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Abstract 

Two topologies T and p  over X are said to be complementary if T A p  is the indiscrete topology 
and r V p  the discrete topology. The lattice of topologies is complemented, i.e, every topology has 
a complement. We will show that every AT topology (i.e. a topology such that the intersettion 
of arbitrary many open sets is open) over a countable set has a maximal complement in the 
lattice of. topologies. This answer a question of S. Watson. This theorem is a corollary of an 
analogous result for the lattice of pre-order. We show that every pre-order P on a countable 
set X admits a maximal complement in the lattice of preorders over X. Moreover, if every 
connected component of P is neither discrete nor indiscrete, then such maximal complement 
has all its chains of size a t  most two. 
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1 Introduction 

The collection of topologies TOP(X)  over a set X is a lattice under inclusion 2. The greatest 
element is the discrete topology (where every set is open) and the smallest element is the indiscrete 
topology (whose open sets are just 0 and X) .  The lattice operations are defined by letting the 
meet T A p of two topologies be T f l  p and the join T V p be the least topology which contains both 
T and p (i.e., the topology having T U p as a subbasis). Moreover, TOP(X)  is a complete lattice. 
Two topologies T and p over X are said to be complementary if T A p is the indiscrete topology 
and T V p the discrete topology. Steiner [I] has shown long time ago that the lattice of topologies 
is complemented, i.e, every topology has a complement. We refer the reader to Watson's paper 
[3] where many new results about the complementation in TOP(X)  and an extensive bibliography 
can be found. This paper is motivated by a question from [3]. It was asked whether there are 
topologies with a maximal complement. It is known that a non discrete Tl topology can not have 
a maximal complement [2]. A topology is said to be an Alexandroff-Tucker (AT) topology if the 
intersection of arbitrary many open sets is open. AT topologies are non Tl (except for the discrete 
topology). We will show the following 

Theorem 1: Every AT topology over a countable set has a maximal complement in the lattice of 
topologies. 

This theorem is a corollary of an analogous result for the lattice of pre-order. This lattice is 
tight connected to the lattice of topologies and specially to the complementation of topologies. 
Let us recall some known facts about them. The collection PO(X)  of pre-orders over a set X 
(i.e. transitive and reflexive binary relations but not necessarily antisymmetric) forms also a lattice 
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under reversed inclusion as the lattice order. The join of two pre-orders P and Q is then P n Q and 
their meet is the transitive closure of P U Q. Moreover P O ( X )  is also a complete complemented 
lattice. Complementation in PO(X)  is quite natural. Two pre-orders P and Q are complementary 
if their intersection, as binary relations, is the identity relation (denoted by A) and the transitive 
closure of their union is the largest binary relation X x X.  The reader should keep in mind that a 
maximal complement in PO(X)  is in fact G-minimal, since in PO(X)  the lattice order is given by 
reversed inclusion. Our main result is the following 

Theorem 2: Every pre-order P on a countable set X admits a maximal complement in PO(X) .  

Moreover, if every connected component of P is neither discrete nor indiscrete, then a maximal 
complement can be found with all its chains of size at most two. The following diagram shows a 
maximal complement for Z with its usual order. The pairs labelled with ,/ form the compiementary 
relation. 

-5 -3  -1 1 3 5 7 
. . .  f ,/ f ,/ f , / f , / f , / f , / f , / . . .  

- 6 -4 -2 0 2 4 6 

Observe that all pairs labelled with f belong to the usual order in Z. Notice that if we erase one 
single ,/, then the resulting relation Q is not a complement of Z, because the pair removed can 
not be recovered by the transitive closure of Q together with the order of Z. 

Let 5 be a pre-order over a set X ,  its associate AT topology r<  is defined as the topology 
generated by the collection of sets of the form {x E X : a 5 x) with a E X .  This is in fact 
a characterization of AT topologies. Namely, given an AT topology r, define 5, by x 5, y iff 
x E (y). Then 5, is a pre-order and r is its associate AT topology. Moreover, r is To iff 5, is a 
partial order (i.e it is antisymmetric). The lattice order in P O ( X )  is taken as reversed inclusion so 
that it coincides with the induced order when we view P O ( X )  (via r < )  - as a subset of TOP(X).  
However PO(X)  is not a sublattice of TOP(X) .  

Thus the question about the existence of maximal complements for an AT topology has two 
natural variants according to where we look at it: either inside PO(X)  or inside TOP(X) .  However, 
if p is an AT topology, then the topology generated by p together with finitely many sets is again 
AT. Therefore if a complement of an AT topology is maximal in PO(X) ,  then it is also maximal 
in TOP(X) .  In other words, Theorem 1 follows from Theorem 2. On the other hand, we have 
some partial results suggesting that some subtle conditions must be imposed in order to answer 
the general question about the existence of a maximal complement for an arbitrary topology over 
a countable set. 

