Universidad de los Andes Facultad de Ciencias Departamento de Matemática

Existence and Stability of Bounded Solutions for a System of Parabolic Equations

Hugo Leiva - I. Sequera

Notas de Matemática

Serie: Pre-Print No. 216

Mérida - Venezuela 2001

Existence and Stability of Bounded Solutions for a System of Parabolic Equations

Hugo Leiva - I. Sequera

Abstract

In this paper we study the existence and the stability of bounded solutions of the following non-linear system of parabolic equations with homogeneous Dirichlet boundary conditions

$$u_t = D\Delta u + f(t, u), t \ge 0, u \in \mathbb{R}^n,$$

 $u = 0$, on $\partial \Omega$

where $f \in C^1(\mathbb{R} \times \mathbb{R}^n)$, $D = \operatorname{diag}(d_1, d_2, \ldots, d_n)$ is a diagonal matrix with $d_i > 0$, $i = 1, 2, \ldots, n$ and Ω is a bounded domain in $\mathbb{R}^N(N = 1, 2, 3)$. Roughly speaking we shall prove the following result: if f is globally Lipschitz with constant L, $3/4 < \alpha < 1$ and $\frac{(\lambda_1 d)^{1-\alpha}}{\Gamma(1-\alpha)} > L$, then the system has a bounded solution which is stable, where $d = \min\{d_i : i = 1, 2, \ldots, n\}$, λ_1 is the first eigenvalue of $-\Delta$ and $\Gamma(\cdot)$ the well known gamma function. Also, we prove that for some big class of functions f this bounded solution is almost periodic.

Key words. system of parabolic equations, bounded solutions, stability. AMS(MOS) subject classifications. primary: 34G10; secondary: 35B40. Running Title: BOUNDED SOLUTIONS FOR PARABOLIC EQS.

1 Introduction

In this paper we shall study the existence and the stability of bounded solutions for the following system of parabolic equations with homogeneous Dirichlet boundary conditions

$$u_t = D\Delta u + f(t, u), \quad t \ge 0, \quad u \in \mathbb{R}^n, \tag{1.1}$$

$$u=0$$
 , on $\partial\Omega$ (1.2)

where $f \in C^1(\mathbb{R} \times \mathbb{R}^n)$, $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ is a diagonal matrix with $d_i > 0$, $i = 1, 2, \dots, n$ and Ω is a bounded domain in $\mathbb{R}^N (N = 1, 2, 3)$.

We shall assume the following hypothesis:

H) there exists $L_f > 0$ such that

$$||f(t,0)|| \le L_f, \quad \forall t \in \mathbb{R}. \tag{1.3}$$

Under this assumption, roughly speaking we prove the following statement: If f is globally Lipschitz in the second variable with a Lipschitz constant L, $3/4 < \alpha < 1$ and $\frac{(\lambda_1 d)^{1-\alpha}}{\Gamma(1-\alpha)} > L$, then the system admits only one bounded solution which is uniformly stable, where

$$d = \min\{d_i : i = 1, 2, \dots, n\},\tag{1.4}$$

 λ_1 is the first eigenvalue of $-\Delta$ and $\Gamma(\cdot)$ de well known gamma function. Also, we prove that for some particular f this bounded solution is almost periodic.

Several mathematical models may be written as a system of reaction-diffusion of the form (1.1), like a models of vibration of plates(see [1]) and a Lotka-Volterra system with diffusion(see [2]). Some ideas for this work can be found in [3], [4], [5] and [6].

2 Notations and Preliminaries

In this section we shall choose the space where this problem will be set.

Let $X = L^2(\Omega) = L^2(\Omega, \mathbb{R})$ and consider the linear unbounded operator $A: D(A) \subset X \to X$ defined by $A\phi = -\Delta\phi$, where

$$D(A) = H^2(\Omega, \mathbb{R}) \cap H_0^1(\Omega, \mathbb{R}). \tag{2.1}$$

Since this operator is sectorial, then the fractional power space X^{α} associated with A can be defined. That is to say: for $\alpha \geq 0$, $X^{\alpha} = D(A^{\alpha})$ endowed with the graph norm

$$||x||_{\alpha} = ||A^{\alpha}x||, \quad x \in X^{\alpha}.$$
 (2.2)

(see D. Henry [7] pg 29).

