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On the dynamics of a nerve equation with delay 

Stein, Leung, Mangeron and Oguztijreli 4 proposed in  1974 the follow- 
ing integro-differential equation to  describe the essential features of general 
types of neurons: 

where ' is the derivative with respect to t ,  the constants a > 0, b E R, 
0 < p < q are specific of certain groups of neurons. The function x( t ) ,  
0 5 x( t )  5 1, represents the normalized impulse frequency of the axon as a 
reaction to the input f ( t)  of the nerve cell. The assumption b < 0 means 
that  the integral term in Equation (1.1) reflects inhibition of new generation 
of impulses, due to exhaustion of the cell's resources by previous firing. 

According to an der Heiden 4, introducing the following quantities: 

y(t) = Jdf x( t  - u)e-Pudu , 

and assuming that  f ( t )  is a constant function, the equation (1.1) becomes 
equivalent to the third order nonlinear autonomous system 

where the initial conditions must satisfy 

These initial conditions reflect that  equation (1.1) takes into account only 
the history of the cell back to the time t = 0. To avoid this inhomogeneity 
of the time an der Heiden 4 assume x( t )  to be determined by the impulse 
frequency in the time between t - r and t .  Then equation (1.1) has to  be 
modified to 

1 1 
(1.3) -x(t) + ~ ( t )  = 

a 1 + exp [- f - b Ji x(t  - u) [e-p" - e-q"] du] 
' 

1 
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With the quantities: 

we obtain from (1.3) the time lag differential system 

where the initial conditions must satisfy 

0 < xo = x(0) < 1 , 0 < yo < 1' e - ~ ' d u ,  

Then by making r + m system (1.4) converges to system (1.2). In this 
paper we restrict our attention to Equation (1.3) and think preferable to 
treat the model as a retarded functional differential equation with finite 
delay, with no restriction in the delay's size. Moreover, we will neglect the 
term e-Qu by making q + m. So, the main subject of this paper is the 
integro-differential equation 

Given a E R,  A > 0 and any function x : [a - r ,  a + A) + Rn,  we adopt 
the Hale's notation (see 4, for instance): for every t E [a, a + A), the function 
xt : [-r,O] + Rn is defined by xt(O) := x(t + 0), for any O E [-r,O]. In this 
setting Equation (1.5) can be written in the form: 

where the function M : R + R is defined by M(s)  = (1 + e-fe-")-l, for 
all s E R. 

Given #I E C := C([-r,O],R), we denote by x(.;4) the solution of Equa- 
tion (1.6) defined for - r  < t < A, A > 0, with so(.; 4) = 4. We tacitly 
assume the general theory of functional differential equations and most of 
the notations set in 4. 

In this paper we show that for any a > 0, equation (1.6) admits a global 
attractor A;t . We prove that (1.6) has a unique equilibrium x* which is 
asymptotically stable for a significant set of the parameters a ,  b ,  p and f .  
If some estimates are imposed on b, p and f ,  we show that there are some 
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critical values of a where x* looses the stability creating room for raising 
periodic solutions of Equation (1.6) through a Hopf bifurcation. Finally, we 
prove that when the unique equilibrium is local asymptotically stable and 
b < 0, the equilibrium is global asymptotically stable. 

In some instances is convenient to think of Equation (1.6) in its shorthand 
form: 

with the functional 4 E C H F(4) E W being defined by F(4) := -a$(O) + 
U M  (J_o~ epe$(8) do), 4 E C. Since the image F(B6)  of any closed ball 

B6 = (4 E C I 1(41( < 6) is contained in the bounded interval [-ah, a6 + a], 
it follows that F is completely continuous. This implies the solutions z ( t )  = 
x(t;  4) of Equation (1.1) such that xo(.; 4) = 4 E C exist for -r  < t < m. 
In fact, for any t such that x(t)  2 1, Equation (1.6) gives x(t)  < 0 and, 
similarly, if x(t)  < 0 we have x(t)  > 0. The existence of the solution x(t)  in 
the large is now a straightforward consequence of Theorem 3.2, in Chapter 
2, of 4. 

