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Abstract 

Let T be a locally compact Hausdorff space, and let C,(T) be the Banach space of all com- 
plex valued continuous functions f vanishing at infinity in T with 1 1  f 1 1 ~  = SUPtE~ ( f ( t ) ( .  The 
aim of the present note is to show that the Grothendieck techniques are not powerful enough to 
prove the Diedonnd property of Co(T) if T is an arbitrary locally compact Hausdorff space. In 
fact, his method of proof is valid if and only if T is further a-compact. However, one can prove 
the Dieudonnd property of Co(T) for arbitrary T by appealing to the results of an earlier article 
of the author (see Remarks 3 below). 

1. INTRODUCTION 

Let T be a locally compact Hausdorff space. Let X be a locally convex Hausdorff space (brieflj.. 
a 1cHs) which is quasicomplete. Let Co(T) be the Banach space of all complex valued continuous 
functions f vanishing a t  infinity in T with ( 1  f l l T  = s u p t E ~  (f (t)l.  M ( T )  denotes the Banach dua'l 
of C,,(T) and consists of all bounded complex Radon measures on T. 

Grothendieck proved in [2] that C,(T) has the strict Dunford-Pettis property (see Theorem 1 of 
[2]). Theorem 3 in [2] says that  a bounded subset A of M ( T )  is relatively compact with respect to 
u ( M ( T ) ,  M*(T)) if and only if it is so with respect to  u (M(T) ,  Po), where Po is the vector subspace 
of M*(T)  spanned by the characteristic functions of all closed sets in T. At the end of the proof' 
Grothendieck comments in the Remark on p.152 of [2] that his Theorem 3 continues to  be valid if 
;IIo is replaced by the vector subspace of M*(T)  spanned by the characteristic functions of all close(1 
Gs sets in T and considers, for simplicity, the compact case. For our reference below, we shall call 
it tlie strengthened version of Theorem 3 of [2]. 

Theorem 6 of [2] states that  C(I(), K a compact Hausdorff space, has Dieudonnk property 
and gives some necessary and sufficient conditions for a continuous linear map u : C ( K )  -+ X .  
.Y a complete ,lcHs, to  be weakly compact. The validity of the DieudonnC property for C ( K )  is a 

consequence of the characterizations given in the second part of the above theorem. His proof ih 

based on the strict Dunford-Pettis property of C ( K ) ,  the strengthened version of Theorem 3 of ['L] 
and Proposition 11 of [2]. 

Then in Remark 2 on p.161 of [2] Grothendieck comments that with the help of his tecliniclnc-.- 
developed in earlier sections (namely, the strict Deunford-Pettis property of Co(T) ,  the strer~gt 1 1  
cned version of Theorem 3 of [2] and Proposition 11 of [2]) one can show without much diffir~rlr\ 
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that  the statements of his Theorem 6 are textually valid for Co(T) ,  when T is a locally compact 
Hausdorff space. 

Later, Edwards carried out  the suggestions of Grothendieck and obtained in Theorern 9.1U.4 
of [ l]  the locally compact analogue of Theorem 6 of [2]. His proof of (1)+(3) of the said theorem 
is incorrect, but, as pointed out in [4], can be rectified by appealing to  the strict Dunford-Pettis 
property of Co(T).  In this note we show that  his proofs of (3)+(2 bis) and (2 bis)+(l) of the ahovc 
theorem are also incorrect without the additional hypothesis of a-compactness of T. In fact, we 
establish here that  the Grothendieck techniques can be applied to  prove the locally compact versio~l 
of Theorem 6 of [2] if and only if the locally compact space is further a-compact. In other words, 
the Grothendieck techniques are not powerful enough to  obtain the locally compact analogue of his 
Theorem 6, contrary to  his claim in Remark 2 on p. 161 of [2]. 

However, using the new techniques developed in [3,4], the author has obtained in [4] several 
characterizations for a continuous linear map u : C,(T) X t o  be weakly compact, where T is an 
arbitrary locally compact Hausdorff space and X is a quasicomplete 1cHs. These characterizatio~~s 
include those mentioned in Remark 2 on p.161 of Grothendieck [2] or in Theorem 9.4.10 of [ l]  ant1 
as a consequence, Co(T)  has Dieudonnb property, though T is not a-compact. 

2. PRELIMINARIES 

Let T be a locally compact Hausdorff space and let Co(T)  and M(T)  be as in Introduction. 
Given p E M ( T ) ,  p gives rise to  a unique regular complex Borel measure on T, which too is denoted 
by p .  Conversely, given a regular complex Borel measure p on T, there exists a unique bounded 
complex Radon measure ( which too is denoted by p) on T to  which it corresponds. For this reason, 
wc sllall treat M ( T )  also as the set of all regular complex Borel measures on T. 