Our result can not be extended to arbitrary pre-orders over an uncountable set. By a Fordor's 
lemma type argument it can be easily shown that wl  with its usual order does not have a maximal 
complement in PO(wl). On the other hand, the main result can be easily extended to any pre-order 
P such that both P and P-l are separable. In fact, the construction can be carried out inside a 
countable dense and co-dense subset of X.  Therefore these type of partial orders do have maximal 
complements. 

We will make next some comments about the analogous question for minimal complements. A 
standard Zorn's lemma argument shows that given a pre-order P and a complement Q of P there 
is a c-maximal partial order R extending Q and such that R n P = A. It is clear that such R is 
a minimal complement of P in PO(X) .  Thus the existence of minimal complement in PO(X)  is 
quite easy to establish. However, it is not clear if such minimal complements are also minimal in 
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TOP(X) .  On the other hand, nothing similar happens for maximal complements, that is to say, 
there is a partial order P and a complement Q of P such that there is no maximal complement of 
P above Q in PO(X) .  In fact, consider the following example. Let P be N with its usual order and 
QA = {(n, 0) : n E A) U A for A N. Notice QA is a complement of P iff A is infinite. Therefore 
for every infinite A there is no R c QA such that R is a maximal complement for P .  

We end the introduction by fixing the notation and terminology. X will always denote a 
countable set. We will denote a pre-order over X either by 5 or just P as a binary relation. In 
case we have more than one pre-order we will write 5 p  to avoid any possible confusion. The strict 
relation is denoted by 4,  that is to say, x 4 y if x 5 y and y $ x. Since a pre-order is not necessarily 
antisymmetric it is convenient to use the following equivalence relation. Let x - y if x 5 y and 
y 5 x. A subset Y of a pre-ordered set (X, 5 )  is said to be open (in the associated AT topology of 
(X, 5 ) )  if whenever x E Y and x 3 y, then y E Y. An element x of a pre-ordered set' (X, 5) will 
be called clopen if whenever y 5 x 5 z for some y, z E X ,  then x - y - z (i.e. the --equivalence 
class of x is clopen). A non clopen element x of X will be called maximal if there is no y E X such 
that x 4 y. The notion of a minimal element is defined analogously. The collections of maximal 
and minimal elements of X will be respectively denoted by Max and Min. A subset A c X is 
said to be up-dense if for every x E X there is y E X such that x 5 y. Analogously we define the 
notion of a down-dense set. A (connected) component of a pre-order P is a non-empty subset D 
of X such that for every x,  y E D ,  there is a path in P U P-I from x to y. A component D of P is 
said to be trivial, if either D has only one element or the restriction of P to D is equal to D x D.  

2 Maximal complements in the lattice of pre-orders 

Our main result was suggested by the following example. Let P be the partial order of all binary 
sequences 2<'" with the usual extension order 5. It is clear that there are elements a,, b, in 2<'" 
such that a, 4 b, and moreover the an's form a dense set in 2<'". For instance, take the an's to 
be the collection of all sequences of even length ordered by size and let b, be a, followed by 0. 
Consider the following arrangement 

000 010 100 110 00000 00010 00100 00110 
t t t t  t / t / t / t . . .  

0 00 01 10 11 0000 000 1 0010 0011 

Where 0 is the empty sequence (which is the minimum of P ) .  The top row corresponds to bl, b2,. . . 
and the bottom row to 0, a1 , a2, - . . Notice that all pairs labelled by t belong to P .  The collection 
Q of all pairs labelled by / together with the identity A is a complementary relation for P. In 
fact, it is clear that Q n P is equal to A. To see that the transitive closure of Q U P contains every 
element of 2<'", just observe that we can travel from any sequence to some a, (by the density of 
the an's) and then move towards 0 following the diagram above by using alternatively P or Q. 
Moreover, Q is a maximal complement for P . 

For the rest of this section, P will denote a pre-order over X .  We will assume (unless stated 
otherwise) that P has no trivial components (see the introduction). The general case will be treated 
at the end of this section. 

