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Abstract

In this paper we study the existence and the stability of bounded so-
lutions of the following non-linear system of parabolic equations with
homogeneous Dirichlet boundary conditions

ug = DAu+ f(t,u), t>0, ue R",
u =0 , on 00

where f € C'(R x R"), D = diag(d,,ds,...,d,) is a diagonal matrix
with d; >0, i=1,2,...,n and 0 is a bounded domain in RN (N =
1,2,3). Roughly speaking we shall prove the following result: if f is
globally Lipschitz with constant L, 3/4 < a < 1 and % > L,
then the system has a bounded solution which is stable, where d =
min{d; : 1 = 1,2,...,n}, A is the first eigenvalue of —A and T'(-) the
well known gamma function. Also, we prove that for some big class of
functions f this bounded solution is almost periodic.
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1 Introduction

In this paper we shall study the existence and the stability of bounded
solutions for the following system of parabolic equations with homogeneous
Dirichlet boundary conditions

w = DAu+ f(t,u), t>0, ue R", (1.1)
v =0 , on 00 (1.2)

where f € CY{IR x R"), D = diag(d,,ds,...,d,) is a diagonal matrix with
d; >0, i=1,2,...,n and Q is a bounded domain in RY(N = 1,2, 3).
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We shall assume the following hypothesis:
H) there exists Ly > 0 such that

If(£,0)l < Ly, VieR. (1.3)

Under this assumption, roughly speaking we prove the following statement:

If f is globally Lipschitz in the second variable with a Lipschitz constant
l1—-a
L, 3/4<a<1and % > L, then the system admits only one bounded
solution which is uniformly stable, where

d=min{d; :1=1,2,...,n}, (1.4)

A1 is the first eigenvalue of —A and I'(-) de well known gamma function.
Also, we prove that for some particular f this bounded solution is almost
periodic. ‘

Several mathematical models may be written as a system of reaction-
diffusion of the form (1.1), like a models of vibration of plates(see [1]) and a
Lotka-Volterra system with diffusion(see [2]). Some ideas for this work can
be found in [3], [4], [5] and [6].

2 Notations and Preliminaries

In this section we shall choose the space where this problem will be set.
Let X = L?(Q2) = L?(Q, IR) and consider the linear unbounded operator
A:D(A) C X — X defined by A¢p = —A¢, where

D(A) = H*(Q, R) N HY(Q, R). (2.1)

Since this operator is sectorial, then the fractional power space X asso-
ciated with A can be defined. That is to say: for « > 0, X = D(A%)
endowed with the graph norm

[zlle = A%]|, =& X*. (2.2)

(see D. Henry [7] pg 29).

Precisely we have the following situation: Let 0 < A\{ < Ay < -+- < A, —
oo be the eigenvalues of A each one with finite multiplicity ; equal to the
dimension of the corresponding eigenspace. Therefore
a) there exists a complete orthonormal set {¢;} of eigenvector of A.
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b) for all z € D(A) we have

00 i 00
Az = Z )\j Z <z, ¢j,k > ¢j,k = Z )\jEjJJ, (2.3)
1=1 k=1 j=1
where < -,- > is the inner product in X and
i
E;z = Z <z, Pjk> b; k- (2.4)
k=1

So,{E;} is a family of complete orthogonal projections in X and
z=3 2 Ejz, z€X.

¢) —A generates an analytic semigroup {e~“!} given by

o0

e Ay = Z e_’\thjx. (2.5)
i=1

d)
X*=D(A% ={z € X : Y _(3)**||E;z|* < 00},
j=1

and

o0
A%z =) (X)) E;jz. (2.6)
j=1
Also, we shall use the following notation:
Z=L*QR"Y=X"=Xx---xX, and C,=C(Q,R") =[C(Q)]",

with the usual norms.
Now, we define the following operator

Ap: D(.AD) CZ— 4, Apyv=—-DAyY = DAY, (2.7)

where
D(Ap) = H*(Q, R") N HA(Q, R").

