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Abstract

Let T be a locally compact Hausdorff space, and let C,(T) be the Banach space of all com-
plex valued continuous functions f vanishing at infinity in T with ||f]|7 = sup,cr |f(t)|. The
aim of the present note is to show that the Grothendieck techniques are not powerful enough to
prove the Diedonné property of C,(T) if T is an arbitrary locally compact Hausdorff space. In
fact, his method of proof is valid if and only if T is further o-compact. However, one can prove
the Dieudonné property of C,(T) for arbitrary T by appealing to the results of an earlier article
of the author (see Remarks 3 below).

1. INTRODUCTION

Let T be a locally compact Hausdorff space. Let X be a locally convex Hausdorff space (briefiy.
a IcHs) which is quasicomplete. Let C,(T) be the Banach space of all complex valued continuous
functions f vanishing at infinity in T with || f||7 = sup;er |f(t)|. M(T) denotes the Banach dual
of C,(T) and consists of all bounded complex Radon measures on T'.

Grothendieck proved in [2] that C,(T') has the strict Dunford-Pettis property (see Theorem 1 of
[2]). Theorem 3 in [2] says that a bounded subset A of M(T) is relatively compact with respect to
o(M(T), M*(T)) if and only if it is so with respect to o(M(T'), 8,), where 3, is the vector subspace
of M*(T) spanned by the characteristic functions of all closed sets in T. At the end of the proof
Grothendieck comments in the Remark on p.152 of [2] that his Theorem 3 continues to be valid if
3, is replaced by the vector subspace of M*(T) spanned by the characteristic functions of all closed
Gs sets in T and considers, for simplicity, the compact case. For our reference below, we shall call
it the strengthened version of Theorem 3 of [2].

Theorem 6 of [2] states that C(K), K a compact Hausdorff space, has Dieudonné property
and gives some necessary and sufficient conditions for a continuous linear map v : C(K) — X.
X a complete IcHs, to be weakly compact. The validity of the Dieudonné property for C(K) is a
consequence of the characterizations given in the second part of the above theorem. His proof is
based on the strict Dunford-Pettis property of C'(K), the strengthened version of Theorem 3 of [2]
and Proposition 11 of [2].

Then in Remark 2 on p.161 of [2] Grothendieck comments that with the help of his techniques
developed in earlier sections (namely, the strict Deunford-Pettis property of C,(T'), the strengtl
ened version of Theorem 3 of [2] and Proposition 11 of [2]) one can show without much difficulty
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that the statements of his Theorem 6 are textually valid for C,(T), when T is a locally compact
Hausdorff space.

Later, Edwards carried out the suggestions of Grothendieck and obtained in Theorem 9.10.4
of [1] the locally compact analogue of Theorem 6 of [2]. His proof of (1)=>(3) of the said theorem
is incorrect, but, as pointed out in [4], can be rectified by appealing to the strict Dunford-Pettis
property of C,(T). In this note we show that his proofs of (3)=>(2 bis) and (2 bis)=>(1) of the abovc
theorem are also incorrect without the additional hypothesis of o-compactness of T. In fact, we
establish here that the Grothendieck techniques can be applied to prove the locally compact version
of Theorem 6 of [2] if and only if the locally compact space is further o-compact. In other words,
the Grothendieck techniques are not powerful enough to obtain the locally compact analogue of his
Theorem 6, contrary to his claim in Remark 2 on p. 161 of [2].

However, using the new techniques developed in [3,4], the author has obtained in [4] several
characterizations for a continuous linear map u : C,(T) — X to be weakly compact, where T is an
arbitrary locally compact Hausdorff space and X is a quasicomplete IcHs. These characterizations
include those mentioned in Remark 2 on p.161 of Grothendieck [2] or in Theorem 9.4.10 of [1] and
as a consequence, C,(T') has Dieudonné property, though T is not o-compact.

2. PRELIMINARIES

Let T be a locally compact Hausdorff space and let C,(T) and M(T) be as in Introduction.
Given u € M(T), p gives rise to a unique regular complex Borel measure on T, which too is denoted
by u. Conversely, given a regular complex Borel measure u on T, there exists a unique bounded
complex Radon measure ( which too is denoted by ) on T to which it corresponds. For this reason,
we shall treat M(T') also as the set of all regular complex Borel measures on T.