Precisely we have the following situation: Let $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n \to \infty$ be the eigenvalues of A each one with finite multiplicity γ_j equal to the dimension of the corresponding eigenspace. Therefore

a) there exists a complete orthonormal set $\{\phi_{j,k}\}$ of eigenvector of A.

b) for all $x \in D(A)$ we have

$$Ax = \sum_{j=1}^{\infty} \lambda_j \sum_{k=1}^{\gamma_j} \langle x, \phi_{j,k} \rangle \phi_{j,k} = \sum_{j=1}^{\infty} \lambda_j E_j x,$$
 (2.3)

where $\langle \cdot, \cdot \rangle$ is the inner product in X and

$$E_{j}x = \sum_{k=1}^{\gamma_{j}} \langle x, \phi_{j,k} \rangle \phi_{j,k}. \tag{2.4}$$

So, $\{E_j\}$ is a family of complete orthogonal projections in X and $x = \sum_{j=1}^{\infty} E_j x, \quad x \in X$.

c) -A generates an analytic semigroup $\{e^{-At}\}$ given by

$$e^{-At}x = \sum_{j=1}^{\infty} e^{-\lambda_j t} E_j x. \tag{2.5}$$

d)

$$X^{\alpha} = D(A^{\alpha}) = \{x \in X : \sum_{j=1}^{\infty} (\lambda_j)^{2\alpha} ||E_j x||^2 < \infty\},$$

and

$$A^{\alpha}x = \sum_{j=1}^{\infty} (\lambda_j)^{\alpha} E_j x. \tag{2.6}$$

Also, we shall use the following notation:

$$Z:=L^2(\Omega,\mathbb{R}^n)=X^n=X\times\cdots\times X, \text{ and } C_n=C(\Omega,\mathbb{R}^n)=[C(\Omega)]^n,$$

with the usual norms.

Now, we define the following operator

$$A_D: D(A_D) \subset Z \to Z, \quad A_D \psi = -D\Delta \psi = DA\psi,$$
 (2.7)

where

$$D(\mathcal{A}_D) = H^2(\Omega, \mathbb{R}^n) \cap H^1_0(\Omega, \mathbb{R}^n).$$

Therefore, A_D is a sectorial operator and the fractional power space Z^{α} associated with A_D is given by

$$Z^{\alpha} = D(\mathcal{A}_{D}^{\alpha}) = X^{\alpha} \times \dots \times X^{\alpha} = [X^{\alpha}]^{n}.$$
 (2.8)

endowed with the graph norm

$$||z||_{\alpha} = ||\mathcal{A}_D^{\alpha} z||, \quad z \in Z^{\alpha}, \tag{2.9}$$

where

$$\mathcal{A}_D^{\alpha} z = \sum_{j=1}^{\infty} D^{\alpha} (\lambda_j)^{\alpha} P_j z, \quad D^{\alpha} = \operatorname{diag}(d_1^{\alpha}, d_2^{\alpha}, \cdots, d_n^{\alpha}), \tag{2.10}$$

and $P_j = \operatorname{diag}(E_j, E_j, \cdots, E_j)$ is an $n \times n$ matrix. The C_o -semigroup $\{e^{-\mathcal{A}_D t}\}_{t \geq 0}$ generated by $-\mathcal{A}_D$ is given as follow

$$e^{-\mathcal{A}_D t} z = \sum_{j=1}^{\infty} e^{-\lambda_j D t} P_j z, \quad z \in Z.$$
 (2.11)

Clearly, $\{P_i\}$ is a family of orthogonal projections in Z which is complete. So,

$$z = \sum_{j=1}^{\infty} P_j z$$
, $||z||^2 = \sum_{j=1}^{\infty} ||P_j z||^2$ and $||z||_{\alpha}^2 = \sum_{j=1}^{\infty} ||P_j z||_{\alpha}^2$. (2.12)