The main ingredient of the proof will be finding sequences {a,), {b,), {h) and {d,) in X 
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carefully arranged as shown in the diagram below, as it was done for Z and 2<W. 

where every pair labelled with belongs to P and every pair labelled with d does not belong to 
P. Let Q be the collection of pairs labelled with d. If the sequence {a,) is up-dense in X and 
{d,) is down-dense, then Q is a complement of P. To make it maximal we will impose some extra 
conditions. The sequences {a,) and {b,) can indeed be found when X does not have maximal 
elements and analogously, when X does not have minimal elements, we can find the sequences 
{c,) and {d,}. Thus the final step in the proof will be to partition X into four pieces such that 
in each piece we can define maximal complements and then glue them together to get & maximal 
complement for the whole space. 

The proof of theorem 1 and 2 will be given in a sequence of lemmas. The definition of {a,), 
{b,), {c,) and {d,) will be by recursion. The basic fact used in the inductive step is the following 

Lemma 2.1. Let F G X be a finite set and x E X .  Suppose P does not have maximal elements. 
Then 

~ { Y E X :  y $ z ) n { y € X :  x 5 y ) # 0  
z € F  

And dually (by reversing 5),  if X does not have minimal elements, then 

Proof: Just notice that, when there are no maximal elements, the set {y E X : y 5 z)  is nowhere 
dense in X with the associate AT topology (see the introduction). 

Lemma 2.2. Suppose P does not have neither maximal nor minimal. Then there are sequences 
{a,), {b,), {k) and {d,) in X such that: 

(i) For all x E X there is n such that d, 5 x 5 a, 

(ii) c, 4 d, 4 a, 4 b,, for all n. 

(iii) a, $ bm for all m < n. 

(iv) cm $ dn for all m < n. 

(v) a, $ dm for all m and n. 

Proof: Let x, be an enumeration of X.  The sequences {a,), {bn), {c,) and {d,) will be defined 
recursively. Since X has neither minimal nor maximal elements, pick a l ,  bl, cl and dl such that 
cl 4 dl 4 xl 4 a1 4 bl. 

Suppose we have defined ai, bi, ci and di for i 5 lc such that (ii)-(v) holds and di 4 xi 4 ai for 
all i 5 lc. By lemma 2.1 there are ak+l and dk+1 such that ak+l $ bi for all i 5 lc, xk+l 4 ak+l, 
ci $ dk+1 for all i 5 lc and dk+l 4 xk+l. Next, pick bk+l and ck+l such that ak+l 4 bk+1 and 
Ck+l 4 dk+l. 



It remains to be checked that condition (v) holds. In fact, it suffices to show that ak+l $ di for 
z < k and ai $ dk+i for z 5 k + 1. But this follows from the fact that ak+l $ bi, ci $ dktl and 
ci 4 di 4 ai 4 bi for all i 5 k. 

As we said before, if P has minimal elements but no maximal elements, then the previous 
construction can be obviously done to get only the sequences {a,) and {b,). By duality we have 
an analogous result when P has no minimal elements. We state these facts in the next lemma. 

Lemma 2.3. ( I )  Suppose P does not have maximal elements. Then there are sequences {a,) 
and {b,) such that: (i) For all x E X there is n such that x 5 a,; (zi) a, 4 b,, for all n and 
(iiz) a, $ b, for all m < n. 

(2) Suppose P does not have minimal elements. Then there are sequences {c,) and {d,) such 
that: (i) For all x E X there is n such that d, 5 x; (ii) c, 4 d,, for all n and (iii) c, $ d, 
for all m < n. 

Lemma 2.4. Suppose P does not have neither maximal nor minimal elements. Then P has a 
maximal complemer~t in P O ( X )  that moreover has chains of size at most two. 

Proof: Let a,, b,, c, and d, be as in lemma 2.2 and define an order Q (viewed as a binary relation) 
as follows 

Q = { ( b n + i , a n ) :  n L l ) u { ( d n , c n + i ) :  n _ > 1 ) U { ( b i , c i ) ) U A  

where A is the diagonal. 
First we show that Q is a coniplement of P .  From conditions (ii), (iii) and (iv) it is clear that 

P n Q = A. We will show that the transitive closure of P U Q is X x X .  To avoid confusion we 
will denote the pre-orders P and Q respectively by 5, and AQ. Let x, y E X and let n ,  m be such 
that c,, 5, y and x 5, b,. Then a path from x to y in P U Q is as follows 

Next we show that Q is a maximal complement. It suffices to show that Q \ {(x, y)) is not 
a complement of P for any (x, y) E Q with x # y. There are three cases for (x, y) to consider: 
(b,+i, a,), (d,, c,+i) or (bl, cl). All three cases are similar and thus we will only analyze the first 
one. 

Let Q' be Q \ {(b,+i, a,)). We will show by induction on the length of paths that (b,+i, x) is 
not in the transitive closure of P U Q' when x is either c,, dm, ai or bi with i < n. 

