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Noniinear Strongly Damped Wave Equations
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Abstract

In this paper we study the existence and the stabilitv of bounded so-
lutions of the following non-linear Stronglv Damped Wave Equations
with homoegeneous Dirichlet bounidary conditions

[ Heg + =NV 20 = = Au = f(t,u). t>0 refl
wi0.r = wolz), 0.1 = vg(x). ren
uit.ry =90, t>0 red
where [ IR x IR — IR is a continuous and globally Lipschitz function
witt. a Lipschitz constant L > 0. 2 is a bounded domain in RN (N >
15, Roughly speaking we shall prove the following result: If
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/\E/-max [RP (n;\_/_,_])__ﬁ ) } > [
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where \; is the first eigenvalue of -, then the equation admits only
one bounded :olution which 1+ exponentially stable - Also, we prove

rhat for some big class of functions f this bounded solution is almost
periodie
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I Introduction

In rhis paper we shall study the existence and the stability of bounded
solutions for the following nonlinear strongly damped equation with homo-
zeneons Dirichlet boundary conditions

Wy + n(—A‘)]‘/r‘)m «{ =N = f{t u)
wlU. 1) = uaglz). ue(U.x) = vp(x). :r
wlt.ry =0, >0 redf.
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where f : IR x IR — IR is a continuous and globally Lipschitz function with
a Lipschitz constant L > 0. i.e..

(f(t.w) — fit.v)| < Llu-v|, t.u.v€ R (1.2:

€ is a bounded domain in R™(N > 1). We vshall assume the following
hvpothesis:
H) there exists L+ > 0 such that

f(t.0)i < Ly, Vte R (1.3

Under this assumption, roughly speaking we prove the following statements:

If
. /M2 —
J= A,}"'zmax {R.e (g—n—‘h)} > L.

2

where A; is the first eigenvalue of —A. then the equation admits only one
bounded solution which is exponentially stable. Also. we prove that for some
big class of functions f this bounded solution is almost periodic. Some ideas
for this work can be found in (1], {2], [3] and [4].

In {5] they prove that the linear part of (1.1) generates an analytic semi-
group of contractions {T'(¢)}i>o (|T(2)|| < 1). Here we prove easily that this
semigroup is analytic and de(:a_v exponentilly to zerc. Moreover.

1T <e 7 E>0.

2 Abstract Formulation of the Problem

In this section we shall choose the space where this problem will be set as
an abstract second order ordinary differential equation.

Let X = L?(Q) = L?(Q2. R) and consider the linear unbounded operator
A:D(A) C X — X defined bv Ap = —Ad¢, where

D(A) = HY(Q. R) N H{Q. R). (2.1

The operator 4 has the following very well known properties: the spectrum
of A consists of only eigenvalues

D<M <Ah< <Ay, = x.

each one with finite multiplicity v, equal to the dimension of the correspond-
ing eigenspace. Therefore.
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a; there exists a complete orthonormal set { @, «} of eigenvector of A.

hifor all r &€ D(A) we have

> % o
Ar =AY <1k > Onr =3 AnEar 12,21

n=1 = n=1=1

where < .- > is the inner product in X and

Epr = Z < T, Pnk > Dok (23"

Pt

So. {E.} is a familv of complete orthogonal projections in .\ and
r=N">_E.r. recX.

Lun=1
. . e L A — At ; by
1 —4 generates an analvtic <emigroup {e” 7"} given by
.
PN — \. ‘ N
rT e = /; oA E 2.4
e nd
n=]
d
-

A7 = DiA%) = {r=

0
=
(]
_
‘{-:
‘

n=1
and
x
A%r =) (An)°Enr. (2.5
bt It

Hence. the equation (1.1) can he written as ap abstract second order ordi-
narv differential equation in X as foliow

u' A ANt s Au= a0

L a0) = ue. W0y = vg.