From (2.11) it follows that there exists a constant M > 0 such that for all $z \in Z^{\alpha}$

$$||e^{-A_D t}z||_{\alpha} \le M||z||_{\alpha}e^{-d\lambda_1 t}, \quad t \ge 0,$$
 (2.13)

$$||e^{-\mathcal{A}_D t}z||_{\alpha} \le Mt^{-\alpha}||z||e^{-d\lambda_1 t}, \quad t > 0.$$
 (2.14)

From Theorem 1.6.1 in D. Henry [7] it follows that for $\frac{3}{4} < \alpha \le 1$ the following inclusions

$$Z^{\alpha} \subset C(\Omega, \mathbb{R}^n)$$
 and $Z^{\alpha} \subset L^p(\Omega, \mathbb{R}^n), p \ge 2,$ (2.15)

Now, the systems (1.1)-(1.2) can be written in an abstract way on Z as follow:

$$z' = -A_D z + f^e(t, z), \quad z(t_0) = z_0 \quad t \ge t_0 > 0.$$
 (2.16)

Where $f^e: \mathbb{R} \times \mathbb{Z}^{\alpha} \to \mathbb{Z}$ is given by:

$$f^{e}(t,z)(x) = f(t,z(x)), \quad x \in \Omega.$$
(2.17)

To show that equation (2.16) is well posed in Z^{α} we have to prove the following lemma.

Lemma 2.1 The function f^e given in (2.17) is locally Hölder continuous in t and locally Lipschitz in z. i.e., given an interval [a,b] and a ball $B_r^{\alpha}(0)$ in Z^{α} there exist $\theta > 0$ and K > 0 such that

$$||f^{e}(t,z_{1})-f^{e}(s,z_{2})|| \le K(|t-s|^{\theta}+||z_{1}-z_{2}||_{\alpha}), ||z_{1}||_{\alpha}, ||z_{2}||_{\alpha} \le r, t, s \in [a,b].$$

Proof Since $f \in C^1(\mathbb{R} \times \mathbb{R}^n)$, then for each interval [a, b] and a ball $B_{\rho}(0) \subset \mathbb{R}^n$ there exist constans k > 0 and $M(\rho) > 0$ such that

$$||f(t,x) - f(s,y)|| \le k|t-s| + M(\rho)||x-y||$$
 if $||x||, ||y|| \le \rho$, $t,s \in [a,b]$.

From the continuous inclusion $Z^{\alpha} \subset C_n$ there exists l > 1 such that

$$\sup_{x\in\Omega}\|z(x)\|_{I\!\!R^n}\leq l\|z\|_\alpha,\quad z\in Z^\alpha.$$

Now, let $B_r^{\alpha}(0)$ be a ball in Z^{α} . Then putting $\rho = lr$ we get that

$$||f(t,z_1(x)) - f(s,z_2(x))|| \le k|t-s| + M(lr)||z_1(x) - z_2(x)||, \quad x \in \Omega,$$

if $||z_1||_{\alpha}$, $||z_2||_{\alpha} \le r$ and $t, s \in [a, b]$.

Therefore, if $||z_1||_{\alpha}$, $||z_2||_{\alpha} \in B_r^{\alpha}(0)$ and $t, s \in [a, b]$, then

$$||f^e(t,z_1) - f^e(s,z_2)|| \le k\mu(\Omega)^{1/2}|t-s| + M(lr)||z_1-z_2||,$$

where $\mu(\Omega)$ denote the Lebesgue measure of Ω .

Now, from the continuous inclusion $Z^{\alpha} \subset L^2(\Omega, \mathbb{R}^n)$ there exists a constant R > 0 such that

$$||z||_{L^2} \le R||z||_{\alpha}, \quad z \in Z^{\alpha}.$$

Hence, if $||z_1||_{\alpha}$, $||z_2||_{\alpha} \in B_r^{\alpha}(0)$ and $t, s \in [a, b]$, then

$$||f^e(t,z_1) - f^e(s,z_2)|| \le k\mu(\Omega)^{1/2}|t-s| + RM(lr)||z_1 - z_2||_{\alpha}.$$

We complete the proof by putting $\theta = 1$ and $K = \max\{k\mu(\Omega)^{1/2}, RM\}$. \square The following proposition can be proved in the same way as the foregoing lemma.