Definition 1. Let X be an IcHs. By the first Baire class of X** (which is the dual of (X™*, 3(X™, X))),
we mean the subspace of X** formed by the o(X™**, X*)-limits of o(X, X*)-Cauchy sequences of
elements in X.

We slightly modify the second part of Definition 4 of [2] as below.

Definition 2. Let X be an IcHs and let H be the first Baire class of X**. Then X is said to have
Dieudonné property if for each quasicomplete IcHs Y, every continuous linear map v : X - Y with
w*(H) C Y satisfies u**(X**) C Y.

Lemma. 1 of [2] has been strengthened as Corollary 9.3.2 in [1], with the image space just qua-
sicomplete instead of being complete as in [2]. Since every Banach space is a quasicomplete IcHs,
and since only Corollary 9.3.2 of [1] is used (instead of Lemma 1 of [2]) in the proof of Proposition
9.4.9 of [1] (which is the same as Proposition 11 of [2]), one can replace the completeness hypothesis
of the image space in the said proposition by that of quasicompleteness. With this observation, we
modify Proposition 9.4.9 of [1] as below.
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Proposition 3.Let X be an lcHs and let  be a family of o(X**, X*)-convergent nets of elements
of X. Let H be the vector subspace of X** spanned by X and the limits of members of ®. Then
the following are equivalent:

(1) Ifu: X =Y is a continuous linear map, with Y a quasicomplete IcHs and u**(H) C Y, then
u-‘(X..) C y'

(2) Every equicontinuous, convez, balanced and o(X*, H)-compact set in X* is also o(X™, X**)-
compact.

3. ON THE PROOF OF THEOREM 4.22.3 OF (1]

Theorem 4.22.3 of Edwards [1] is the same as the strengthened version of Theorem 3 of [2]. Let
3, be the vector subspace of M*(T') spanned by the characteristic functions of all closed sets in T'.
Let T = T U {w} be the Alexandroff compactification of T'. It is easy to check by the definition
of the topology of T that the vectur subspace B, of M (T) spanned by the characteristic functions
of closed sets in T is given by Bo = B, &4 Xo- Tonsequently, the argument of reduction to the
compact case as given in the proof of Theorem 3 of [2] is valid.

Edwards [1] uses Grothendieck’s proof of Theorem 3 of [2] to prove its strengthened ver-
snon namely Theorem 4.22.3 of [1}. As in [2], he identifies M(T) with the closed hyperplane

= {2 € M(T) : A({w}) = 0} and then tacitly assumes, as in the original proof of Theorem 3 of
[ ], that (M (T ) ( (T),Q)) and (N,o(M(T),Q)|n) are homeomorphic under this identification,
where Q (resp. Q) is the vector subspace ot M*(T) (resp. M*(T)) spanned by the characteristic
functions of all closed G sets in T (resp. in T'). Unlike the case of 3, the characteristic functions
of many closed non compact G sets in T will not belong to Q if T is not g-compact, i.e. if {w}
is not G5. Thus ene needs a proof to establish the said homeomorphism: as it is no longer obvious
and this result is essential to justify the argument of reduction to the compact case in the proof of
Theorem 4.22.3 of [1].

In this section we prove the homeomorphism of the said spaces under the additional hypothesis
that T is o-compact.

Proposition 4. Let T be a o-compact locally compact Hausdorff space, and let T = T U {w} be
its Alezandroff compactification. Let Q@ /resp. Q) be the vector subspace of M*(T) (resp. M*(T))
spanned by the characteristic functions of all closed G sets in T (resp. in T). Then there is an
isometric isomorphism ¥ of M(T') onto the closed subspace .V = {) € M (T) : |A|({w}) = 0} of

M(T). Moreover, the spaces (M(T),o(M(T),Q)) and (N,a(M(T),Q)|n) are homeomorphic un-
der the map W. (For this part, T need not be o-compact.)

Proof. Let B(T) and B(T) be the o-algebras of Borel sets in T and T, respectively. Then by the
definition of the topology of T we observe that a subset E of T belongs to B(T) if and only if
E\{w} € B(T). Given u € M(T), let ¥(u)(E) = p(£\{w}) for E € B(T). Then clearly ¥(u) is a
regular complex Borel measure on 7' and the complex Radon measure ¥(u) determined by it has
¥ ()| = ||l¢]] and |¥(p)[({w}) = 0. Thus ¥{u) € N for u € M(T). Clearly, the above argument
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is reversible and hence ¥ is an isometric isomorphism of M(T) onto V.