Therefore, Ap is a sectorial operator and the fractional power space Z¢
associated with Ap is given by

7% = D(A%) = X% x --- x X* = [X°]", (2.8)
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endowed with the graph norm

lzlla = N ADzll, z € 27, (2.9)
where
o0
%z=Y_ D*(\j)*Pjz, D*=diag(df,d5, - ,dy), (2.10)
j=1
and P; = diag(E;, E;,--- , E;) is an n X n matrix.

The C,—semigroup {e~A2t};5o generated by —Ap is given as follow

o0
e Aty = Ze"\thsz, z € Z. (2.11)
j=1

Clearly, {P;} is a family of orthogonal projections in Z which is complete.
So,

o0

2= Pz, ||l2I? =Y IP2l|* and |22 =3 Pzl (212)
j=1

j=1 j=1

From (2.11) it follows that there exists a constant M > 0 such that for all
z€ Z°

A0tz a M||z|lae” %, t >0, (2.13)

lle <
Zla < Mt %z]le"Mt t> 0. (2.14)

oot

From Theorem 1.6.1 in D. Henry [7] it follows that for 3 < o < 1 the
following inclusions

Z*Cc C(Q,R") and Z®C L[P(Q,R"), p> 2, (2.15)

are continuous.
Now, the systems (1.1)-(1.2) can be written in an abstract way on Z as
follow:

2= —Apz + fe(t, 2), z(tg) =20 t > 19 > 0. (2.16)
Where f¢: IR x Z* — Z is given by:
ft 2)(x) = f(t,2(x)), zE€Q. (2.17)

To show that equation (2.16) is well posed in Z% we have to prove the
following lemma.
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Lemma 2.1 The function f¢ given in (2.17) is locally Holder continuous
in t and locally Lipschitz in z. i.e., given an interval [a,b] and a ball B¥(0)
in Z% there exist 6 > 0 and K > 0 such that

174t 20) = (s, 22) | < K (jt=s +lz1=z2lla), Nlztllas l22lla <7y 6,5 € [a,b).

Proof Since f € C'(IRx IR"), then for each interval [a,b] and a ball B,(0) C
IR™ there exist constans k > 0 and M (p) > 0 such that

It z) — f(s,9)ll < klt — s[+ M(p)llz —yll if |lzl,llyl <o, t,s€]lab].
From the continuous inclusion Z¢ C C,, there exists | > 1 such that

sup |2(a)l| g < Ulzlla, = € 2°.
€N

Now, let B¥(0) be a ball in Z®. Then putting p = lr we get that
1f (¢ z1(2)) = f (s, 22(2))|| < klt — 5| + M(Ir)[|z1 () — z2(2)], z€Q,

if ||z1[|a, l22]la < 7 and ¢, s € [a,b].
Therefore, if ||21||q, || 22]la € B¥(0) and ¢, s € [a,b], then

£t 21) = fE(s, 22) || < ku()/2[t — s| + M(Ir)||z1 — 22|,

where £(€2) denote the Lebesgue measure of .
Now, from the continuous inclusion Z* C L2(Q, IR") there exists a con-
stant R > 0 such that

lzllze < Rl2lla, =€ 2
Hence, if ||21||a, ||22/la € B&(0) and ¢, s € [a,b], then
1F4(2,21) = 1%(s, 22)| < kis()Y/2]t = 5| + RM(Ir)||21 = 22 o

We complete the proof by putting § =1 and K = max{kp(ﬂ)l/Q,RM}. 0
The following proposition can be proved in the same way as the foregoing
lemma.