Given a > 0, we say that a function is a-lipschitzian if it is uniformly 
Lipschitz-continuous with a Lipschitz constant a. 
The following result holds 

Lemma 2.1. For any a > 0, the equation (1.6) has a global attractor A: c 
R, , where 

R, := (4 E C I $([-r, 01) C [0, 11, #I is a-lipschitzian) 

Proof. A direct application of Arzela-Ascoli's Theorem gives us that a, is 
compact. Now, let us show that a, is positively invariant. Indeed, let us 
pick 4 E a, and T > 0 such that either x ( T ; ~ )  = 1 or x(T;$)  = 0. Then, 
using Equation (1.6), we obtain that x ( T ; ~ )  = 1 implies x ( T ; ~ )  < 0 and 
x ( T ; ~ )  = 0 implies x ( T ; ~ )  > 0. Therefore, 0 < x( t ;4 )  < 1 for 0 < - t < - m. 
Moreover, from (1.6) , it follows that x(t; 4) < a for every t > 0, which 
implies that xt(.; 4) is a-lipschitzian. 

Now having in mind that the function x(t; 4) is decreasing (increasing) 
with respect to t as long as x(t;  4) remains greater than 1 (less than 0),  we 
certainly obtain that (1.6) is pointwise dissipative and the absorbing set is 
given by a, . 

Let us define Ta(t) := xt(4)  . Taking into account that F is a completely 
continuous it follows that Ta(t) is completely continuous as well for any 
t > r . Finally, Theorem 3.4.8 p. 40 in 4 complete the proof of our claim. 

There exists a unique equilibrium x* of Equation (1.6). Of course, the 
constant function 4' E C, @(O) = x*, must belong to a,. This can be seen 
by taking into account the properties of the function M and imposing that 
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the function +*(8) x* ,  for 8 E [ -r ,  01, is a zero of the functional F defined 
by Equation (2.1).  This gives 

that is, 

(2.3) x* = M ( C X * )  , 
where C(p)  := ( 1  - e-pr) l p .  In the investigation on the effect of the 

parameters on the dynamics of Equation (1 .6) ,  the property 

P.4)  lim ~ ( p )  = r 
P-tO 

will play an important role. 
Remark 2.1. It will be useful later on that we can take the parameter b 
with Ibl arbitrarily large and the parameter p varying in any fixed interval 
(O,po) ,  keeping the equilibrium x* E ( 0 , l )  uniformly away from 0 and 1,  
just controlling the input f .  That is, we can do that independently of the 
parameter a and the delay r .  This is easily seen noting that limp,o C(p)  = r  
and, according to the definition of x* ,  it should satisfy 

Recalling the definition of the function M ,  one can see that the linear 
part of Equation ('1.6) near the equilibrium x* is given by 

where 

(2 .6)  ( := bx8(1  - x * ) .  

We point out that x* and therefore ( are independent of a . This fact will 
be useful later. 

The behavior of solutions of Equation (1 .6)  near x* is determined by the 
characteristic equation of Equation (2.5): 

If X = -p  is a root of Equation (2.7) (note that this might occur if p = a ( 1 -  
( r ) ) ,  it only contributes to provide an eigenfunction in the stable eigenspace, 
since it is a negative root. So, the asymptotic behavior of solutions of 
Equation (1.6) near the equilibrium x* is determined by the location of the 
roots X # - p  with respect to the imaginary axis. This remark leads to  the 
study of the following equation equivalent to Equation (2.7) for X # -p: 



Let z := Xr and define P, Q ,  R by 

Substituting these new parameters and variable in Equation (2.8) one ob- 
tains 

The next two results state all properties of the roots of Equation (2.16) 
that we will need along this work. Theorem 2.1 gives more infol-ination than 
Theorem 2.2 of Baptistini and Taboas in 4, but the proof is strongly inspired . 
in that Theorem . 
Lemma 2.2. i)  If b < 0 , then all roots z of Equation (2.10) with 

% ( z )  > 0 are simple. 
Assume that b > 0 . 

i i )  All roots z of Equation (2.10) with % ( r )  > 0 are simple if and only 
i f R s P .  

iii) All complex roots z of Equation (2.10) with % ( z )  > 0 are simple. 

Proof. Suppose temporarily that there exists a number z E @ such that 
H ( z )  = H ' ( z )  = 0 ,  z = a + i p ,  with a > 0.  Since H ( z )  = H (F), it suffices 
to analyze the upper semi-plane. So, let us suppose also ,B > 0 .  

These assumptions lead to the system 

The second equation of (2.11) is equivalent to 

Let us suppose that b < 0 . If ,B # 0 ,  the second equation of (2.12) implies 
2 0  = - ( P  + 2 )  < 0 ,  contradiction. Assuming that ,B = 0 ,  the first equation 
of (2.12) gives a2 + ( P  + 2 ) a  + P + Q = 0 . Since in this case Q > 0 , it 
follows that cu < 0 . Contradiction. 