Claim 1. Q = Q & T'x,.

In fact, let F = {F C T : Fclosed Gsin T}, F; = {F C T : F compact G5 in T} aAnd
F, = {F C T : F non compact closed Gsin T}. Then F = FUF,. Let 6 = {G C T :
G closed Gs in T}. For each F € Fy, let F = F; and for each F € Fy, let F = FU {w}. By the
definition of the topology of T, #y = {F': F € F1} C G. As T is g-compact, {w} is G in T'. Hence
there exists a non increasing sequence (V;) of open sets in T such that {w} = N V,. If F € F,
then there exists a non increasing sequence (Uy,) of open sets in T such that F' = ({° U,. Thus,
for F € F;, we have F = F U {w} = N(U,UV,) and hence F € G. Thus F C G. Corversely,
let G € G. Then either w € Gorw ¢ G. Ifw € G, let G =2V, V, open in T. Then G\{w}
is non compact and closed in T and G\{w} = N°(V,\{w}) with each V,\{w} open in T. Thus
G\{w} € 7, and if F = G\{w}, then G = Fsothat Ge F. Hw ¢ G, let G =N V,, V, open in
T. Then G = N°(V,\{w}) with V,\{w} open in T for each n. Moreover, G is a compact set in T.
Thus G € F;. Therefore, G C . This proves that F = G. Consequently, Q = Q ®Tx.,.

Note that a net (uo) in M(T) convergest to u € M(T) with respect to the topology a(M(T),(Q)
if and only if po(f) = p(f) for each f € Q, and W(po) = ¥(p) in N with respect to the topology
a(M(T),Q)|n if and only if W(us)(g) = ¥(u)(g) for each g € Q. Now by Claim 1 and by the fact
that /\ {w}) = 0 for each A € N, we conclude that po — p in M(T) with respect to a(M(T),Q) if
and only if ¥(u,) — ¥(p) in N with respect to o(M(T),Q )|N

This completes the proof of the proposition.

Thus, under ‘the additional hypothesis of o-compactness of T, Proposition 4 justifies the ar-
gument of reduction to the compact case in the proof of Theorem 4.22.3 of [1] . Since the proof
in the remaining part as given in [1] holds, we have the following proposition (modified version of
Theorem 4.22.3 of [1]).

Proposition 5. Let T be a a-compact locally compact Hausdorff space, and let Q be the vector sub-
space of M™*(T) spanned by the characteristic functions of all closed G5 sets in T. Then a bounded
set A in M(T) is relatively compact with respect to o(M(T), M*(T)) if and only if it is so with
respect to o (M(T), Q).

Remarks 1. It seems that the homeomorphism mentioned in Proposition 4 may fail without the
hypothesis of o-compactness of T'. If it fails, then the validity of Theorem 4.22.3 of [1] (for arbitrary
locally compact Hausdorff spaces) remains to be settled.

4. DIEUDONNE PROPERTY OF C,(T), T 6-COMPACT

We shall show in this section that the Grothendieck techniques mentioned in Introduction can
be applied to prove the locally compact version of Theorem 6 of [2] if and only if the locally compact
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space is futher o-compact. Let us begin with the following proposition.
- g sty
- Proposition 8. For each open F, set U in the locally compact Hausdorff space T there ezists
a non decreasing sequence (f,) of positive functions in Co(T) with fn / xu if and only if T is
g-compact.

Proof Let T be o-compact. If the open set U is F,, then clearly U is o-compact. Let U = Ji° Kn
with K,, compact for each n. Since K,, C U, K, is compact and U is open, by Urysohn’s lemma
there exists a g, € C.(T) with compact support contained in U such that 0 < g, < 1in T and
gn(t) =1fort € K. Let f, = maxi<k<n gk Then (fo){° C Co(T) and fn * xv-

Conversely, as T is an F, open set, by hypothesis there exists a sequence of positive func-

" tions (fn)$° C Co(T) such that f, » xr. Given n,K € N, there exists a compact Knx in

T such that |fa(t)] < § for all t € T\Knk. If U, = {t : fa(t) > 0}, then U, is open and

Un = Uiy {t : fa(t) 2 }}. Let Fopo = {t : fu(t) 2 31}, Then U, /T and T = U7°Un =
=1 Ukt Frk C USZ U Knx € T. Thus T is o-compact.