Proposition 2.1 Supoose f is globally Lipschitz with a constant L. i.e.,
Nf(@,u) — f(t,0)]| < Llju—v|, Vt€e R, u,ve R"
Then
1 f€(t,21) — fo(t, 22)|| < LR||21 — 22|y 21,20 € Z%, t€ R, (2.18)
where ||z|| < R||z||q, for z € Z*. Also, from the hypothesis H) we get that
IFL Ol < @)Ly, £ 0. (2.19)
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From Theorem 7.1.4 in [7], for all T > ¢y we have the following:
A continuous function z(-) : (t9,T) — Z* is solution of the integral
equation

t
2(t) = e~ Ap(t—to) 5 +/ e~ A=) fe(5 2(s))ds, t€ (to,T] (2.20)
to
if and only if 2(-) is a solution of (2.16).
From now on, we will suppose that % <a<1andthat R=M =
1..

3 Main Theorems

Now, we are ready to formulate the main results of this paper. Under the
above conditions we can prove the following Theorems.

Theorem 3.1 Consider By the ball of center zero and radio p > 0 in Z¢,
and L, the Lipschitz constant of f¢ in B3, and u(Q2) the Lebesgue measure
of . If the following estimate holds

((Ald)l-a
'l - a)

then the equation (2.16) admits one and only one bounded solution zp, with
llzs(t)]| < p, t € R4. Moreover, this bounded solution is locally stable

~4L,) o> Ly, (31)

Theorem 3.2 Suppose f satisfies condition (2.18) and
(/\1d)1_a
I'l-a)
Then equation (2.16) admits one and only one bounded solution z(t) for

te R,.
Moreover, this bounded solution is globally uniformly stable.

> L. (3.2)

Before the proof of the main results we shall prove the following key lemma.
Consider Z3* = Cy(IR, Z°) the space of bounded and continuous functions
defined in IR taking values in Z®. Then Z{ is a Banach space with suprem
norm

[zlls = sup{llz(t)|la : t € R}, z€ Z.

A ball of radio p > 0 and center zero in this space is given by

By={z€Z:|z(t)s < p, te R}
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Lemma 3.1 Let z be in Z{. If z is a solution of (2.16), then z is a solution
of the following integral differential equation

2(t) = /_ t e Apt=9)fe(s 2(s))ds, t€ R. (3.3)

If z is a solution of (3.3), then z is a solution of (2.16) for t > 0.

Proof Suppose that z is a solution of (2.16). Then, from the variation
constant formula (2.20) and the uniqueness of the solution of (2.16) we get
that

t
2(t) = e~ APt 5(40) + / e Ap=9) re(s 2(s))ds, t> t,. (3.4)

to

On the other hand, from (2.13) we obtain that
le= 4207z (t0) o < e™P1E) | 2(t) la, t > to,
and since ||2(t)|lo < m, t € IR, we get the following estimate
e Ao (1) o < me ), 4> 1y,

which implies that

; —A(t—to) _
im0 1)y =0,

Let p > 0 such that ||z][; < p and L, the Lipschitz constant of f¢ in B3,.
Then from the inequalities (2.13)-(2.14) we get the following estimates

t t
/_ le™ AP (s, 2(s)) [lads < / (t = 5) "™ £9(5, 2(s)) |ads

t
< / (t = )™ M) (L 12(8) o + [ £5(s, 0)]]} ds

-0

IA

t
{Lp”z”b + /J'(Q)Lf}/ (t — S)_ae_d)\l(t—s)ds
—00

= {Lllell + w(@)L,} }}fd%“’

Therefore, passing to the limit in (3.4) when #; goes to —oco we conclude
that

t
z(t) = / e~ Ap(=9) re(s 2(s))ds, t€ R.

— 00
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Suppose that z is a solution of the integral equation (3.3). Then
0
2(t) = / e AP fe (5, 2(s))ds
_too
+ /e"AD(t—s)fe(s,z(s))ds.
0
Hence, for t > 0 we get that
0
z(t) = e_ADt/ e?PS fe(s, z(s))ds
—00
t
+ /e'AD(t_s)fe(s,z(s))ds
0
t
e=ADt5(0) + / e~ A0(t=9) fe(s 1(s))ds,
0
where

0
z(0) =/ eAP9 £¢(s, z(s))ds.