<
‘

t-2

>

where /¢ JR. x X — X is given byv:

fPrtu)(z) = fltulr)), 19 ws X

el

G = o)) < Lijlu—-vjj. t€ R uve X (2.7)

Now. making the following change of variable 1/ = v we can write the second
order equation {2.6) as first order svstem of ordinarv differential equations
in the Hilbert space Z = X x X as follow:

(8
R

d = A+ Fir sy 2220 >0
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where

u ‘ 0 _ 0 Iy
Z=(v>7 F(t’z):(fe(t,u))’ and A—<~—’7A _nA1/2>r

is an unbounded linear operator with domain D(.A) = D(A) x D(AV?).
The proof of the following Theorem follows from Lemma 2.1 and 22 of

[6].

Theorem 2.1 The operator A given by (2.8). is the infinitessimal generator

of an analytic semigroup {T(t)},5, given by

T(t)z= e''Paz. z€Z, t20 (2.10)

n=1

where {Po}, 5o is a complete orthogonal projections in the Hilbert space Z
grven by -

P, =diag(En,.E;) ,n2>1, (2.11;
and
0 1
A, = ,n>1 2.12
< oA —mAL? ) ,n2 (2.12)

Moreover, this semigroup decay ezponentially to zero. In fact, we have that

[T < e, t>0. (2.13)

/r? —
8= /\i/r‘)max{Re (%)}

where

3 Existence of the Bounded Solution

In this section we shall prove the existence and the stability of unique
bounded Mild solutions of the system (2.8).

Definition 3.1 (Mild Solution) For mild solution z(t) of (2.8) with initial
condition z(ty) = zg € Z. we understand a function given by

t
z2(t) = T(t —tg)zp +/ T(t - s)F(s.2(s))ds. t€ R. (3.1)

to
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Remark 3.1 /t 1s easy to prove that any solution of (2.8) is a solution of
74.1). It may be thought that a solution of {3.1) is always a solution of (2.8
but this 1s not true in general. However. we shall prove in Theorem 4.1 that
hounded solutions of /9.1) are solutions of (2.8).

We shall consider Z, = C,IR.Z: the space of bounded and continuous
functions detined in /R taking values in Z. Z, is a Banach space with suprem
norm

Wzils = supfliz(tiiz t€ R}, z€ Zy.

A ball of radio p > 0 and center zero in this space is given by

f4]

B ={:e Zy:{z(t)lls < p. t€ R}

The proof of the following Lemma is similar to Lemma 3.1 of [4}.

Lemma 3.1 Let z be in Zy. If : 15 a mild solution of (2.8, then z 15 u
solution of the follounng inteqral equation

t
ztt) :/ Tit—s1F(s.z(s))ds. t € R. (3.2}

-

If 215 a solution of /3.2). then z 1s a mild solution of (2.8} for t > 0.

The following Theorem refers to bounded Mild solutions of system (2.8;.
Even though. the proof is similar to Theorem 3.2 of [2]. we will give the
proof.

Theorem 3.1 [f for some n and v with n° # 4v we have that

e /2 _ A~
Ai”mu{Re (Qi—rf,——‘h)} > L. (3.3

then the equation /2.8) has one and only one hounded maild solution zy(t).
Morecver. this bounded solution is the only bounded solution of the equa-
tion (3.1) and is exponentially stable.

Proof Condition (3.3) implies that for p > 0 big enough we have the fol-
lowing estimate:
D« Le<t3nov) = Lip. (3.41
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where

6= A2 max {RP (___ﬂix i 47) }
= A s 5 :

For the existence of such solution. we shall prove that the following operator
has a unique fixed point in the ball Bg, T: Bz - BZ

¢
(T2t = / Tt —<)F(s.z(s))ds, t= IR

In fact. for z € Bg we have

(Lip+ Ly

Tanl < [ e Lz + Ly <

The condition (3.4) implies that

Lp+L-

Lo+ Ly < 3p < 3

< p.