Definition 1. Let X be an 1cHs. By the first Baire class of X** (which is the dual of (X*, P (X*,  X ) ) ) ,  
we rneall the subspace of X** formed by the a(X**,  X*)-limits of a ( X ,  X*)-Cauchy sequences of 
c~lf~rnent,~ in X .  

We slightly modify the second part of Definition 4 of [2] as below. 

Definition 2. Let X be an lcHs and 1 ~ t  H be t,he first Baire class of X* * .  Then X is said to have. 
~ j ~ e r ~ d o n n e  property if for each quasicomplete IcI-ls Y ,  every continuous linear rrlap u : X -+ Y wit 1 1  

uW(I I )  C Y satisfies u**(Xh*)  C Y .  

Lemma 1 of [2] has boe~, strengthened as Corollary 9.3.2 in [I], with the image space just qua- 
sicomplete instead of being complete as in [2]. Since every Banach space is a quasicomplete IcHs, 
and since only Corollary 9.3.2 of [I] is used (instead of Lemma 1 of [2]) in the proof of Proposi t io~~ 
9.4.9 of [I] (which is the same as Proposition 11 of [2]), one can replace the completeness hypothesi: 
of'the image space in the said proposition by that  of quasicompleteness. With this observation, \v(> 
modify Proposition 9.4.9 of [ l]  as below. 



Proposition S.Let X be an IcHs and let @ be a family of a(X", X*)-convergent nets of elements 
of X. Let H be the vector subspace of X" spanned by X and the limits of members of a. Then 
the following are equivalent: 

( 1 )  If u : X -+ Y is a continuous linear map, with Y a quasicomplete lcHs and u**(H) C Y ,  then 
u=* (X**) C Y . 

(2) Every equicontinuous, convez, balanced and u(X*, H)-compact set in X* is also u(X*,  X") -  
compact. 

3. ON T H E  PROOF OF THEOREM 4.22.3 O F  [I.] 

Theorem 4.22.3 of Edwards [I] is the  same as the  strengthened version of Theorem 3 of [2]. Let 
?0 be the  v d o r  subspace of MM'(T) spanned by the  characteristic functions of all closed sets in T .  
Let T = T U (w) be the  A h d r o f f  cornpactification of T. It is easy to check by the  definition 
of the  topology of T t h a t  t h e  vector s~bspace p0 of M(T) spanned by the  characteristic functions 
of closed sets  in T is given by bo = 8, eilx,. Consequently, t he  argument of reduction to the 
compact case a s  given in t h e  proof of Theorem 3 of [2] is valid. 

Edwards ['L] uses Grothendieck's proof of Theorem 3 of [2] to prove i ts  strengthened ver- 
sion, namely Theorem 4.22.3 of [I]. As in [2], he identifies M ( T )  with the  closed hyperplane 
N = {A E M(T) : A((w)) = 0) and then tacitly assumes, as in the  eriginal proof of Theorem 3 of 
[2], t ha t  ( M  (T), a ( M ( T ) ,  Q)) and (N, U(M(T ), ())IN) ue homeomorphic under this  identification, 
where Q (resp. Q )  is t h e  vector subspace o t  M a ( T )  (resp. ~ ' ( 0 ) ~ ~ a n n e d  by the  characteristic 
functions of all closed Ga sets in T (resp. in f). Unlike the ~ a s e  of Po, the  characteristic functions 
of many closed non compact Ga Bets in T will not belong to Q if T is not a-compact, i.e. if {w} 
is not Ga. Thus  o n e  needs a proof to establish tb said homaontorpbisrr as i t  is no  longer obvious 
and this result is essential to justify t b e  argument of reduction to the  compact case in the  proof of 
Theorem 4.22.3 of [I]. 

In this section we prove the homeomorphism of the  said spaces under the additional hypothesis 
that  T is a-compact. 

Proposition 4. Let T be a a-compact locallg compact Hausdog space, and let f' = T U {w} be 
I ~ R  Alesandmfl cornpactification. Let Q ,'wsp. Q) be the vector subspace of M a ( T )  (resp. M = ( T ) )  
spanned by the characterietic functions of all closed Ga sets in T (resp. in T). Then there is atz 
isometric isomorphism a of M.(T) onto the closed subapace ,J = ( A  E M(T) : IAl((w)) = 0) of 
M (T). Moreouer, the s p a s  ( M  (T ) ,  a ( M ( T ) ,  9)) and (N, a(hf (?) ,  0) I N )  are homeomorphic un- 
der the map 9. (For this part ,  T need not be a-compact.) 

