) = B∗T ∗(−t)W−1(t1)z, t ∈ [0, t1].

Then,

Gu =

∫ t1

0
T (−s)Bu(s)ds =

∫ t1

0
T (−s)BB∗T ∗(−s)W−1(t1)zds

=

(∫ t1

0
T (−s)BB∗T ∗(−s)ds

)

W−1(t1)z = W (t1)W
−1(t1)z = z.

Then, the control steering an initial state z0 to a final state z1 in time t1 > 0 is given by

u(t) = B∗T ∗(−t)W−1(t1)(T (−t1)z1 − z0) = B∗T ∗(−t)
∞
∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0).
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4 Appendix: Some Results About C0-Semigroups

In this section we prove a lemma that characterizes a very large class of C0-semigroup appearing

in many systems of partial differential equations, like reaction diffusion systems, second order

systems wih dissipation, thermoelastic plate equations, beam equations, damped vibration of the

string and others systems of partial differential equations. These first Lemma can be found in H.

Leiva [14].

Definition 4.1 A family {T (t)}t≥0 of bounded linear operators mapping the Banach space Z in

to Z is called a C0-semigroup if the following three conditions are satisfied:

(i) T (t + s) = T (t)T (s), t, s ≥ 0;

(ii) T (0) = I (I is the identity operator in Z);

(iii) for each z ∈ Z, we have that

lim
h→0+

‖T (h)z − z‖ = 0.

Definition 4.2 (The infinitesimal generator) Let {T (t)}t≥0 be a C0-semigroup in Z. Then the

operator A : D(A) ⊂ Z → Z defined by the limit

Az = lim
h→0+

T (h)z − z

h
, z ∈ D(A), (4.51)

where

D(A) = {z ∈ Z : lim
h→0+

T (h)z − z

h
exists} (4.52)

is called the infinitesimal generator or simply the generator of the semigroup {T (t)}t≥0.

The following theorem characterizes the fundamental properties of the infinitesimal generator of

a C0-semigroup.

Theorem 4.1 Let {T (t)}t≥0 be a C0-semigroup in Z and A its infinitesimal generator with

domain D(A). Then

(a) D(A) is a linear subspace in Z and A on D(A) is a linear operator;

(b) if z ∈ D(A), then T (t)z ∈ D(A), t ≥ 0 is differentiable in t and

d

dt
T (t)z = AT (t)z = T (t)Az, t ≥ 0; (4.53)
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(c) if z ∈ D(A), then

T (t)z − T (s)z =

∫ t

s
T (u)Azdu, t, s ≥ 0; (4.54)

(d) the linear subspace D(A) is dense in Z, and A on D(A) is a closed operator.

Theorem 4.2 Let {T (t)}t≥0 be a C0-semigroup in Z and A its infinitesimal generator with

domain D(A). Then the Cauchy problem
{

z′(t) = Az(t), t > 0
z(0) = z0, z0 ∈ D(A)

(4.55)

has the unique solution

z(t) = T (t)z0 (4.56)

Definition 4.3 (Analytic semigroup) A C0-semigroup {T (t)}t≥0 on Z is called analytic if for all

z ∈ Z the function t → T (t)z ∈ D(A) is real analytic on 0 < t < ∞ and

d

dt
T (t)z = AT (t)z = T (t)Az, t ≥ 0. (4.57)

Therefore, T (t)z ∈ D(A) for t > 0 and z ∈ Z.

Lemma 4.1 Let Z be a separable Hilbert space and {An}n≥1, {Pn}n≥1 two families of bounded

linear operators in Z with {Pn}n≥1 being a complete family of orthogonal projections such that

AnPn = PnAn, n = 1, 2, 3, . . . (4.58)

Define the following family of linear operators

T (t)z =
∞
∑

n=1

eAntPnz, t ≥ 0. (4.59)

Then:

(a) T (t) is a linear bounded operator if

‖eAnt‖ ≤ g(t), n = 1, 2, 3, . . . (4.60)

for some continuous real-valued function g(t).

(b) under the condition (4.60) {T (t)}t≥0 is a C0-semigroup in the Hilbert space Z whose infini-

tesimal generator A is given by

Az =
∞
∑

n=1

AnPnz, z ∈ D(A) (4.61)
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with

D(A) = {z ∈ Z :
∞
∑

n=1

‖AnPnz‖2 < ∞} (4.62)

(c) the spectrum σ(A) of A is given by

σ(A) =

∞
⋃

n=1

σ(Ān), (4.63)

where Ān = AnPn.

