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Abstract 

Let (X, r) be a countable topological space. We say that r is an analytic (Borel) topology if 
r as a subset of the Cantor set 2 X  (via characteristic functions) is an analytic (Borel) set. For 
example, the topology of the Arhangel'skii-Franklin space S, is Fg6. In this paper we study the 
complexity, in the sense of the Borel hierarchy, of the subspaces of S,. We show that S, has 
subspac'es with topologies of arbitrarily high Borel rank and it also has subspaces with a non 
Borel topology. Moreover, a closed subset of S, has this property iff it contains a copy of S,. 

Keywords: Countable topological spaces, sequential spaces, Borel and analytic sets. 
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1 Introduction 

Let (X, r) be a countable topological space. We say that r is an analytic (Borel) topology if r 
as a subset of the Cantor set 2 X  (identifying a subset of X with its characteristic function) is an 
analytic (Borel) set. Most of the examples of countable topological spaces found in the literature 
are analytic. For example, every second countable topology is Fad, in particular, the topology of the 
rational is (in fact a complete) FU6 subset of 24. Another examples of F a d  topologies are the Arens 
space [I] or its more general version, the Arhangel'skii-Franklin space S, [2]. A systematic study 
of analytic topologies was initiated in [ll] where it was shown explicitly the connection between 
descriptive set theoretic properties and pure topological properties of a given space. For example, 
analytic topologies are tight related to spaces of continuous functions: a T2 regular countable space 
is analytic iff it is homeomorphic to a countable subspace of cp(TVN) (the space of real valued 
continuous functions over the Baire space TVN with the pointwise topology) [ll, theorem 6.11. 

In this note we are interested in studying the complexity of the subspace topologies of a given 
countable space. It is clear that any subspace Y of a space X with an analytic topology also has 
an analytic topology. However, the complexity of the subspace topology of Y (measured in terms 
of the Borel hierarchy) might vary considerably depending on X and Y. On the one hand, if X 
is second countable or more generally with a F, basis (see section 3.2 for the definition), then the 
topology of every subspace of X is Fad. On the other hand, we will show in this paper that the 
Arhangel'skii-Franklin space S, (which has a FU6 topology) has subspaces with arbitrarily high 
Borel rank and also has non Borel subspaces (see 92 for the definition of S, and some general 
information about it). 

Our main result is the following 

Theorem 1.1. Let X be a closed subset of S,. The following are equivalent: 

(i) X has a subspace whose topology is not Borel. 
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(ii)  X has subspaces with Borel topology of arbitrarily high Borel rank. 

(iii) X contains a copy of S,. 

The proof uses the fact that S, is a sequential space, thus every closed subspace X has associated 
an ordinal p(X) called the sequential rank (see the definition in 52). We will show the following 

Theorem 1.2. Let X be a closed subset of S,. 

( i )  If p(X) < wl, then the subspace topology of every subset of X is Borel. 

(i i)  If p(X) = wl, then X has a closed copy of S, and a subspace whose topology is not Borel. 

Examples of subspaces of S, with Borel topology of arbitrarily high rank are presented in 54 
and are given essentially by the terminal nodes of wellfounded trees. We will construct Borel filters 
of arbitrarily high rank which in fact are the nbhd filter of the unique non isolated point of a certain 
subspace of S,. Part (i) and (ii) of theorem 1.2 are shown in 55 and 56 respectively. 

A very natural question is to determine which countable spaces satisfy the conclusion of theorem 
1.1. In particular, we would like to know when a countable space contains a copy of S, (a similar 
question was asked in [2]). In section $3 we show that if a countable space X with Borel topology 
satisfies that the nbdh filter of every point is Borel, then every subspace of X also has a Borel 
topology. Thus, by theorem 1.1, there must be a point s in S, such that the nbhd filter of s is not 
Borel. Since S, is homogeneous, then the nbhd filter of every point is not Borel (we will show that 
in fact, they are complete analytic sets (see proposition 6.4)). This stands in contrast with the fact 
that S, has a Fu6 topology. 