Proof. Let B(T)  and S(T) be t he  a-algebras of Bore1 sets in T and T, respectively. Then by the 
definition of the  topology of f' we observe t h a t  a subset E of f belongs t o  B(T) if and  only if 
E\{w} f B ( T ) .  Given p E M ( T ) ,  let a ( p )  ( E )  = p\E\{w)) for E f ~ ( p ) .  Then clearly 9 ( p )  is a 
regular complex Bore1 measure o n  T and the  complex Radon mensure a (p) determined by i t  has 
11Q(p)11 = 1 lpll and (@(p)(({w)) = 0. Thus  @(p) E N for p E M ( T ) .  Clearly, t he  above argument 
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is reversible and hence 131 is an isometric isomorphism of M(T) onto N 

In fact, let 3 = { F  c T : Fclosed Gs in T), 3 1  = {F C T : F compact Ga in T} and 
F2 = {F C T : Fnoncompactc losedGainT) .  Then 3 = F l U F 2 .  Let G = {G C T :  
G closed Ga in T}. For each F E 3 1 ,  let F = F; and for each F E 3 2 ,  let F = F U {w}. By the 
definition of the topology of p, 31 = {F : F E F1} c 6. As T is a-compact, {w} is Ga in T. Hence 
there exists a non increasing sequence (V,) of open sets in T such that {w} = n Y  Vn. If F E 3 2 ,  

then there exists a non increasing sequence (U,) of open sets in T such that F = ny U,. Thus, 
for F E F2, we have f' = F U {w) = nY(U, UV,) and hence F E 6. Thus 3 C G. Coriversely, 
let G E 6. Then either w E G or w $ G. If w E G, let G = ny V,, V, open in T. Then G\{w} 
is non compact and closed in T and G\{w} = nY(V,\{w}) with each V,\{w} open in T. Thus 
G\{w} E 3 2 ,  and if F = G\{w}, then G = F so that G E 3. If w $ G, let G = ny V,, V, open in 
T .  Then G = nY(V,\{w}) with V,\{w} open in T for each n. Moreover, G is a compact set in T. 
Thus G E 31. Therefore, 6 C 3. This proves that 3 = 6. Consequently, Q = Q $@xW. 

Note that a net (pa) in M(T) convergest to p E M(T) with respect to the topology a(M(T) ,  Q )  
if and only if p,(f) + p(f)  for each f E Q, and 131(p,) + 131(p) in N with respect to the topology 
( T ( M ( ' ~ ) , Q ) I N  if and only if 131(pa)(g) + 131(p)(g) for each g E Q. Now by Claim 1 and by the fact 
that X({w}) = 0 for each X E N,  we conclude that pa + p in M(T) with respect to a(M(T) ,Q)  i f  
and only if *(pa) + 131(p) in N with respect to a(h/l(T),Q)IN. 

This completes the proof of the proposition. 

Thus,under.the additional hypothesis of a-compactness of T,  Proposition 4 justifies the ar- 
gument of reduction to the compact case in the proof of Theorem 4.22.3 of [I] . Since the proof 
i11 the remaining part as given in [I] holds, we have the following proposition (modified version of 
Theorem 4.22.3 of [I]). 

Proposition 5. Let T be a a-compact locally compact Hausdorflspace, and let Q be the vector sub- 
space of M*(T) spanned by the chamcteristic functions of all closed Ga sets in T. Then a boundc(1 
set A in M(T) is relatively compact with respect to a(M(T),  M*(T)) if and only if it  is so ~r~i th  
respect to a(M(T) ,  Q ) .  

licnzarks 1. It seems that the homeomorphism mentioned in Proposition 4 may fail without the 
l~ypothesis of a,-compactness of T. If it fails, then the validity of Theorem 4.22.3 of [I] (for arbitrary 
locally compact Hausdorff spaces) remains to be settled. 

4.  DIEUDONNE PROPERTY OF C,(T), T a-COMPACT 

\ZTe shall show in this section that the Grothendieck techniques mentioned in Introduction can 
applied to prove the locally compact version of Theorem 6 of [2] if and only if the locally compact 
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space is futher a-compact. Let us begin with the following proposition. 
c ,  Vt-4 * 

Proposition 6 ,  For each open F, set U in the locally compact Hausdorff space T there ezists 
a non decreasing sequence ( f , )  of positive functions in Co(T)  with fn  j\ XU if and only if T is 
a-compact. 

P w f  Let T be a-compact. If the open set U is F', then clearly U is a-compact. Let U = U;]O I(n 
with Kn compact for each n. Since K, c U,  K, is compact and U is open, by Urysohn;~ lemma 
there exists a gn E Cc(T) with compact support contained in U such that 0 5 gn I. 1 in T and 

gn(t) = 1 for t €. Kn. Let fn = m a x ~ l k ~ ,  g k .  Then ( fn)y  C Co(T)  and fn X U .  