Therefore. Tz € B}, for all z € B},
Now. we shall see that T is a contraction mapping. I[n fact. for all
2.z € Bg we have that

t

, \ 8¢ ) L ,

LTz (8) — Tz () g/ e~ Lz (s) = 2zo(8)ids < ?!izl—z'zm,. te .
e :

Hence,

L
< —
-3
The condition (3.4) implies that

lz1 = Tzofs, T2y = zolly. 21.22 € B

0<fB-L = L<f = §<1.

Therefore. T has a unique fixed point z in Bg
t
2p{t) = (Tzp)(t) = / T(t—s)F(s,2(s))dsds, t€ R,
J =30

From Lemma 3.1, 23 18 a bounded solution of the equation (3.1). Since
condition (3.4) holds for any p > 0 big enough independent of L < 3(n. ~I.
then z, is the unique bounded solution of the equation (3.1).
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To prove that z)(t) is exponentially stable in the large, we shall consider
any other solution 2(t) of (3.1} and consider the following estimate for t; > 1

t
Hzlt) — zp(B}1 < BTIR(2(1) — z4(tg)) 4—/ Tit — )V {Fls.z(s)) — F(s.z(s)}} ds
t

0

-3 ; v -3t~y . { i
< T g = zhite )] +/ e Lizts) — zp(9)|ids.
t

Then.
\ t
e?tz(t = zpit) | < Hizity) = zn(to))]l *‘/ P Lizls) — zptsids.
to

Hence. applving the Gronwall's inequality we obtain
1) = 2O < L M(2(1) ~ 2ito))ii 2 to.

From (3.4) we get that L — 3 < 0 and therefore z,(t) is exponentially stable
n the large. -

Corolary 3.1 If f is periodic wn 1 of period 7 +f(t - 7.£) = f(t.£) ). then
the unique hounded solution given by Theoren: 2.1 is also periodic of period

Proof Let z;, be the unique solution of (3.1) in the ball Bg, Then, z(t) =
2p(t + 71 1= also a solution of the equation (3.11 lving in the ball Bf’ In fact.
rousider zp = 7,(0) and
i
st =y = T+ T7)zg + / T(t+ - - <iFis.zls))ds
74Q
= Tit)T(r)zg + / T+ 7 —3)F(s.2p(s))ds
G
T
+ / Tt —7—3)F(s.2505))ds
= TIlt; jT(T\iZ(j. + / T{- - s_lFi,s‘.z;,['.‘:))ds1
| 0 J
/
- / T(t — $)F(s.2p(s + 7))ds
0

4

= T(Hzpi7, ~ / Tt = sV sz s = 7))ds
40

!
i
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Therefore.

ot
z(t) = T(t)z (1) + / T(t —s)F(s.z{s)}ds.
40

and by the uniqueness of the fixed point of the contraction mapping T in
rhis ball. we conclude that zy(t) = z(t + 7). t € R.

Remark 3.2 ['nder some condition the bounded solution qven by Theorer:
4.1 18 almost periodic: for erample we can study the casc when the function
} has the following form:

f(t.8) =g(&) + P(t). t.£€ R. (3.7
where P & C,{IR.IR). the space of rontinuous and bounded functions.

Corolary 3.2 Suppose f has the form (3.5). Then bounded solution z,(-. J"
quren by Theorem 3.1 depends continuously on P € Cy([R. IR).

Proof Let P.. P, & Cy(IR. IR and z,(-. Py). z,(-. P3) be the bounded func-
vions given by Theorem 3.1. Then

t
ot P =t Py = / T(f—S)[g(Zb(S.PQJ) —_q(zh(ﬁ.:ng)):idﬁ
-
!
+ / T(t—s)Pi(s) — Pats)ida.
J -
Hence.