We end this introduction making some comments about the connection between analytic topolo- 
gies and the descriptive complexity of Cp(X), the space of real valued continuous function on a non 
discrete completely regular countable topological space X with the topology of pointwise conver- 
gence. There have been a lot of work on the classification of Cp(X) (see [6, 4, 51 and the references 
therein). One of their main results is that if Cp(X) is Fog as a subset of IRX, then Cp(X) is home- 
omorphic to aW (the countable product of the space of sequences eventually equal to zero) . It 
can be shown that a regular topology on X is analytic iff Cp(X) is analytic. However the exact 
relationship between the complexity of the topology on X and that of Cp(X) has not been fully 
investigated. For the case of spaces with only one non isolated point, i.e. spaces associated to 
filters, this has been done ([6, Lemma 4.21 and references therein). We have not pursued this issue 
here but we think it is worth and it will be treated elsewhere. 

In [?, 51 was studied the problem of classifying CD (X)  the set of continuous functions on X 
with the topology of pointwise convergence on D,  where D is a countable dense subset of X ,  i.e, 
CD(X) = { f  ID : f E C(X) )  IRD. They have shown that the Borel complexity of CD(X) might 
vary considerably depending on D and X.  For instance, for every countable ordinal a there is a 
space X, and a dense subset D, of X, such that C,(X,) is Fu6 and Cu, (X,) has Borel rank larger 
than a (see [5, Prop. 2.61. Our results go in the same line and show that a similar phenomenon 
happens within the single space S, (see 5.4). 

2 Preliminaries 

We will use the standard notions and terminology of descriptive set theory (see for instance [lo]). 
w<* denotes the collection of finite sequences of natural numbers. If s E w<,, Is1 denote its length. 
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For n E N, s-n is the concatenation of s with n. For cu E NN, we denote culn the restriction of cu 
to {O,l , .  . . , n  - 1). The Borel sets of rank cu will be denoted by xi and II;, where for instance 
~7 and l l?  are respectively the open and closed sets, E! and II: are respectively the F, and G6 
sets and so on. A subset of a Polish space is analytic (or xi) if it is the continuous image of the 
Baire space NN. A well known result of Souslin says that a subset of a Polish space is Borel iff it 
is analytic and co-analytic (see for instance [lo, theorem 14.111). Let X,  Y be Polish spaces and 
A C X ,  B C Y. The set A is said to be Wadge reducible to B, denoted by A 5, B, if there is a 
continuous function f : X + Y such that x E A iff f (x) E B (see [lo, §21.E]). Notice if A 5, B 
and A is Borel (projective), then the Borel (projective) type of B is at least that of A. Let I? be a 
class of sets in Polish spaces. If Y is a Polish space, a set A C Y is called r-complete if A E r ( Y )  
and B 5, A for all B E r (see [lo, §22.B]). The archetypical xi-complete set is the collection of 
ill founded trees on N, i.e. trees with a t  least one infinite branch (see [lo, 27.11). Any xi-complete 
set is not Borel. Thus to show that an analytic subset A of a Polish space Z is not Borel it suffices 
to show that -the set of ill founded trees is Wadge reducible to A. 

Let A be a subset of a topological space X ,  the sequential closure of A is defined by transfinite 
recursion as follows [2]. Let A(') = A and A(') be the set of all limits of convergent sequences in A, 
A(o+') = [A(~) ] ( ' )  and A(B) = U,<~A(O) for P a limit ordinal. The sequential closure of A, denoted 
[AIseq, is the set ~ ( ~ ' 1 .  The space X is called sequential if for every A C X the closure of A is 
equal to  its sequential closure, i.e. z = [AIseq. A subset 0 C_ X is said to be sequentially open iff 
for all x E 0 and a sequence x, converging to x there is N such that x, E 0 for all n > N. A 
space is sequential iff every sequentially open set is in fact open. A closed subspace of a sequential 
space is sequential. 

Definition 2.1. Let X be a sequential space and A g X .  The  sequential rank of A i n  X ,  denoted 
a(A,  X )  is  defined by 

a(A,  X )  = min{cu : A(O) = ~ ( ~ " 1  1 
The  sequential rank of X is  defined by 

The  local versions of these ordinals are defined as follows. Given A C_ X and s E X define 

u(s ,A)  = m i n { a :  s E ~ ( ~ 1 )  f o r s  € 2  

The following elementary facts about these ordinals are stated for later reference. 

Proposition 2.2. Let X be a sequential space, A 5 X and s E X .  

1 ,  A ( ~ A ? X ) )  = 3, 

2. p(s, X )  = 0 iff s i s  isolated i n  X .  

3. a ( A , X )  = s ~ p , ~ ~ u ( s , A ) .  

4, P(X) = SUPSEX P(S, XI .  