Proposition 2.1 Supose f is globally Lipschitz with a constant L. i.e.,

$$\|f(t,u)-f(t,v)\|\leq L\|u-v\|, \quad \forall t\in I\!\!R, \quad u,v\in I\!\!R^n.$$

Then

$$||f^e(t, z_1) - f^e(t, z_2)|| \le LR||z_1 - z_2||_{\alpha}, \quad z_1, z_2 \in Z^{\alpha}, \quad t \in \mathbb{R},$$
 (2.18)

where $||z|| \leq R||z||_{\alpha}$, for $z \in Z^{\alpha}$. Also, from the hypothesis H) we get that

$$||f^e(t,0)|| \le \mu(\Omega)L_f, \quad t \ge 0.$$
 (2.19)

From Theorem 7.1.4 in [7], for all $T > t_0$ we have the following:

A continuous function $z(\cdot):(t_0,T)\to Z^\alpha$ is solution of the integral equation

$$z(t) = e^{-A_D(t-t_0)}z_0 + \int_{t_0}^t e^{-A_D(t-s)}f^e(s, z(s))ds, \quad t \in (t_0, T]$$
 (2.20)

if and only if $z(\cdot)$ is a solution of (2.16).

From now on, we will suppose that $\frac{3}{4} < \alpha < 1$ and that R = M = 1..

3 Main Theorems

Now, we are ready to formulate the main results of this paper. Under the above conditions we can prove the following Theorems.

Theorem 3.1 Consider B^{α}_{ρ} the ball of center zero and radio $\rho > 0$ in Z^{α} , and L_{ρ} the Lipschitz constant of f^{e} in $B^{\alpha}_{2\rho}$ and $\mu(\Omega)$ the Lebesgue measure of Ω . If the following estimate holds

$$\left(\frac{(\lambda_1 d)^{1-\alpha}}{\Gamma(1-\alpha)} - 4L_{\rho}\right) \rho > \mu(\Omega) L_f, \tag{3.1}$$

then the equation (2.16) admits one and only one bounded solution z_b , with $||z_b(t)|| \le \rho$, $t \in \mathbb{R}_+$. Moreover, this bounded solution is locally stable

Theorem 3.2 Suppose f satisfies condition (2.18) and

$$\frac{(\lambda_1 d)^{1-\alpha}}{\Gamma(1-\alpha)} > L. \tag{3.2}$$

Then equation (2.16) admits one and only one bounded solution $z_b(t)$ for $t \in \mathbb{R}_+$.

Moreover, this bounded solution is globally uniformly stable.

Before the proof of the main results we shall prove the following key lemma. Consider $Z_b^{\alpha} = C_b(\mathbb{R}, Z^{\alpha})$ the space of bounded and continuous functions defined in \mathbb{R} taking values in Z^{α} . Then Z_b^{α} is a Banach space with suprem norm

$$||z||_b = \sup\{||z(t)||_\alpha : t \in \mathbb{R}\}, \ z \in Z_b^\alpha.$$

A ball of radio $\rho > 0$ and center zero in this space is given by

$$B_{\rho}^{b} = \{ z \in Z_{b}^{\alpha} : ||z(t)||_{b} \le \rho, \ t \in \mathbb{R} \}.$$

Lemma 3.1 Let z be in Z_b^{α} . If z is a solution of (2.16), then z is a solution of the following integral differential equation

$$z(t) = \int_{-\infty}^{t} e^{-\mathcal{A}_D(t-s)} f^e(s, z(s)) ds, \quad t \in \mathbb{R}.$$
 (3.3)

If z is a solution of (3.3), then z is a solution of (2.16) for $t \geq 0$.