P = s Pl <

lap(- Pr) — 2p(-. P i

L
A;/zmax {Re (@) }
+ : WP = Paiip.
)\i’/?max{Re (@)}
Therefore.
P = (Pl < ! WPy — Py,

Al % max {Re (%) } -1
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Lemma 3.2 Suppose f is as (3.5 Then, if P(t) 1c almost periodic. then
she unaque haunded solution of the system (5.1) qiven hy Theorem 7. [ 1s also

aiminst perodis

Proof T prove this lemma. we shall use the following well known fact. due

1o S. Bohr. A function f € C(JR: Z) is almost periodic (a.p) if and only if

the Hnll H(A: of h is compact in the topology of uniform canvergence.
Where H{h) is the closure of the set of translates of h under the topology

of uniform convergence

Hihy = hett) = hit+ 7.t € R.

Siuee the ltmit of a uniformly convergent sequence of A.p. functionsis a.p..
then the set 4, of a.p. functions in the ball B is closed. where p is given
b Theorem 3.1 ’

Claim. The contraction mapping T given in Theorems 3.1 Jeaves 4, inva-
riant. [n tact: if = 2 4, then hitt = gi{z{t)) + P/#) is also an a.p. function.

Nowe. consider the tupenion

Foov=iTzydr = / Tt — siggizlel) + Pis)lds
J -~
rf
= / Tit — sYhisids., < R
-

Then. it is enough to establish that HiF) 1s compact n the topology of
nniform convergence. Let {F. } be any sequeuce in HIF". Since h is a.p.
we- can select from {h-_} a Cauchv subsequence 4. :. and we have that

(.
Fo o ifv= Fit om0 = / T i~ 7 — ~ihis)ds

g

o
= Tt — sihis = T :‘(jﬁh
/- x ‘
Heuce
”'r N
Fooltv = F._ My, < / P Ale + Ty~ his = )
at N

.

' b
o . . - Sit=s ! ‘

Theretore. { 7.} is a Cauchy sequence. So, Hi ¥} is compact in the topoi-

nev of uniform convergence. Fisap. and TA, 2 A

»
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Now. the unique fixed pomt of T in the ball BY lies in 4,. Hence. the
nnigue bounded solntion 247 of the equation 13.1) given in Theorem 3.1 is

11so almost ‘[xr“riﬁdil'.

1 Smoothness of the Bounded Solution

in this part. we =hall prove that the bounded Mild solution zyit) of the
eauation (2,81 is also a classic solurion of this equation: that is to sav, we
-hall proof the smoothness of this solution. With this we conclude this work.

Theorem 4.1 The hounded Mild solution zy(t of the equation (2.8) qiven
facsTheorem o1 s a classic zolutian of this equation on [R. w.r .

:’{f\:.«(:;(l"‘ F’/Zb({). te IR,

Proof Let z;:: be the onlv bounded mild solution of /2.%) given by Theorem
5.1 Then
.

o= / Tit - sigtaias = / Tisimt - sids, t 2 [N
Jo= 0

where oo = Fis o zptsii. Therefore, g & CyUR. Z3 and figls)! < gy, = <
= NI T.

Letusput pis) =Tt — cigie .~ 2 {=x.f. Then rie) 15 a conrinuous
hction. and since T {#)},. is analvtic. then

riay < DAY for s <l 1

Claim. dris. is rontinnons on « =~ f+ and the improper integral
/ Arisvds. 2 IR

CXISTs,
In fact. there exists a complete svstem of orthogonal projections {g,(nti;
e IR such that

{ -4, = prinmig{ny + po(nyoin)
%(‘ ¢ int — e “)T'”"t!;m,')%

qrirs + ¢

where
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HHence.

<
- Az = Z {p1 MV Poiz + po(n)ppozt
!
and
o
T((‘:z = S_‘ g’f”"”"”‘P,,]: + Fprn"PnQZ}.
l-—‘y k

Nt

where. P,; = q,(n)F,, is a complete svstem of orthogonal projections in Z.