Now we recall the definition of S, and some basic facts about it. Define a topology T over w<, 

by 
U E T H { n  E N : snn $! U )  is finite for all s  E U 

Let S, be the space (w<,, 7). It is clear that S, is T2, zero dimensional and has no isolated points. 
Notice that a set U is T,,,-open iff there is f : w<, + N such that if s  E U, then sAn E U for all 
n 2 f ( s ) .  A sequence {x i ) i  in S, converges to  s  iff {x i ) i  is eventually of the form snni for some 
increasing sequence of integers i n i ) .  F'rom this it follows that S, is sequential. For each t E w<, 
we define 

Nt = { s  E w<, : t 5 s )  

Notice that Nt is a clopen set in S,. If we consider r as a subset of 2"'" (which with the product 
topology is homeomorphic to  the Cantor set), then it is clear that r is Fob. 

S, has showed up in many different contexts. The first occurrence was as an example of a 
sequential homogeneous space of sequential rank w l  [2]. A very interesting description of S, as a 
translation invariant topology over Z is given in [7]. S, has been implicitly used to study sequential 
convergence in Cp(X) [8]. For instance, if Z is a topological space such that there is a continuous 
surjection from Z onto a non-meager subset of EX, then Cp(Z) contains a copy of S,. Another 
occurrence of S, is in the following result: a linear normed space has the Schur property iff it has 
no copy of S, ( [ l l ,  theorem 5.31 and [8, theorem 171). Another interesting property of S, appears 
in [3, example 3.81. 

3 On the complexity of the neighborhood filters 

In this section we will make some comments about the problem of determining when every subspace 
topology of a Borel topology is also Borel. Let us start by analyzing the case of a (Hausdorff) space 
with only one non isolated point. Let F be a filter over N and X be w + 1 with the topology where 
every n E N is isolated and the nbhds of w are the elements of F. Let Y c X ,  then the restriction 
of F to Y, denoted by Fy, is easily seen to satisfied that A E Fy iff A C: Y and A U ( X  \ Y) E F. 
This shows that Fy <, F. Therefore, if F is Borel, then Fy is also Borel and thus the subspace 
topology of Y is Borel for every Y C: X. 

Recall that the nbhd filter Fx of a point x E X is the filter over X \ { x )  defined by A E Fx if 
there is an open set V such that x E V A U { x ) .  Notice that if r is analytic, then every Fz is 
also analytic. It is elementary to show that V is open iff V \ { x )  E Fx for all x E V. In particular, 
this says that if every Fx is Borel, then r is also Borel. The converse is not true, as we will see in 
section 56, S, has a Borel topology but in fact all its nbhd filters are non Borel. 

A basis B for a countable topological space X is said to be F, if B as a subset of 2X is a F, 
set. Every space with a F, basis has a Fob topology [ll, proposition 3.21. The converse is not true, 
since S, has a Fob topology but it does not admit a F, basis [ll, proposition 5.21 (this will be 
deduced also from one of the results presented in this paper). A countable T2 regular space X has 
an F, basis iff X has a closed subbasis iff X is homeomorphic to a countable subspace of CP(2') 
( [ l l ,  theorems 3.2, 3.4 and 6.11.1). It is easy to check that having a F, basis is a hereditary property. 
Moreover, in this case, every nbhd filter is F,. In fact, let {F,), be closed subsets of 2X such that 
B = Un Fn is a basis for r.  Then 
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The set of all (V, A) E 2X x 2X such that V E F, & x E V c A U {x) is compact for any x E X 
and n E N. So .Ex is a countable union of projections of compact sets, therefore it is F, for all x. 
We state this result in the following 

Proposi t ion 3.1. If r has a F, basis, then .Ez is F, for all x. 

The converse of the previous result does not hold. A counterexample is Arens space S2 which 
can be defined as wS2 with the topology it inherits from S, (see [?, Example 1.6.191). This topology 
does not admit a F, basis [I].] but in this space every nbhd filter is Borel (in fact, it is xi, see 
lemma 4.5). 

We will denote the closure operator of a topological space (X, r) by clx or cl,. The following 
result characterizes when every .Ex is Borel for an analytic (and therefore Borel) topology. 

Theorem 3.2. Let r be an analytic topology over a countable set X .  The following are equivalent 

1. .Ex is Bore1 for every x E X .  

2. For each x E X ,  the set Cx = {A C X : x E 2) is Borel. 

3. cl, is a Borel function from 2X into 2X. 