Proof Suppose that z is a solution of (2.16). Then, from the variation constant formula (2.20) and the uniqueness of the solution of (2.16) we get that

$$z(t) = e^{-\mathcal{A}_D(t-t_0)}z(t_0) + \int_{t_0}^t e^{-\mathcal{A}_D(t-s)}f^e(s,z(s))ds, \quad t \ge t_0.$$
 (3.4)

On the other hand, from (2.13) we obtain that

$$||e^{-A_D(t-t_0)}z(t_0)||_{\alpha} \le e^{-d\lambda_1(t-t_0)}||z(t_0)||_{\alpha}, \quad t \ge t_0,$$

and since $||z(t)||_{\alpha} \leq m$, $t \in \mathbb{R}$, we get the following estimate

$$||e^{-A_D(t-t_0)}z(t_0)||_{\alpha} \le me^{-d\lambda_1(t-t_0)}, \quad t \ge t_0,$$

which implies that

$$\lim_{t_0 \to -\infty} \|e^{-\mathcal{A}(t-t_0)} z(t_0)\|_{\alpha} = 0.$$

Let $\rho > 0$ such that $||z||_b \leq \rho$ and L_ρ the Lipschitz constant of f^e in $B_{2\rho}^{\alpha}$. Then from the inequalities (2.13)-(2.14) we get the following estimates

$$\int_{-\infty}^{t} \|e^{-A_{D}(t-s)} f^{e}(s, z(s))\|_{\alpha} ds \leq \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} \|f^{e}(s, z(s))\|_{\alpha} ds
\leq \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} \{L_{\rho} \|z(s)\|_{\alpha} + \|f^{e}(s, 0)\|\} ds
\leq \{L_{\rho} \|z\|_{b} + \mu(\Omega) L_{f}\} \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} ds
= \{L_{\rho} \|z\|_{b} + \mu(\Omega) L_{f}\} \frac{\Gamma(1-\alpha)}{(\lambda_{1} d)^{1-\alpha}}.$$

Therefore, passing to the limit in (3.4) when t_0 goes to $-\infty$ we conclude that

$$z(t) = \int_{-\infty}^t e^{-\mathcal{A}_D(t-s)} f^e(s,z(s)) ds, \ \ t \in I\!\!R.$$

Suppose that z is a solution of the integral equation (3.3). Then

$$z(t) = \int_{-\infty}^{0} e^{-A_D(t-s)} f^e(s, z(s)) ds$$
$$+ \int_{0}^{t} e^{-A_D(t-s)} f^e(s, z(s)) ds.$$

Hence, for $t \geq 0$ we get that

$$z(t) = e^{-A_D t} \int_{-\infty}^{0} e^{A_D s} f^e(s, z(s)) ds$$

$$+ \int_{0}^{t} e^{-A_D (t-s)} f^e(s, z(s)) ds$$

$$= e^{-A_D t} z(0) + \int_{0}^{t} e^{-A_D (t-s)} f^e(s, z(s)) ds,$$

where

$$z(0) = \int_{-\infty}^{0} e^{A_D s} f^e(s, z(s)) ds.$$

Therefore, z(t) is solution of the equation (2.16).

Proof of Theorem 3.1.

From Lemma 3.1 it is enough to prove that the following operator $T: Z_b^{\alpha} \to Z_b^{\alpha}$ define by:

$$Tz(t) = \int_{-\infty}^{0} e^{-\mathcal{A}_D(t-s)} f^e(s, z(s)) ds,$$

has a unique fixed point in B^b_{ρ} .

For $z \in B_{\rho}^b$ we get

$$||Tz(t)||_{\alpha} \leq \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} \{L_{\rho}||z(s)||_{\alpha} + ||f^{e}(s,0)||\} ds$$

$$\leq \{L_{\rho}||z||_{b} + \mu(\Omega)L_{f}\} \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} ds$$

$$\leq \{L_{\rho}\rho + \mu(\Omega)L_{f}\} \frac{\Gamma(1-\alpha)}{(\lambda_{1}d)^{1-\alpha}} < \rho.$$

Hence, $Tz \in B^b_\rho$, $z \in B^b_\rho$.