Parts i i )  - i i i )  follow from the fact that (2.11) is equivalent to  the equation 
2 a +  P =  R e - a .  

The following result not only gives us a necessary and sufficient condition 
for the roots having negative real parts. Indeed, it provides a complete 
description of the location of the roots of the characteristic equation (2.10) 

Theorem 2.1. Let P , Q  > 0 ,  R < 0 and define the 2-vectors v ( P )  := 
( P p ,  Q - p 2 ) ,  w ( P )  := (- sin p ,  cos p ) ,  for P 2 0 .  Consider the sequerlce 
0 = Po < < . . . + oo of all numbers such that v(,Bk) is a positive multiple 
of w(,Bk), k = 1 ,2 ,  . . . . Then, the number of roots of Equation (2.10) with 
positive real parts is twice the number of Pk7s  such that Iv(,Bk)I < - R .  To 
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each such pk there corresponds a pair of conjugate roots, ,-k U I L ~  ? k ,  with 
%(zk) > 0 and 2(k - l ) ~  < l%(zk)l < 2 k ~ .  

Proof. Since H(z )  = H ( t ) ,  where the bar indicates complex conjugation, it 
suffices to  consider the solutions z of Equation (2.10) with %(z) > 0. Thus, 
denoting z = a + i P ,  with P > 0, and splitting H(z)  in its real and imaginary 
parts, Equation (2.10) becomes equivalent to the system: 

[(a2 + Pa + Q - p2) C O S ~  - (2a + P)P sin p] ea + R = 0 
(2.13) 

(a2+ P a + Q - p 2 ) s i n P +  (20+  P)PcosP = 0 

that has the vector form: 

ea [a(2P, a + P) + v(P)] . (- sin P, cos P) = - R 
(2.14) 

[a(2P, a + P) + v(P)] (COS P, sin P) = 0. 

Considering u (a ,  P) := a(2P, a + P), noticing that (cos P, sin p) and 
(-sin p, cosb) are orthogonal and that the second equation in (2.14) is an 
orthogonality condition, one sees that System (2.14) is equivalent to the 
single vector equation: 

If a > 0 is fixed and P increases from 0 to +co, the pair (e, 7) = A(a,/3) 
describes clockwise an unbounded arc of parabola, starting at  the vertex 
(0, a2 + Pa+ Q)  while (e, 71) = w(P) starts a t  ( 0 , l )  to turn counterclockwise 
an infinite number of laps around the unit circle, with center a t  the origin. 
Therefore, for each a > 0 and k = 1,2 , .  . . , there exists precisely one Pk E 
((2k - l ) n ,  2 k ~ )  such that the 2-vectors A(a,  Pk) and w(Pk.) are aligned and 
have the same orientation. Moreover, for each k ,  k = 1,2,  . . . , the nulllber 
Pk = Pk(a) depends continuously on a .  So, there exists a root z of Equation 
(2.10) with %(z) = a if, and only if, for some k E Z++, IA(a ,Pk) I  = -R. 

Notice that, for each positive integer k ,  v(Pk(0)) = A(0, pk(0)),  A(a,  pk(a)) 
depends continuously on a and lim,,, IA(a,Pk(a))l = co. Therefore, to 
distinct pk7s can be associated distinct positive a 's  such that IA(a, Pk(a))  I = 
-R. It remains only to prove that there is a t  most one positive number a 
with this property. 

Notice that for any a > 0 we have 

(2.16) 
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The point A(&, B) is one of the intersections of the branch of parabola 
(<, 7) = A(&, ,B), ,L? 2 0, with the circle I ( < ,  7)1 = -R, that is, IA(6,  B)I  = -R. 
We are going to consider only the case where JA(&, ,B)I > -R, for P > p. The 
proof in the case where IA(&, ,L?)l > -R, for ,L? < ,b, is carried out sin~ilarly. 

Let & - E < a < & for a small E > 0 and consider Pk(a)  defined as 
above. According to (2.16) we have ~ ~ ( a , p ) l  < -R. Since w(,B) varies 
counterclockwise and A(a, ,L?) varies clockwise as ,L? increases, we call assure 
that IA(a , ,Bk(a)) (  < -R. In fact, if ,L?' is close to 6 and (A(cr,,B')J = -R, 
it follows that ,L?' > p. As Figure 2 shows, according to the mentioned 
orientation of w(-) and A(a, .), the point ,L? = ,Bk(a) (where the alignment 
of A(a,,L?) with w(P) occurs) satisfies Pk(a) < ,B1. Therefore, A(a,,Bk(cr)) < 
-R. 