4 .  The relation R(A, Y) given by  '9 is closed in Y" is Borel (in 2X x 2X). 

Proof: Since r is analytic, then R is analytic and each C, is coanalytic. The following equivalences 
are straightforward: 

Notice that the complementation mapping is a homeomorphism of the Cantor set and thus the 
function A ++ X \ (A U {x)) is continuous for every x E X .  To finish the proof we notice that the 
first two equivalences above show that .Ex is Borel iff C, is Borel. The third one shows that if cl, is 
Borel, then R is co-analytic and, being analytic, it is then Borel by Souslin's theorem [lo, theorem 
14.111. The forth one shows that if R is Borel, then C, is Borel for all x. And the last equivalence 
shows that if Cx is Borel for all x,  then cl, has an analytic graph and thus it is a Borel function 
[lo, theorem 14.121. 

In view of the previous result it is natural to introduce the following notion. Let us say that 
a topology on a countable set X is hereditarily Borel if the subspace topology of every Y c X is 
Borel. Thus by theorem 3.2 we have the following result. 

Corollary 3.3. Let r be an analytic topology over X .  If every nbhd filter .Ex of X is Borel, then the 
topology of X is hereditarily Borel. Moreover, the Borel rank of the subspace topologies is uniformly 
bounded. 

Remark  3.4. We do not know whether the converse of 3.3 holds.That is to say, if X has an 
analytic topology such that the nbhd filter of some point is not Borel, then X has a subspace with 
a non Borel topology. 
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We end this section by showing a general fact about the Baire measurability of cl,. 

Proposition 3.5. Let T be a meager (as a subset of 2X) TI topology with infinite m a n y  limit points. 
T h e n  cl, is  not  of Baire class 1. 

Proof: Since T is TI, then it is a dense subset of 2X. Thus the collection of T-closed sets is also 
dense and meager. Given any non T-closed set B, there is a sequence of finite Fn sets such that 
B = limn Fn (in the product topology of 2X). Since T is TI, then = Fn and therefore cl, is not 
continuous at B. This shows that the collection of non continuity points of cl, is a comeager set, 
therefore cl, can not be of Baire class 1. 

Remark 3.6. I n  particular, by [ l l ,  corollary 2.6]), cl ,  i s  not  of Baire class 1 when T is  a n  analytic 
Tl topology with infinite m a n y  limit  points. 

4 Subspaces of S, with topology of arbitrarily high Borel rank 

In this section we will show the following 

Theorem 4.1. For any countable ordinal a there is  X C_ S, such that the subspace topology of X 
i s  a Borel set of rank 1 a. 

The idea for the proof of 4.1 is to associate to a well founded tree T on N a subspace XT of 
S, is such way that the Borel rank of the topology of XT will be, roughly speaking, equal to the 
rank of T .  Let E(T) be the terminal nodes of T. The subspaces we will construct are of the form 
(0) U E(T).  Let us observe that any antichain D (i.e. there are no two elements in D one extending 
the other) is discrete as a subset of S,, so in particular E(T) is a discrete set. Therefore, we will 
actually construct filters of arbitrarily high Borel rank. Our filters are similar to those constructed 
in [4]. It is interesting to realize that these filters correspond to nbhd filters of points in a subspace 
of S,. 

Definition 4.2. For any well founded tree T o n  W, let FT be the nbhd filter of 0 in the subspace 

(0) u E(T) of S w  . 
We will construct by recursion a wl-sequence of trees T, such that FT, is E:-complete, that is 

to say, they will satisfy the following two conditions: 

(i) FTOL is EL. 

(ii) For every A in E i  there is a continuous function V : 2N + 2E(Ta) such that x E A iff 
V(x) E FT,. 

Recall the exact Borel rank of a Ei-complete is precisely a. 
Before stating the preliminary lemmas needed for the proof of theorem 4.1 we will make a 

general observation which shows that the subspaces we will construct can not be sequential. 

Proposition 4.3. Let X S,. If X i s  a sequential subspace of S,, then the topology of X i s  II;. 

Proof: Since X is sequential, then V C_ X is open in X iff V is sequentially open. Therefore V is 
open in X iff for all s E V the following holds 

If {n : sAn E X )  is infinite, then 3NVm 2 N[sAm E X + sAm E V] 

and from this it follows that the topology of X is II;. 
We will use the following result [4, Lemma 8.21 (see also [lo, 23.51) 
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Lemma 4.4. Let A= and a > 1 a countable ordinal. 
7. 