Now, we prove that T is a contraction mapping. In fact, for $z_1, z_2 \in B^b_\rho$ we have that

$$||Tz_{1}(t) - Tz_{2}(t)||_{\alpha} \leq \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} ||f^{e}(s, z_{1}(s)) - f^{e}(s, z_{2}(s))|| ds$$

$$\leq \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-d\lambda_{1}(t-s)} L_{\rho} ||z_{1}(s) - z_{2}(s)||_{\alpha} ds$$

$$\leq \frac{L_{\rho} \Gamma(1-\alpha)}{(\lambda_{1}d)^{1-\alpha}} ||z_{1} - z_{2}||_{b}.$$

So, from (3.1) we get that

$$\frac{L_{\rho}\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}} < 1.$$

Then, T is a contraction mapping. Therefore, T has a unique fixed point z_b in B_{ρ}^b . i.e.,

$$z_b(t) = \int_{-\infty}^0 e^{-\mathcal{A}_D(t-s)} f^e(s, z(s)) ds,$$

and from Lemma 3.1 $z_b(t)$ is solution of (2.16) for $t \ge 0$.

To prove that $z_b(t)$ is locally stable, we consider any othe solution z(t) of (2.16) such that $||z(t_0) - z(t_0)_b||_{\alpha} < \frac{\rho}{2}$ with $t_0 \ge 0$. Then , $||z(t_0)||_{\alpha} < 2\rho$. As long as $||z(t)||_{\alpha}$ remainds less than 2ρ we get the following estimates:

$$\begin{split} \|z(t) - z(t)_b\|_{\alpha} & \leq e^{-\lambda_1 dt} \|z(t_0) - z(t_0)_b\|_{\alpha} \\ & + \int_{-\infty}^t (t-s)^{-\alpha} e^{-d\lambda_1 (t-s)} L_{\rho} \|z(s) - z_b(s)\|_{\alpha} ds, \quad t \in [t_0, t_1] \\ & \leq \|z(t_0) - z(t_0)_b\|_{\alpha} + \frac{L_{\rho} \Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}} \sup_{s \in [t_0, t_1]} \|z(s) - z_b(s)\|_{\alpha}. \end{split}$$

If $t_1 = \inf\{t > t_0 : \|z(t)\|_{\alpha} < 2\rho\}$, then either $t_1 = \infty$ or $\|z(t_1)\|_{\alpha} = 2\rho$. Suppose that $\|z(t_1)\|_{\alpha} = 2\rho$. Then from the above estimate we get that

$$\rho < \frac{\rho}{2} + 2 \frac{L_{\rho} \Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}} \rho = \left(\frac{1}{2} + 2 \frac{L_{\rho} \Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}}\right) \rho.$$

From condition (3.1) we get that

$$\frac{1}{2} + 2\frac{L_{\rho}\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}} < 1$$

which is a contradiction. Therefore, $t_1 = \infty$ and $z(t) \in B_{2\rho}^b$ for $t \geq t_0$.

Define

$$||z-z_b||_b^+ = \sup_{t>t_0} ||z(t)-z_b(t)||_{\alpha}.$$

Then,

$$\|z-z_b\|_b^+ \leq \|z(t_0)-z_b(t_0)\|_{lpha} + rac{L_{
ho}\Gamma(1-lpha)}{(\lambda_1 d)^{1-lpha}} \|z-z_b\|_b^+.$$

Hence,

$$\left(1 - \frac{L_{\rho}\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}}\right) \|z - z_b\|_b^+ \le \|z(t_0) - z_b(t_0)\|_{\alpha}.$$

Let us put $\Lambda = \frac{L_{\rho}\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}}$. Then

$$||z-z_b||_b^+ \le \frac{1}{1-\Lambda} ||z(t_0)-z_b(t_0)||_{\alpha}.$$

From here we get the stability of $z_b(t)$.

Proof of Theorem 3.2.

Since $\frac{(\lambda_1 d)^{1-\alpha}}{\Gamma(1-\alpha)} - L > 0$, then there exist $\rho_1 > 0$ such that

$$\left(\frac{(\lambda_1 d)^{1-\alpha}}{\Gamma(1-\alpha)} - L\right) \rho_1 > \mu(\Omega) L_f.$$

Then, from Theorem 3.1 we get for each $\rho > \rho_1$ the existence of an unique bounded solution of the equation (2.16) in the ball B_{ρ}^b ; therefore the system (2.16) has one and only one bounded solution $z_b(t)$.