This completes the proof of the proposition.

Corollary. The characteristic functions xy of open F, sets U (resp. xr of closed G sets. F) ::n
T are pointwise limits of non decreasing (resp. non increasing) sequences of positive functions in
Co(T) if and only if T is oc-compact.

Using the Grothendieck techniques we prove below the locally compact analogue of Theorem 6
of [2] under the additional hypothesis that the locally compact space is o-compact. See Remarks 2
for the necessity of the hypothesis of o-compactness to apply the Grothendieck techniques.

Theorem 7. Let T be a o-compact locally compact Hausdorff space. Then C,(T) has Df'eudonné
property. More precisely, given a continuous linear map u : C,(T) = X, where X is a quasicomplete
lcHs, the following conditions are equivalent:

(1) u is weakly compact.
(2) For each closed set F in T, u**(xr) € X.
(8) For each closed G5 set F in T, u**(xr) € X.

(4) For each non decreasing bounded sequence (f,,) of positive functions in Co(T), (u(fn)) con-
verges weakly in X,

Proof.
(1)=>(2) by Corollary 9.3.2 of [1] or by Lemma 1 of [2].

(2)=(3). It is obvious.
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(1)=>(4). Such a sequence (f,) is weakly Cauchy by the Lebesgue bounded convergence theorem
and consequently, by the strict Dunford-Pettis nroperty of Co(T), the sequence (u(fn)) converges
in the topology of X. Thus, in patticular, (4) holds.

(4)=(3). Obviously, it suffices to show that u**(x:s) € X for each open /- set U in T'. Let U be
such a set in T. As T is o-compact, then by Proposition 6 there exists a non decreasing sequence
(fn) of positive functions in C,(T) such that f, » xu. Then by hypothesis (4), there exists a
vector z, € X such that u(f,) — z, weakly. As u* : X* — M(T), bv the Lebesgue b‘ounded
convergence theorem we have

< To, 2" >= ]i,r,n < u(fn),z- >= li,{“ < fru'z* >=< XU u'z" >

and thus
< zoy 2" >=< v (xv), 2" >

for each z* € X*. Therefore, uv**(xv) = z, € X. Hence (3) holds.

(3)=(1). Let Q be the vector subspace of C2*(T) spanned by the characteristic functions xr of
closed G5 sets F in T. Then, as T is o-compact, by Corollary to Proposition 6 there exists a non
increasing sequence (fyn) of positive functions in C,(T) such that f, N\, xF, for each closed Gs set
FinT. Let ® = {(fa) C Co(T) : fn \y XxF, F closed G5 in T}. Then by the Lebesgue bounded
convergence theorem, (f,) is 0(C3*(T), M(T))-convergent in C3*(T) for each (f,) € ®. Let H be
the vector subspace of C3*(T') spanned by C,(T) and the limits of members of ®. Then Q C H.
Now by hypothesis (3), by Propositions 3 and 5 above and by Corollary 9.3.2 of [1] we conclude
that u is weakly compact. Hence (1) holds.

This completes the proof of the theorem.

Remarks. The hypothesis that T is o-compact is essential in the above proof of (4)=>(3) and
(3)=>(1), as Proposition 6 and its Corollary are used. If T is not o-compact, then by Corollary to
Proposition 6, xT and the characteristic functions of many closed G5 sets in T are no longer the
limits of non increasing sequences of positive functions in C,(T’) and hence neither (4) implies (3)
nor (3) implies (1). In other words, the Grothendieck techniques are applicable if and only if T is
further o-compact. -

Remarks 8. Using the techinques developed in [3,4], the author has obtained in [4] 35 characteri-
zations for a continuous linear map u : Co(T) = X to be weakly compact, where T is an arbitrary
locally compact HausdorfT space and X is a quasicomplete IcHs. Since these characterizations in-
clude those of Theorem 7 above, C,(T') has Dieudonné property even though T is not o-compact.
In this connection, the reader may refer to [5], where the author has obtained the said characteri-
zations by using the regular Borel extension of X-valued Baire measures on T.

Remarks 4. Even if Theorem 4.22.3 of [1] were true for arbitrary locally compact Hausdorff spaces
T, as observed in Remarks 2, the hypothesis of o-compactness of 7" cannot be dispensed with in




T. V. PANCHAPAGESAN

Theorem 7 (if the Grothendieck techniques are to be employed).
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