Therefore, z(t) is solution of the equation (2.16).
Proof of Theorem 3.1.

O

From Lemma 3.1 it is enough to prove that the following operator T': Z* —

Zy¥ define by:
0
Tz(t) = / e_AD(t_s)fe(s,z(s))ds,

has a unique fixed point in BZ.
For z € BZ we get

IT2(t)a < / (t = )%= (L la(s) ]l + 17 (s, 0)|1} ds

—00

IA

t
{Lpll=lo +,u(Q)Lf}/ (t — S)—ae—d/\l(t—s)ds

'l —o)

< {Lpp +u(Q) Ly} Oudi—e

< p.

Hence, Tz € Bg, z € Bg.
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Now, we prove that T is a contraction mapping. In fact, for z;, 2, € BZ
we have that

t
IT21(t) — Tzt < / (t ~ s) e M=) fo(s, 21(s)) — f4(s, 22(5)) | ds

—00

t
< / (t — s)_ae_d’\l(t_s)Lszl(s) — 29(8)]|ads
—00
L,I(1 -q)
= W“zl — 2o]|p-
So, from (3.1) we get that
L,I'(1-a)
——— < 1.
(Ald)l——a <

Then, T is a contraction mapping. Therefore, T has a unique fixed point 2,
in Bb. ie.,

2(t) = /_O e_AD(t_s)fe(s,z(s))ds,

and from Lemma 3.1 z,(¢) is solution of (2.16) for ¢ > 0.

To prove that z,(t) is locally stable, we consider any othe solution 2(t)
of (2.16) such that ||z(to) — 2(t0)s||« < § with tg > 0. Then , ||z(to)|lo < 2p.
As long as ||z(t)|| remainds less than 2p we get the following estimates:

I2(t) — 2ol < e M| 2(t0) — 2(t0)slla

t
[ =9 e EIL () - as)lads, € lto,t1]

— 00

L,I(1-a)

< lz(to) — 2(to)slla + —2—e—= sup ||z(s) = 25($) |-
« (Ald)l_a se[to,tl] n ( ) ( )na

If t; = inf{t > to : [|2(t)|la < 2p}, then either t; = oo or ||z(t1)|la = 2p.

Suppose that ||2(t1)||o = 2p. Then from the above estimate we get that

L,T(1—q) _(1 LJu—aUp

(nd) o p=|=-+2

P
< =42
P< g 2 T nd)ia

From condition (3.1) we get that

1 1-
1 +2L,,F( a)

2 T nare <1

which is a contradiction. Therefore,t; = co and 2(t) € ng for t > 1.
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Define
|2 — 2l = sup [|2(t) — z5(t)]la-
t>ig

Then,
L,I(1—-a)

2 = 2l < ll2(t0) — 26(t0)lla + Oydi=a

Iz = 2zl -

Hence,

(1 _L,(1-a)
(Ald)l—a

Let us put A = %%1__—?. Then

)uz—zm;su4m>—%uwm.

1
e = 2l < T=llz(to) = 2(to)ll-

From here we get the stability of z,(t). 0
Proof of Theorem 3.2.

Since % — L > 0, then there exist p; > 0 such that

(A d)l—a
(f(ll——a) - L) p1> () Ly.

Then, from Theorem 3.1 we get for each p > p; the existence of an unique
bounded solution of the equation (2.16) in the ball 323 therefore the system
(2.16) has one and only one bounded solution z(t).

To prove that z(¢) is stable, we consider any other solution of (2.16) and
the following estimate

I(t) — 2@slla < =5 lletto) — 2(t0)la

and A = (LAI;E}):_CQ. Since in this case A does not depent on the bounded
function 2 and tg, the stability is uniform. 0

Corolary 3.1 If f s periodic in t of period T (f(t + 7,&) = f(t,€) ), then
the unique bounded solution given by Theorems 3.1 and 3.2 is also periodic
of period T.