To prove that $z_b(t)$ is stable, we consider any other solution of (2.16) and the following estimate

$$||z(t)-z(t)_b||_{\alpha} \leq \frac{1}{1-\Lambda}||z(t_0)-z_b(t_0)||_{\alpha}.$$

and $\Lambda = \frac{L\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}}$. Since in this case Λ does not depent on the bounded function z_b and t_0 , the stability is uniform.

Corolary 3.1 If f is periodic in t of period τ ($f(t+\tau,\xi)=f(t,\xi)$), then the unique bounded solution given by Theorems 3.1 and 3.2 is also periodic of period τ .

Proof Let z_b be the unique solution of (2.16) in the ball B_{ρ}^b . Then, $z(t) = z_b(t+\tau)$ is also a solution of the equation (2.16) lying in the ball B_{ρ}^b , and by the uniqueness of the fixed point of the contraction mapping T in this ball, we conclude that $z_b(t) = z_b(t+\tau)$, $t \in \mathbb{R}$.

Remark 3.1 Under some condition the bounded solution given by Theorems 3.1 and 3.2 is almost periodic; for example we can study the case when the function f has the following form:

$$f(t,\xi) = g(\xi) + P(t), \quad t \in \mathbb{R}, \xi \in \mathbb{R}^n, \tag{3.5}$$

where $P \in C_b(\mathbb{R}, \mathbb{R}^n)$, the space of continuous and bounded functions.

Corolary 3.2 Suppose f has the form (3.5). Then the bounded solution, $z_b(\cdot, P)$ given by Theorem 3.2 depends continuously on $P \in C_b(\mathbb{R}, \mathbb{R}^n)$.

Proof Let $P_1, P_2 \in C_b(\mathbb{R}, \mathbb{R}^n)$ and $z_b(\cdot, P_1), z_b(\cdot, P_2)$ be the bounded functions given by Theorem 3.2. Then

$$z_{b}(t,\cdot,P_{1}) - z_{b}(t,\cdot,P_{2}) = \int_{-\infty}^{t} e^{-\mathcal{A}_{D}(t-s)} [g(z_{b}(s,P_{2})) - g(z_{b}(s,P_{2}))] ds$$
$$+ \int_{-\infty}^{t} e^{-\mathcal{A}_{D}(t-s)} [P_{1}(s) - P_{2}(s)] ds.$$

Hence,

$$||z_{b}(\cdot, P_{1}) - z_{b}(\cdot, P_{2})||_{b} \leq \frac{L\Gamma(1-\alpha)}{(\lambda_{1}d)^{1-\alpha}}||z_{b}(\cdot, P_{1}) - z_{b}(\cdot, P_{2})||_{b}$$

$$+ \frac{\Gamma(1-\alpha)}{(\lambda_{1}d)^{1-\alpha}}||P_{1} - P_{2}||_{b}.$$

Therefore,

$$||z_b(\cdot, P_1) - z_b(\cdot, P_2)||_b \le \frac{\frac{\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}}}{1 - \frac{L\Gamma(1-\alpha)}{(\lambda_1 d)^{1-\alpha}}} ||P_1 - P_2||_b.$$

We conclude this work with the following lemma about almost periodicity of the bounded solutions of the equation (2.16).

Lemma 3.2 Suppose f is as (3.5). Then, if P(t) is almost periodic, then the unique bounded solution of the system (2.16) given by Theorems 3.1 and 3.2 is also almost periodic.

Proof To prove this lemma, we shall use the following well known fact, due to S. Bohr. A function $f \in C(\mathbb{R}; \mathbb{Z}^{\alpha})$ is almost periodic (a.p) if and only if the Hull H(h) of h is compact in the topology of uniform convergence.

Where H(h) is the closure of the set of translates of h under the topology of uniform convergence

$$H(h) = \overline{\{h_{ au} : au \in I\!\!R\}}, \quad h_{ au}(t) = h(t+ au), t \in I\!\!R.$$

Since the limit of a uniformly convergent sequence of a.p. functions is a.p., then the set A_{ρ} of a.p. functions in the ball B_{ρ}^{b} is closed, where ρ is given by Theorem 3.1 or 3.2.