Conversely, as T is an F, open set, by hypothesis there exists a sequence of positive func- 
tions ( fn)y  C C,(T) such that fn j\ X T .  Given n,  K E N, there exists a compact Kn,k in 
T such that I fn ( t )J  < ) for all t E T\Kntk. If Un = { t  : fn(t) > 0 ) ,  then Un is open and 
Un = U g l { t  : fn ( t )  2 t). Let Fn,k = {t : fn ( t )  2 )). Then Un j\ and T = Uy un = 
UrS1 U z l  Fn,k C UrZI U g l  Kn,k C T .  Thus T is U-compact. 

This completes the proof of the proposition. 

Corollary. The chamcteristic functions XU of open F, sets U (resp. X F  of closed Gg sets F )  in 
T are pointwise limits of non decreasing (resp. non increasing) sequences of positive functions in 
Co (T )  if and only if T is a-compact. 

Using the Grothendieck techniques we prove below the locally compact analogue of Theorem 6 
of [2] under the additional hypothesis that the locally compact space is a-compact. See Remarks 2 
for the necessity of the hypothesis of o-compactness to apply the Grothendieck techniques. 

Theorem 7. Let T be a o-compact locally compact Hausdorff space. Then Co(T )  has Dieudonne' 
property. More precisely, given a continuous linear map u : Co(T)  + X ,  where X is a quasicomplete 
IcHs, the following conditions are equivalent: 

(1) u i8 weakly compact. 

(2) For each closed set F in T ,  u W ( x F )  E X .  

(3) For each closed Gg set F in T ,  u" ( xF)  E X . 
(4) For each non decreasing bounded sequence ( f , )  of positive functions in C,(T),  ( u ( f n ) )  con- 

verges weakly in X .  

Proof. 

(1)=$(2) by Corollary 9.3.2 of [ I ]  or by Lemma 1 of [2]. 

(2)=$(3). It is obvious. 



(1)*(4). Such a sequence (f,) is weakly Cauchy 13~'the Lebesgue bounded convergence theorern 
and consequently, by the strict Dunford.-Pettis nropArty of C, (T), the sequence (u( f,)) converges 
in the topology of X .  Thus, in particular, ( 4 )  hold .-. 

(4)*(3). Obviously, it sufices to show that ~"(y: , )  E X for each ope11 1.- set U in T .  Let U be 
such a set in T.  As T is a-coml)act, then by Proposition 6 there exists a rlon decreasing sequence 
(fn)  of positive functions in C,(T) such that, fn j" XU. Then by hypothesis (4), there exists a 
vector 2, E X such that u(fn) -r z, weakly. A s  U* : X' -, M(T), bv the Lebesgue bourlded 
convergence theorem we have 

and thus 
< x,, x* >=< u**(xLl), x* > 

for each z* E X*. Therefore, u**(xU) = z, E X .  Hence (3) holds. 

(3)*(1). Let Q be the vector subspace of C,"(T) spanned by the characteristic functions XF of 
closed Ga sets F in T. Then, as T is a-compact, by Corollary to Proposition 6 there exists a non 
increasing sequence ( fn) of positive functions in C,(T) such that fn \ XF, for each closed Ga set 
F in T. Let = ((fa) C C,(T) : fn \ X F ,  F closed Gs in T). Then by the Lebesgue bounded 
convergence theorem, ( f n )  is a(C,"(T), M(T))-convergent in C,"(T) for each (f,) E a. Let H be 
the vector subspace of C,"(T) spanned by C,(T) and the limits of members of a. Then Q C H. 
Now by hypothesis (3), by Propositions 3 and 5 above and by corollary 9.3.2 of [I] we conclude 
that u is weakly compact. Hence (I) holds. 

This completes the proof of the theorem. 

Remarks. The hypothesis that T is a-compact is essential in the above proof of (4)*(3) and 
(3)*(1), as Proposition 6 and its Corollary are used. If T is not a-compact, then by Corollary to 
Proposition 6, XT and the characteristic functions of many closed Gs sets in T are no longer the 
limits of non increasing sequences of positive functions in C,(T) and hence neither (4) implies (3) 
nor (3) implies (1). In other words, the Grothendieck techniques are applicable if and only if T is 
further a-compact. 

Remarks 8. Using the techinques developed in [3,4], the author has obtained in [4] 35 characteri- 
zations for a continuous linear map u : C,(T) + X to be weakly compact, where T is an arbitrary 
locally compact Hausdorff space and X is a quasicomplete 1cHs. Since these characterizations in- 
clude those of Theorem 7 above, C,(T) has Dieudonn6 property even though T is not a-compact. 
In this connection, the reader may refer to [5], where the author has obtained the said characteri- 
zations by using the regular Bord extension of X-valued Baire measures on T.  

Remarks 4. Even if Theorem 4.22.3 of [I] were true for arbitrary locally compact Hausdorff spaces 
T, as observed in Remarks 2, the hypothesis of a-compactness of T cannot be dispensed with in 
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Theorem 7 (if the Grothendieck techniques are to be employed). 
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