It is clear that any path in P U Q' starting at b,+] and of length one is of the form bntl 5 ,  x. 
From properties (ii) and (v) in lemma 2.2 we get that x can not be equal to neither c, nor dm for 
any m. And from (ii) and (iii) it is clear that x can not be equal to neither ai nor bi for i < n. 

For the inductive step, suppose that if x is either c,, dm, ai or bi with i 5 n, then there are no 
paths of length k in P U Q' from b,+i to x. Let us consider a path in P U Q' of length k + 1 

where Ri is either P or Q'. By the inductive hypothesis we necessarily have that xk can not be 
equal to neither c,, d,, ai nor bi with i 5 n. Therefore xk has to be equal to either a j  or bj for 
some j > n. We consider two cases: (i) Rk+l = Q' and (ii) Rk+1 = P. For case (i), we have that 
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xk has to be equal to  bj for some j > n. Since (b,+l,a,) $2 Q', then j > n + 1. Thus xk+1 is equal 
to aj-1, j - 1 > n and we are done. For case (ii), by the inductive hypothesis we can also suppose 
that Rk = Q'. Thus xk is equal to a j  for some j > n.  It follows from condition (ii) and (v) that 
xk+l can not be equal to neither ci nor di for any i. Also, from condition (ii) and (iii) we get that 
xk+l can not be equal to neither ai nor bi for any i < j. Since j > n,  we are done. 

Lemma 2.5. Assume P has not maximal elements and, in addition, suppose that every element of 
X has at least one minimal element below it. Then P has a maximal complement in P O ( X )  that 
moreover has all its chains of size at most two. 

Proof: Let a, and b, be as in lemma 2.3 and let Min  be the collection of minimal dements of 
X. Let be the equivalence relation over X defined at the end of the introduction. Let Min* 
be formed by only one representative of each equivalent class of elements of Min.  Define a partial 
order Q as follows 

Q = {(bn+l, a,) : n 2 1) U {(bl, z) : z E Min*) U A 

where A is the diagonal. Since a1 3 bl , then bl $2 Min,  therefore P f l  Q = A. On the other hand, 
since any element x in X has an element of M i n  below it, then it is clear that there is a path in 
P U Q from bl to x. A path from x to bl can be built as in (1). Thus Q is a complement of P .  The 
proof that Q is in fact maximal can be done exactly as in the proof of lemma 2.4. But notice that 
the use of Min* instead of M i n  is essential to guarantee maximality. 

A similar argument shows, mutatis mutandis, the following. 

Lemma 2.6. Assume P has no minimal elements and, in addition, suppose that every element has 
at least one maximal element above it. Then P has a maximal complement Q whose chains have 
at most two elements. 

The next case we need to consider is when every element has at least one maximal element 
above it and also at least one minimal element below it. This case is handled in the following. 

Lemma 2.7. Suppose that every element of X has at least one maximal element above it and also 
at least one minimal element below it. Then P has a maximal complement that moreover has all 
chains of size at most two. 

Proof: Let Min  and Max be respectively the collection of minimal and maximal elements of X. 
As in the proof of lemma 2.5, let Min* and Max* be formed by taking only one element of each 
equivalence class. Pick a E Min* and b E Max*. Define Q as follows 

{(y,x) : x E Min* & y E Max*) U A  

It is straightforward to show that Q is a minimal complement for P .  

Now we will show how to glue together two maximal complements of a partition of the space 
and get a maximal complement of the whole space. This result is similar to proposition 2.10 of [3]. 
Recall that a subset Y of X is said to be open if for all x,  y with x 5 y and x E Y, then y E Y. 
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Lemma 2.8. Let XI ,  X2 be a partition of X such that X1 is open. Let Pi be the restriction of P 
to Xi. Suppose that Qi is a maximal complement for Pi with chains of at most two elements. Then 
P has a maximal complement whose chains have at most two elements. 

Proof: Since X1 is open and X2 is disjoint from XI ,  then there is no x E X1 and y E X2 such that 
x 3 y. We consider two cases. 

(i) X2 is also open. Since each chain in Qi is of size at  most two (and we are assuming that P 
is not trivial) then there are a +Q, b and c +Q, d. Define Q as follows 

Notice that since the Xi's are both open, then (d, a ) ,  (b, c) $Z P. Since each chain in Qi has at 
most 2 elements, then it is easy to verify that Q is indeed transitive and moreover it is a pre-order 
whose chains has at most 2 elements. It is also routine to check that Q is a complement for P. To 
see that Q is a maximal complement, observe first that Qi is equal to the restriction of Q to Xi. 
So it suffices to show that if we remove either (dl a)  or (b, c) then the resulting pre-order is not a 
complement of P .  But this is clear, since every path starting from a point of X1 and ending in 
a point of X2 necessarily uses (6, c) and analogously every path starting from a point in X1 and 
ending in a point of X2 necessarily uses (d, a). 