1. A belongs to i f f  there are sets A ,  i n  IIFm for some P, < a such that 

2. A is i n  E:+l i$ there are sets A, i n  EFm for some 13, < a such that 

For a = 1 ,  the sets A, can be chosen to be clopen. 

The base for the induction is given in the following 

Lemma 4.5. Let T = ws2.  Then FT is E2-complete. 

Proof: Notice that E ( T )  = w2. Let V C E ( T ) .  It is easy to check that 

V E F T  iff 3 N v n > N 3 M V m > M ( n , m ) ~ V  ( 1 )  

From this it follows that FT is E i .  To see FT is E2-complete fix A 2N a E:  set. By lemma 4.4 
there are clopen sets F(n ,  m )  such that 

Let V : 2' + 2E(T)  given by V ( x )  = { ( n ,  m )  : x E F(n ,  m ) ) .  Since the F(n,  m)'s are clopen, then 
V is continuous. From ( 1 )  and (2) we conclude that x E A iff V ( x )  E FT. 17 

Remark 4.6. Recall that Arens space S2 is the subspace wS2 of S,. Thus the previous lemma 
might be known (see [4, Remark 8.111) but we have included the proof for the sake of completeness. 

Lemma 4.7. Let Tn be well founded trees such that -TT, is Etn-complete .  Let T be the following 
tree 

T = U  {(n)-S: s E T n )  U ( 0 )  
n 

Then  T is well founded and FT is ~ : + ~ - c o r n ~ l e t e  for a = sup{an + 1 : n E N ) .  

Proof: It is clear that T is well founded. Notice that E ( T )  is the union of {(n)-s : s E E(Tn)}.  
Let an : S, + N(,) be defined by @,(s) = (n)-s. It is clear that an is an homeomorphism. Let 
6, = an[%]. Then 6, is the nbhd filter of ( n )  in the subspace an[E(Tn)  U (011 = {(n)-s : s E 
E(Tn) )  U { ( n ) )  and moreover 6, is x : ~ .  

Let A C_ E ( T ) ,  we claim 

A E FT iff 3N Vn > N A n N(,) E 6, (3) 

From this and lemma 4.4 it follows that FT is x:+~.  
To show (3), suppose A E FT and let W be an open set in S, such that 0 E W and W fl E ( T )  = 

A. There is N such that ( n )  E W for all n > N .  Notice that W n  = W fl N(,) is an open set in 
N(,) ,  ( n )  E W n  and W n  fl an[E(Tn)]  C A fl N(,). Conversely, suppose the right hand side of (3) 
holds and let W n  be an open set in N(,) such that ( n )  E Wn and W n  fl an[E(Tn)]  = A fl N(,) for 
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all n > N .  Let W be the union of the W,'s together with 0. Then W is an open nbhd of 0. It is 
routine to check that W n E(T) C A. 

Now we will show that FT is ~ : + ~ - c o r n ~ l e t e .  Let A C_ 2' be a E:+, set. By lemma 4.4 there 
are E;, sets A, with pn < a such that 

We can assume that p, 5 a, (in fact, suppose a 0  < Po. Find the least n such that Po 5 a,. 
Replace the original sequence {Ak) by {A;) which now starts with n copies of 2' and then the 
original sequence {Ak). Now PA 5 ao. Repeat this procedure as many times as necessary). 

Since FTn is E:,-complete, there are continuous functions V, : 2' + 2E(Tn) such that 

Let V(x) = U, a, [V, (x)] . Notice that V : 2' + 2E(T) is continuous and V(x) n Nin) = an [Vn (x)]. 
From this, (3), (4) and the definition of 6, we have V(x) E FT iff 3 N  V n  > N @,[v,(x)] E 6, iff 
3 N  V n  2 N V,(x) E FT, iff x E A. 

Remark 4.8. The  filter FT occurring i n  the proof of the previous result could be stated i n  terms of 
the Hausdorff operation (see [ lo ,  Exercies 23.51) and the Frechet product (see [4, Section 81). Thus  
the E:+l-completeness of FT can be proved based on  some general results about these operations. 
Our filters are similar to  the filters Fa's constructed i n  14, Section 81. For instances, FT with 
T = wS2 corresponds to F2. 

Proof of 4.1: We will define by recursion a sequence U, of well founded trees such that Fua is 
E:-complete for a an even integer greater than 2 or an odd infinite ordinal. 