Proof . (a) Since AnPn = PnAn, then for all z ∈ Z, {eAntPnz}∞n=1 is an orthogonal family of

vectors in Z. Therefore,

‖T (t)z‖2 =

∞
∑

n=1

‖eAntPnz‖2 ≤ (g(t)‖z‖)2.

So,

‖T (t)z‖ ≤ g(t)‖z‖.

(b) we first check condition (i) from definition (4.1)

T (t)T (s)z =
∞
∑

n=1

eAntPnT (s)z

=
∞
∑

n=1

eAntPn(
∞
∑

m=1

eAmsPmz)

=
∞
∑

n=1

eAn(t+s)Pnz = T (t + s)z.

Condition (ii) from definition (4.1) follows from the completness of the family {Pn}n≥1. That is:

z =
∑∞

n=1 Pnz, z ∈ Z.

Let us check condition (iii) of definition (4.1).

‖T (t)z − z‖2 ≤
∞
∑

n=1

‖eAnt − I‖2‖Pnz‖2

=
N
∑

n=1

‖eAnt − I‖2‖Pnz‖2 +
∞
∑

n=N+1

‖eAnt − I‖2‖Pnz‖2

From (4.60) there exists a continuous function k(t) such that

‖T (t)z − z‖2 ≤ sup
n=1,2,...,N

‖eAnt − I‖2
N
∑

n=1

‖Pnz‖2 + k(t)
∞
∑

n=N+1

‖Pnz‖2
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Given ǫ > 0 we can find N large enough such that

k(t)
∞
∑

n=N+1

‖Pnz‖2 < ǫ

for t ∈ [0, δ], δ > 0. On the other hand, limt→0+ supn=1,2,...,N ‖eAnt − I‖ = 0.

Hence, limt→0+ ‖T (t)z − z‖ = 0.

Let A be the infinitesimal generator of this semigroup. Then from definition 4.2, we have for

all z ∈ D(A)

Az = lim
t→0+

T (t)z − z

t
= lim

t→0+

∞
∑

n=1

(eAnt − I)

t
Pnz.

Therefore,

PmAz = Pm

(

lim
t→0+

∞
∑

n=1

(

eAnt − I
)

t
Pnz

)

= lim
t→0+

(

eAmt − I
)

t
Pmz = AmPmz.

Hence,

Az =
∞
∑

n=1

PnAz =
∞
∑

n=1

AnPnz,

and

D(A) ⊂ {z ∈ Z :
∞
∑

n=1

‖AnPnz‖2 < ∞}.

Now, suppose z ∈ {z ∈ Z :
∑∞

k=1 ‖AkPkz‖2 < ∞}. Then
∑∞

k=1 ‖AkPkz‖2 < ∞ and y =
∑∞

k=1 AkPkz ∈ Z.

Next, if we put zn =
∑n

k=1 Pkz, then zn ∈ D(A) and Azn =
∑n

k=1 AkPkz.

Hence, limn→∞ zn = z and limn→∞Azn = y, and since A is a closed linear operator we get

that z ∈ D(A) and Az = y.

Proof of (c). It is equivalent to prove the following

ρ(A) =
∞
⋂

n=1

ρ(Ān).

It is clear that
⋂∞

n=1 ρ(Ān) ⊂ ρ(A). We shall prove that ρ(A) ⊂ ⋂∞
n=1 ρ(Ān). In fact, let λ be in

ρ(A). Then (λ −A)−1 : Z → D(A) is a bounded linear operator. We need to prove that

(λ − Ām)−1 : R(Pm) → R(Pm)
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exists and is bounded for m ≥ 1. Suppose that (λ − Ām)−1Pmz = 0. Then

(λ −A)Pmz =
∞
∑

n=1

(λ − An)PnPmz

= (λ − Am)Pmz = (λ − Ām)Pmz = 0.

Which implies that, Pmz = 0. So, (λ − Ām) is one to one.

Now, given y in R(Pm) we want to solve the equation (λ− Ām)w = y. In fact, since λ ∈ ρ(A)

there exists z ∈ Z such that

(λ −A)z =

∞
∑

n=1

(λ − An)Pnz = y.