(ii) Suppose now that X2 is not open in X .  As before, there are a +Q, b and c +Q, d. Define 
Q as follows 

Q = Qi uQ2 U{(b,c)) 

Since X2 is not open in X ,  then there are xi E Xi such that xp + xi.  A completely similar argument 
as in case (i) but now replacing (d, a)  by (x2, x i )  shows that Q is a maximal complement for P .  

Now we have all we need to proof our main result. From this point on we will not assume that 
P has no trivial components. 

Theorem 2.9. Every pre-order P over a countable set has a maximal complement in PO(X) .  
Moreover, if P has no trivial components a maximal complement can be found such that its chains 
have size at most two. 

Proof: We first consider the case when P has no trivial components. Let Min  and Max be 
respectively the collection of minimal and maximal elements of X .  Consider the following subset 
of X.  

X1 = {x E X : $a E Min  $b E Max a 5 x 5 b) 
X2 = {x E X : 3a E Min  $b E Max a 5 x 5 b) 

X3 = {x E X : $a E Min  3 b  E Max a 3 x 3 b) 
X4 = {x E X : 3a E Min  3 b  E Max a 5 x 5 b) 

It is clear that they form a partition of X and moreover by lemmas 2.4, 2.5, 2.6 and 2.7 we know 
that P restricted to each Xi has a maximal complement with chains of size at most two. On the 
other hand, it is routine to verify the following 

(i) Xi U X2 is open in X.  
(ii) X2 is open in X1 U X2. 
(iii) X4 is open in X3 U X4. 
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Therefore by lemma 2.8 and (ii) and (iii) above there are maximal complements for P restricted 

to X1 U X2 and Xg U X4 with chains of size at  most two. Now, again by lemma 2.8 and (i) above, 
we get a maximal complement for P .  

Finally, we handle the trivial components. Let Y be the union of all trivial components of P 
and assume Y is not empty. We consider two cases: 

(1) Suppose Z = X \ Y is not empty. Notice that Z and Y are open. From the result we 
just proved, there is a maximal complement Q for the restriction of P to Z. Let Y* be a 
set containing one and only one element of each -equivalence class of elements of Y. Pick 
a, b E Z such that a 4 b. Define a relation R as follows: 

It is routine to check that R is a maximal complement for P. Notice that R has chain of size 
three. 

(2) Suppose X = Y is empty. This is equivalent to say that P is an equivalence relation. We can 
assume that P is neither equal to A nor to X x X .  Let W be the set of all elements of X 
whose equivalence class has size one and let Z be X \ W. We consider two cases. 

(2a) Suppose Z has finitely many equivalence classes and let {a,, b,) with 1 5 n <_ m be 
a selection of two elements of each equivalence class in 2. If m = 1, the maximal 
complement is just the equivalence relation Q defined by letting all elements of W be 
equivalent to a representative of the unique equivalence class in Z. So we will assume 
that m 1 2. Let 

It is routine to check that Q is indeed a maximal complement for P (just draw a diagram 
similar to the one at the beginning of this section). 

(2b) Suppose Z has infinitely many equivalence classes and let {a,, b,} for 7~ E Z be a selection 
of two elements of each equivalence class in Z. Then a maximal complement Q for P is 
defined as follows: 

Q = {(an, bn+l), (b,+l,a,) : n E z) U { ( a i , ~ ) ,  ( Y , ~ I ) ,  (y,b2), ( b 2 , ~ )  : Y E W) U A  

As we have explained in the introduction, the following theorem is a consequence of theorem 
2.9 

Theorem 2.10. A n y  A T  topology over a countable set  admits  a maximal  complement in the lattice 
of topologies. 

Proof: Let (X, 7) be an AT topology and let 5 be the associated pre-order (namely, x 5 y iff 
x E (y)) and denote by P the pre-order (X, 5). Let Q be a maximal complement for P in P O ( X )  
given by 2.9. Then the associate AT topology p of Q is a complement for 7. To see that p is 
maximal in T O P ( X )  just observe that if p C 77 7' and 7' is a complement of 7, then q is also 
a complement of 7. So if there is V E q' \ p, then add V to p to get an AT complement 7 of 7 

properly extending p. But this would contradict the maximality of Q in PO(X) .  
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