We start with Uq = wS2 which works by lemma 4.5. Now taking T, equal to U2k for all n and 
applying lemma 4.7 we obtain U2k+2. For infinite ordinals we start by taking T, = U2, in lemma 
4.7 and obtain U,+l. Now for the inductive step the pattern should be clear. 

It is quite easy to define topologies on the I I  side of the Borel hierarchy once we have available 
topologies on the E side. 

Proposition 4.9. Let (X, r) be a countable topological space. Suppose X = U, U, where U, is  a 
pairwise disjoint family of non  empty open sets. Suppose that r restricted to U, is  E:, -complete and 
a, is  an  increasing sequence of countable ordinals. Then  r is  II;-complete, where X is  sup,(a, f l ) .  

Proof: Let V C X ,  it is clear that V E r iff VnU, is open in Un for all n. Thus r is II; .  Fix A c Y 
be a I I ;  subset of a zero dimensional Polish space Y. Let B, be E;, set with P, < X such that 
A = n, B,. We can suppose w.1.o.g that p, 5 a,. Then as r restricted to Un is E:,-hard there 
are continuous functions f, : Y + 2'" such that y E B, iff f,(y) is open in U,. Define f : Y + 2X 
by f (y) = U, f,(y). Since the U,'s are pairwise disjoint, then f is easily seen to be continuous and 
y E A iff f (y) E r .  

Remark 4.10. The  method of constructing subspaces used i n  the proof of 4.1 and 4.9 does not 
provide examples of topologies of any possible Borel type. For instance, i t  will be interesting to  
determine whether S, has subspaces with topology of type II;,, E!,+~ ( n  2 2) and E:. 

Remark 4.11. Notice also that from 4.1, 3.1, 3.2 and 3.3 i t  follows that S, does not have a F, 
basis. A fact that was proved i n  [ l l ,  proposition 5.21 by a di ferent  method. 
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In this section we will show the following 

Theorem 5.1. Let X c S, be a closed subspace with p(X) < wl. Then  the closure operator clx 
for the subspace topology of X is Borel. In  particular, every subspace of X has a Borel topology 
and, moreover, the Borel rank of the topologies of the subspaces of X is uniformly bounded. 

Let X be a closed subspace of S, with p(X) < wl. In order to use 3.2 and 3.3 we need to show 
that the following sets C, are Borel for all s E X 

We will also allow s @ X ,  since in this case C, would be empty. 

Lemma 5.2. -Le t  X be a closed subspace of S,. For all N the following holds 

Proof: Let A C S, and s E 2 \ A. A straightforward induction on o(s,  A)  shows that there is an 
increasing sequence of integers {nili such that sAni E 2 for all i .  From this the inclusion C follows. 
For the other one, just observe that sAni converges to s. I3 

Lemma 5.3. Let X be a closed subspace of S, and s E X .  I fp(s ,X)  < wl, then there is N such 
that p(sAm, X )  < p(s, X )  for all m 2 N such that s-m E X .  

Proof: Let a = p(s, X )  and B the set of all m such that p(sAm, X )  > a and s-m E X. Suppose, 
towards a contradiction, that B is infinite. Notice that a > 0, otherwise s would be isolated in X 
and therefore there would be only finitely many m such that s-m E X .  We will only analyze the 
case when a is a limit ordinal, the case when a is a successor ordinal can be treated similarly. 

Since a < w l ,  then we can fix an increasing sequence a, < wl of ordinals converging to a .  For 
each n E B, there is A, such that s-n E A, and a(sAn, A,) 2 a,. We can assume w.1.o.g. that 
A, C Ns-, . Let 

Notice that s E 2. We claim that a (s ,  A) > a ,  which is a contradiction. In fact, suppose s E ~ ( ~ 1 ,  
then there is m such that s E A(~"+') .  Therefore there is an increasing sequence of integers ni 
such that sAni E A ( ~ " )  for all i .  Since A, C_ N,-, and the Ns-,'s are disjoint, then it follows that 
sAni E ~ e " )  for all i .  Thus ani 5 o(sAni, Ani) 5 a,, which is impossible if m < ni. 

Proof of 5. I :  By propositions 3.2 and 3.3 it suffices to show that C, is a Borel subset of 2X for all 
s E X.  We will show it by induction on p(s, X).  