Therefore. .
- dris) = i—pﬂn}e“"im\(t‘“ 219(8) — pg(71)e"02(")“_S}Pn/zg(S)}.
n=1 .
Sai.
‘i.AI(.‘?)“ < rr}xa; {)\q:pie—)—.Rew\u‘-——sy} \‘Q;lb,
with
/72
nrxvne — v
=
9

Hence. Ar(s) is a continuous function on (—~c.t). Now. consider the fol-
lowing improper integrals:

Pl
PR

re's
/ Arfsyds = / AT (s)g(t — s)ds
J 0

Jo

o X . )
/ Z 4 —pr(nye P PLglt — §) = pa(n)e 2P gt — s)} ds
9

n—1

e d
0

x ( x
Z‘ 1 / ~pylnie VP git — s)ds — / po(n)e P2inis gt — S)d.s},
— L .

(n the uther hand. we have that

[

/ —pyinie’
1l

Min

- rn_q(l ‘ A')d.q;f

[7AN

o~ e
/ Apiple A RER Do — &) ids
Jn

AN

< Re(p) git-

Therefore. the improper integral

!
/ Ar(s)ds.  exists
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Now. from Theorem 1.3.5 of '7] we have that

~t

t 1
/ sis)ds € DAY, and A/ z{3)ds = / Azr(s)ds.
Le.
& t ¢
/ T{t—s)gisids € D(A). and A / T(t—s)g(s)ds = / AT (t—8)g(s)ds.

Now. we are ready to prove that z,(t) is a solution of {2.8). In fact, consider

sptt +h) — z(2) | [teh |t
J!_;_,i”__i/ bl - = - / T(f + h - s)g(s)d,g S / T(t - S]g(s)d.s
h h. - ’ h J_x
T(h) -7 t ) 1 t+h
= (75 >[ Tt = s)gls)ds + —/ T(t+h — s)g(s)ds.
) h SR h J,

Using the definition of infinitesimal generator of a semigroup and passing to
the limit as » — 07 we get that

t
zp(t) = .A/ T(t — s)g(s)ds +~ T(0)g(t).

2 (1) = Az(t) + Flt.z(t)). t€ R.




Fxistence and Stability of a Bounded Solution for Nonlinear Strongiy Damped Wave Equations 13

References

L

S

i

9

101

H. LEIVA -Stability of a Periodic Solution for a System of Parabolic
Equations™ J. Applicable Analysis, Vol. 60. pp. 277-300(1996).

H. LEIVA. “Existence of Bounded Solutions of a Second Order System
with Dissipation” J. Math. Analysis and Appl. 237. 288-302(1999).

.. GARCIA and H. LEIVA. “Center Manifold and Exponentially
Bounded Solutions of a Forced Newtonian System with Dissipation”E,
Journal Differential Equations. conf. 05, 2000. pp. 69-77.

H. LETVA. “Existence of Bounded Solutions of a Second Order Evolu-
tion Equation and Applications” Journal Math. Physis. Vol. 41, NO 11.
2000.

S. CHEN AND R. TRIGGIANI * Proof of Extension of two Conjectures
on Structural Damping for Elastic Systems: The case %_ <a<1.

Pacific J. Math. 136. 15-35(1989)

H. LEIVA. “Cy-Semigroups and Applications to Partial Differential
Equations” (submited to Advances in Applied Math.)

G.E. LADAS AND V. LAKSHMIKANTHAM. ~Differential Equations
in Abstract Sapces”. Academic Press, Math. In science and Eng. Vol
85(1972).

D.Henry ~Geometric theory of semilinear parabolic equations”
Springer. New York (1981).

J.M. ALONSO. J. MAWHIN AND R. ORTEGA. “Bounded solutions
of second order semilinear evolution equations and applications to the
telegraph equation™. J.Math. Pures Appl.. 78. 49-63 (1999).

W. ARENDT AND C.J.K. BATTY. “Almost periodic solutions fo
first and second-order cauchy problems™. J.[D. Equations 137. 363-383
(1997).

HUGO LEIVA
Department of Mathematics. Universidad de los Andes
Merida 5101-Venezuela