Claim. The contraction mapping T given in Theorems 3.1 and 3.2 leaves A_{ϱ} inva-

riant. In fact; if $z \in A_{\rho}$, then h(t) = g(z(t)) + P(t) is also an a.p. function. Now, consider the function

$$F(t) = (Tz)(t) = \int_{-\infty}^{t} e^{-\mathcal{A}_D(t-s)} \left\{ g(z(s)) + P(s) \right\} ds$$

$$= \int_{-\infty}^{t} e^{-\mathcal{A}_D(t-s)} h(s) ds, \quad t \in \mathbb{R}.$$

Then, it is enough to establish that H(F) is compact in the topology of uniform convergence. Let $\{F_{\tau_k}\}$ be any sequence in H(F). Since h is a.p. we can select from $\{h_{\tau_k}\}$ a Cauchy subsequence $\{h_{\tau_{k_j}}\}$, and we have that

$$F_{\tau_{k_j}}(t) = F(t + \tau_{k_j}) = \int_{-\infty}^{t + \tau_{k_j}} e^{-A_D(t + \tau_{k_j} - s)} h(s) ds$$
$$= \int_{-\infty}^{t} e^{-A_D(t - s)} h(s + \tau_{k_j}) ds.$$

Hence,

$$||F_{\tau_{k_{j}}}(t) - F_{\tau_{k_{i}}}(t)||_{\alpha} \leq \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-\lambda_{1} d(t-s)} ||h(s+\tau_{k_{j}}) - h(s+\tau_{k_{i}})||_{\alpha} ds$$

$$\leq ||h_{\tau_{k_{j}}} - h_{\tau_{k_{i}}}||_{b} \int_{-\infty}^{t} (t-s)^{-\alpha} e^{-\lambda_{1} d(t-s)} ds$$

$$= \frac{\Gamma(1-\alpha)}{(\lambda_{1} d)^{1-\alpha}} ||h_{\tau_{k_{j}}} - h_{\tau_{k_{i}}}||_{b}.$$

Therefore, $\{F_{\tau_{k_j}}\}$ is a Cauchy sequence. So, H(F) is compact in the topology of uniform convergence, F is a.p. and $TA_{\rho} \subset A_{\rho}$.

Now, the unique fixed point of T in the ball B_{ρ}^{b} lies in A_{ρ} . Hence, the unique bounded solution $z_{b}(t)$ of the equation (2.16) given in Theorems 3.1 and 3.2 is also almost periodic.

References

- [1] LUIZ A. F. de OLIVEIRA "On Reaction-Diffusion Systems" E. Journal of Differential Equations, Vol. 1998(1998), No. 24, pp. 1-10.
- [2] J. LOPEZ G. and R. PARDO SAN GIL "Coexistence in a Simple Food Chain with Diffusion" J. Math. Biol. (1992) 30: 655-668.
- [3] H. LEIVA "Stability of a Periodic Solution for a System of Parabolic Equations" J. Applicable Analysis, Vol. 60, pp. 277-300(1996).
- [4] H. LEIVA, "Existence of Bounded Solutions of a Second Order System with Dissipation" J. Math. Analysis and Appl. 237, 288-302(1999).
- [5] L. GARCIA and H. LEIVA, "Center Manifold and Exponentially Bounded Solutions of a Forced Newtonian System with Dissipation" E. Journal Differential Equations. conf. 05, 2000, pp. 69-77.
- [6] H. LEIVA, "Existence of Bounded Solutions of a Second Order Evolution Equation and Applications" Journal Math. Physis. Vol. 41, N0 11, 2000.
- [7] D.Henry "Geometric theory of semilinear parabolic equations", Springer, New York (1981).
- [8] J.M. ALONSO, J. MAWHIN AND R. ORTEGA, "Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation", J.Math. Pures Appl., 78, 49-63 (1999).
- [9] W. ARENDT AND C.J.K. BATTY, "Almost periodic solutions fo first and second-order cauchy problems", J.D. Equations 137, 363-383 (1997).