If p(s, X )  = 0, then s is isolated in X ,  therefore C, consists of all A c X such that s E A, and 
thus Cs is a closed subset of 2 X .  Suppose that Ct is Borel for all t E X with p(t, X) < a and let 
s E X with p(s, X )  = a .  By lemma 5.3 there is N such that p(sAm,X) < cr for all m 2 N such 
that s-m E X. By the inductive hypothesis, C,-, is Borel for all m 2 N. Now from lemma 5.2 it 
follows that Cs is also Borel. 
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Remark 5.4. Let T be a tree o n  N, then T as a subset of S, is closed and thus a sequential space. 
B y  4.3 the topology of T is Fob. If T is well founded, it has associated a rank as a tree, which 
we will denote by rlc(T) (see I?, $2.E]). It is routine to  check that p(T)  5 r k ( T ) .  For the trees 
U, constructed i n  the proof of 4.1, it can be easily verified by induction that p(U,) = rk(U,) < a. 
It can also be verified that every subspace of U, has a Borel topology of rank at most a and there 
is one (namely E(U,) U ( 0 ) )  whose topology is Borel of rank exactly a. S o  for this examples, the 
sequential rank p ( X )  gives a good bound for the Borel complexity of the topology of every subspace 
of x. 

6 Subspaces of S, with an analytic non Borel topology 

In this section we will show the following 

Theorem 6.1. Let X s S, be a closed subspace with p ( X )  = w l .  Then  there is Y C X such that 
the subspace topology of Y is not Borel. Moreover, there is a closed copy of S, inside X .  

The key lemma is the following 

Lemma 6.2. Let D w<, be an antichain and s E D with p ( s , D )  = w l .  Then  the topology of 
D U { s )  is a complete analytic set, i n  particular, i t  is not Borel. 

Since any antichain is discrete in S, then s is the only non isolated point of D U { s ) .  So the 
topology of D u { s )  is given by the nbhd filter of s in D U { s ) .  

A particular and concrete example of an antichain D such that p(0, D )  = wl is the following: 

D = {sA2n : s ( i )  is odd for all i < Is1 and n E N) (5) 

- Notice the collection of all finite sequences of odd integers is a subset of D and 0 E D.  Thus 
D contains a closed copy of S,. Therefore p(0, D) = wl and from lemma 6.2 we conclude that the 
subspace topology of D U ( 0 )  is analytic and non Borel. 

We will need another property of the ordinal p defined in $2. 

Lemma 6.3. Let X 5 S, be a closed subspace and s E w<,. If p(s, X )  = w l ,  then p(sAm, X )  = wl 
for infinite many  m 's. 

Proof: Suppose that p(sAm, X )  < wl for all m 2 N with s-m E X .  Let a = sup{p(s-m, X )  : s-m E 

X , m  2 N ) .  Let A G X such that s E x. It suffices to show that a ( s ,  A )  5 a + 1. We can 
assume that s $ A. Then there is an increasing sequence of integers {n i l i  such that sAni E 2. By 
hypothesis p(sAni, X )  < a .  Therefore a(sAni, A )  5 a,  thus a ( s ,  A )  5 a + 1. 17 

Using these two lemmas we give the proof of 6.1 

Proof of 6.1: From part ( 4 )  of 2.2 we know that there is s E X such that p ( s , X )  = wl .  We will 
construct an antichain D 5 X such that s E D and p(s, D) = w l .  Thus Y = D U { s )  will be the 
required subspace of X .  By lemma 6.3 p(sAm, X )  = wl for infinitely many m .  The idea is to put 
in D "half" of these sequences s-m and repeat this process with the other "half". More formally, 
for each sequence t such that p(t, X )  = wl put 



WB: be a partition of Bt into two infinite pieces. We define by recursion two sequences 
tv of t h e  of S,., ll 

of sets Dn and En as follows: 

Let 

It is not hard to  verify by induction on n that En 2 D. It is clear that D is an antichain and s E D. 
To see that p (s ,B)  = w l  it suffices to verify that E U {s) is a closed copy of S,. It is clear that 
E U {s) is a copy of S,. To check that E U {s) is closed, notice that if t E E, t' 4 t and Is1 < It'l, 
then t' E E. 

Now we give the 
Proof of 6.2: Since S, is an homogeneous space, we can assume w.1.o.g that s = 0. Consider the 
following function F that maps a tree T on N to a subset of D: 

F(T) = {r E D :  3t E T (ti = Irl & t( i)  5 r ( i )  for all i < Irl) 

For a given r there are only finitely many sequences t such that It1 = Irl and t(i)  5 r ( i )  for all 
i < Irl, thus F is continuous. 