Proof Let z, be the unique solution of (2.16) in the ball BZ. Then, 2(t) =
zp(t + 7) is also a solution of the equation (2.16) lying in the ball Bz, and
by the uniqueness of the fixed point of the contraction mapping T in this
ball, we conclude that z,(t) = z,(t +7), t € R. 0
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Remark 3.1 Under some condition the bounded solution given by Theorems
3.1 and 3.2 is almost periodic; for example we can study the case when the
function f has the following form:

f(t,86) =g(&) + P(t), te R, &€ R, (3.5)
where P € Cy(IR, IR™), the space of continuous and bounded functions.

Corolary 3.2 Suppose f has the form (3.5). Then the bounded solution
2p(-, P) given by Theorem 3.2 depends continuously on P € Cy(IR, IR").

Proof Let P, Py € Cy(IR, R™) and z(-, P,), z(-, P2) be the bounded func-
tions given by Theorem 3.2. Then

zb(t,-,Pl) — Zb(t,~,P2) = /t C—AD(t $) [g Zb S PQ)) (zb(s PQ))]dS

— o0

+ /_ t e~ A9 Py(s) — Py(s)]ds.

Hence,
LI'(1
ot P = e POl < U )~
Ir'(1
+ WHH Py l|p.
Therefore,
I'(l—a)
nd)l
l26(, Pr) — 26(-, P2)llp < %IIH Pallp.
- Sgr==

a
We conclude this work with the following lemma about almost periodicity

of the bounded solutions of the equation (2.16).

Lemma 3.2 Suppose f is as (3.5). Then, if P(t) is almost periodic, then
the unique bounded solution of the system (2.16) given by Theorems 3.1 and
3.2 is also almost periodic.

Proof To prove this lemma, we shall use the following well known fact, due
to S. Bohr. A function f € C(IR; Z%) is almost periodic (a.p) if and only if
the Hull H(h) of h is compact in the topology of uniform convergence.
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Where H (h) is the closure of the set of translates of A under the topology
of uniform convergence

H(h)y={h,:T€ R}, h(t)y=h(t+71),teR.

Since the limit of a uniformly convergent sequence of a.p. functions is a.p.,
then the set A, of a.p. functions in the ball BZ is closed, where p is given
by Theorem 3.1 or 3.2.

Claim. The contraction mapping T given in Theorems 3.1 and 3.2 leaves
A, inva-

riant. In fact; if z € A,, then h(t) = g(z(t)) + P(t) is also an a.p. function.
Now, consider the function

t
F(t) = (T2)(t) = / ¢ ADE=9) (g(z(s)) + P(s)} ds

— 00

¢
= / e A=) p(s)ds, te R.
—00
Then, it is enough to establish that H(F) is compact in the topology of
uniform convergence. Let {F; } be any sequence in H(F). Since h is a.p.
we can select from {h, } a Cauchy subsequence {h,,_ }, and we have that

J

t-f-‘l"r
J e_AD(t+Tkj —S)h(s)ds

Fo®=Flt+m) = [

— 00

¢
= / e A=) p(s 4 Tk, )ds.

— 00
Hence,
t
1, ()= Ol < / (t — 5)"%e M4 (s + 7)) — s + 75, ads
— o0
i
= Hh”cj - hm”b/ (t — 5) "% Mdt=8)gg
I'(1-a)
= Gy = el

Therefore, { F;, } is a Cauchy sequence. So, H(F') is compact in the topology
of uniform con\JIergence, Fisap. and TA, C A,.

Now, the unique fixed point of T in the ball BZ lies in A,. Hence, the
unique bounded solution z(t) of the equation (2.16) given in Theorems 3.1
and 3.2 is also almost periodic. 0
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