Then, applying Pm to the both side of this equation we obtain

Pm(λ −A)z = (λ − Am)Pmz = (λ − Ām)Pmz = Pmy = y.

Therefore, (λ− Ām) : R(Pm) → R(Pm) is a bijection, and since R(Pm) is a closed, it is a Banach

space. So, we can invoke the Open Mapping Theorem to coclude that (λ−Ām) : R(Pm) → R(Pm)

exists and is a bounded linear operator. Hence, λ ∈ ρ(Ām) for all m ≥ 1. We have proved that

ρ(A) ⊂
∞
⋂

n=1

ρ(Ān) ⇐⇒
∞
⋃

n=1

σ(Ān) ⊂ σ(A).

Lemma 4.2 Suppose the conditions of Lemma 4.1 holds and S is a bounded subset of C with

Re(S) > 0 such that

− 1

λn
σ(An) ⊂ S, λn > 0 for n = 1, 2, . . . ,

Then, the operator A given by (4.61) generates an analytic C0-semigroup.

Proof If we put Dn = − 1
λn

An, then An = −λnDn, σ(Dn) ⊂ S and the operator A can be written

as follows

−Az =
∞
∑

n=1

λnDnPnz, z ∈ D(A)

From Theorem 3.2 it is enough to prove the operator −A is sectorial. In fact, let θ ∈ (0, π/2)

such that for any λ ∈ σ(S) we have that |argλ| < θ.

We shall prove the sector

Sθ = {λ ∈ C : θ ≤ |argλ| ≤ π, λ 6= 0}
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is in the resolvent set of −A and there exists a constant M such that

‖(λ + A)−1‖ ≤ M

|λ| , λ ∈ Sθ. (4.64)

Since λ ∈ Sθ., then λ
λn

is not in σ(Dn) for all n ≥ 1 and the operator λ − λnDn is invertible.

Moreover, we shall prove the existence of constant M > 0 such that

‖(λ − λnDn)−1‖ ≤ M

|λ| , n = 1, 2, . . . .

In fact, for such λ we have the following estimate

‖R(λ, Dn)‖ = ‖(λ − Dn)−1‖ = ‖(λ − I)−1
{

I − (Dn − I)(λ − I)−1
}−1 ‖

≤ 1

|λ − 1|‖
{

I − (Dn − I)(λ − I)−1
}−1 ‖

≤ 1

|λ − 1|

{

1 − ‖Dn − I‖
|λ − 1|

}−1

≤ C(‖Dn‖)
|λ| ,

if |λ| is sufficiently large.

On the other hand, we have that

‖Dn‖ =
√

r(DnD∗
n) =

√

sup{λ : λ ∈ σ(DnD∗
n)} ≤ K, n = 1, 2, . . . .

where r(DnD∗
n) denotes the spectral radius of DnD∗

n. From here, we obtain the existence of M

such that

‖(λ − Dn)−1‖ ≤ M

|λ| , λ ∈ Sθ, n ≥ 1.

Hence,

‖(λ − λnDn)−1‖ =
1

|λn|
‖( λ

λn
− Dn)−1‖

≤ 1

|λn|
M
|λ|
|λn|

=
M

|λ| , λ ∈ Sθ, n ≥ 1.

Now, we consider the equation

λz + Az = y, z ∈ D(A), y ∈ Z

If y =
∑∞

n=1 Pny, then the foregoing equation is equivalent to

∞
∑

n=1

(λ − λnDn)Pnz =
∞
∑

n=1

Pny
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i.e.,

(λ − λnDn)Pnz = Pny ⇐⇒ Pnz = (λ − λnDn)−1Pny, n = 1, 2, . . .

Therefore, z =
∑∞

n=1(λ−λnDn)−1Pny is well defined and (λ+A)−1 is a bounded linear operator.

So, λ is in the resolvent set of −A for all λ in the sector Sθ, and (4.64) holds.

Corollary 4.1 Suppose the conditions of Lemma 4.1 holds and σ(An) = −λnσ(Dn), Dn ∈
L(R(Pn)), σ(Dn) ⊂ S for n = 1, 2, . . . , where S is a bounded subset of C with Re(S) > 0

and

0 < λ1 < λ2 < · · · < λn → ∞.

Then, the operator A given by (4.61) generates an analytic C0-semigroup.
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