We claim that T is ill founded iff F(T) U (0) is open in D U (0). In fact, suppose first that T 
is ill founded. Let a be an infinite branch of T .  Define 

W = {t E w<,: a ( i )  < t ( i )  for a l l i  < Itl) 

It is clear that W is an open set of S, and 0 E W. Let 

0 is an open set of S,. We will show that 

It is clear that F(T) U (0) C ( D  U (0)) n 0. On the other hand, let r E D n 0. There are two 
cases: (i) If r E Nt n 0 with t E F(T), then t = r as D is an antichain. (ii) If r E W f' D ,  then 
a ( i )  < r (i) all i < Ir 1. Since a is a branch of T, then r E F (T)  by the definition of F (T). 

Suppose now that F(T) U (0) is open in D U (8) and let 0 be an open subset of S, such that 
F(T) U (0) = ( D  U (8)) n 0. By recursion we will define a E NN and a sequence rn E wcW such 
that: 

(1) rn E 0 n D for all n. 
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( 2 )  a l j  E 0 n b  for all j. 

( 3 )  r, ( i )  5 a ( i )  for all i < ITn 1 .  

( 4 )  p (a l j ,D)  = wl for all j. 

( 5 )  Ir,l < Ir,+l 1 for all n. 

Granting this has been done we finish the proof. To show that T is not well founded, let 

To = { t  E T : t ( i )  5 a ( i )  for all i < ( t l )  

It is clear that To is a finitely branching subtree of T .  So it suffices to show that To is infinite. In 
fact, by (1 )  r ,  E 0 n D C F ( T ) ,  thus there is t ,  E T such that t,(i) 5 r,(i) for all i < trnl = Itn 1. 
From ( 5 )  we conclude that the t,'s are all different and from ( 3 )  we have t ,  E To for all n .  

So it remains to show that such a E N' and r, E w<, exist. Since 0 E 0 n b, then there 
is ro E 0 n D. By lemma 6.3 there are infinitely many n such that p ( ( n ) ,  b) = wl.  Thus let 
a ( 0 )  > ro(0)  be such that ( a ( 0 ) )  E 0 and p ( ( a ( o ) ) , b )  = wl.  We can continue this way and define 
a(i) for all i < lrol. Thus ( 1 )  and ( 3 )  are satisfied for n = 0 and ( 2 )  and ( 4 )  for j < Irol. 

Suppose we have defined r ,  and a ( i )  for all i < lrn( = k. Let 

By ( 2 )  s E b n  0, thus there is r,+l E D n 0 extending s .  By (4 )  p ( s , D )  = wl ,  therefore r,+l 
extends properly s. Hence lrnl < Irn+ll and ( 5 )  holds. Now we repeat the same argument as for 
the case n = 0 and define a up to  IT,+^ 1 such that ( 2 )  and ( 4 )  holds for every j <  IT,+^^. 

From 6.1, 3.2 and 3.3 we know that there must be some s E S,  such that Fs is not Borel. Since 
S ,  is homogeneous, then every Ft is not Borel. Even more, Ft is a complete analytic set for every 
t E S,. We will show it for t = 8. In fact, let D be an antichain such that 8 E b and the topology 
of D U ( 8 )  is a complete analytic set (for instance, the one given by ( 5 ) ) .  Since D is discrete, the 
nbhd filter G of 8 in D U ( 8 )  is a complete analytic set. It is easy to check that A E G iff A D 
and A U ( S ,  \ D )  E FO. Thus G 2, FO. So we have shown the following 

Proposition 6.4. Let Fs be the nbdh filter of s in S,. Then Fs is a complete analytic set. 

Remark 6.5. In (121 was defined the following filter and shown to be a complete analytic set. For 
every tree T let F ( T )  be the set { r  E S ,  : 3t E T (ti = Irl & t ( i )  5 r ( i )  for all i < Irl}. For every 
a E N N ,  let T, be the set of all initial segments of a. Then T, is a tree. Let F be the filter given 
by S E F i f  there is a E NN such that F(T,) 5 S .  Then it is clear that F C FO. The proof of 6.2 
follows closely the proof that F is a complete analytic set. In fact, it shows that if T is not well 
founded, then F ( T )  E F and when T is well founded, then F ( T )  @ FO. 
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