Assume now 6 + E > a > & for a small E > 0. By (2.16) we have 
~ ~ ( a , p ) l  > -R. Taking in account once more the directions in which w(B) 
and A(a,,B) vary with ,B increasing, a figure analogous to  Figure 2 can be 
drawn, now with A ( a , b )  outside the circle of radius -R, and very similar 
arguments lead to IA(a ,  Pk(a) )  1 > - R. 

If & > 0 satisfies IA(&, ,Bk(&)) l  = -R, for some positive integer k, we have 
proved that in some neighborhood of &, A(a,  Pk(a)) is inside the circle of 
radius -R for a < & and it is outside for a > 6. It follows now by the 
continuity of A(&, , B k ( a ) )  that, for each fixed positive integer k, there is a t  
most one & > 0 such that [A(&, Pk(&))l = -R. 

I t  is an obvious consequence of the proof of Lemma 2.1 the following 
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Corollary 2.1. To each term Pk (at most two) of the sequence Po < PI < 
. . . , defined above, such that Iv(,Bk)l = -R, there corresponds a pair of 
imaginary roots f iPk of Equation (2.10). 

Remark 2.2. A geometric interpretation of Lemma 2.1 is the following: If /3 
varies from 0 to +oo, the point v(P) describes clockwise the arc of parabola 
in the plane cq: 

starting at  the vertex (0,Q).  The point w(P) describes, counterclockwise, 
infinitely many successive laps over the unit circle. Both, v(P) and w(P) 
are in the semi-plane c > 0 if and only if /3 belongs to the range (n ,  2n) U 
(3n, 4n) U . . . U ((2k - l ) n ,  2kn) U . . . . At the k-th lap of w(P) there exists 
precisely one value Pk in (2k - l ) n ,  2kn), k = 1 ,2 , .  . . , for which v(Pk) and 
w(Pk) are aligned. Lemma 2.1 states that all roots of Equation (2.8) have 
negative real part if, and only if, Iv(Pk)l > R, k = 1 ,2 , .  . . . 
Remark 2.3. Lemma 2.1 provides a method to compute the dimension of 
the unstable manifold of the equilibrium x*. 

We are now in a position to state a sufficient condition for the local 
stability of the equilibrium x*. 

Theorem 2.2. If 

(2.17) 0 < -6 5 4 d m ,  

then the equilibrium x* of Equation (1.6) is asymptotically stable, for every 
a > 0. 

Proof. Keeping the notations of Lemma 2.1, it will be shown that Iv(,B)I > 
-R, for /3 E (n, 2n) U (3n, 4n) U . . . . 

We claim that Iv(n)12 = n4 + (P2 - 2Q)n2 + Q2 > R2. 
In fact, since Q2 - R2 > 0, it suffices to show that n2  + (P2 - 2Q) > 0. 

Definitions (2.9) imply that the number P2 - 2Q = r2[a2 + 2ca +p2] ,  as a 
function of a > 0, takes its minimum at a = -c. Therefore, recalling that 
0 < x*(1 - x*) < 114, one sees that Hypothesis (2.17) implies 

Then, .rr2 + (P2 - 2Q) > 0. 
Since 
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for /3 2 n ,  it follows that 

Recall that v ( P )  and w ( P )  can be aligned with the same orielitation only if 
either /3 = 0 or P E ( n , 2 n ) ~  ( 3 n l 4 n ) u . .  . . Since v ( 0 )  = Q > - R ,  Theorem 
2.2 is now a straightforward consequence of the condition (2.20) combined 
with Lemma 2.1. 

Corollary 2.2. Suppose 0 < -b < 4p. Then there exists ro > 0 such that, 
for any r > ro, the equilibrium x* of Equation (1.6) is local asymptotically 
stable. 

Proof. This is evident because the inequality 0 < -b < 4p allows to choose 
ro > 0 in such a way that r > ro implies condition (2.17). 13 

Define 5 E ( 0 , l )  as the unique solution of the equation x = M ( r x )  and 
the number ( = ( ( b )  < 0 by { (b )  := b5( l  - 5 ) .  According to  the definition 
of M ,  it is easily seen that 5 may be kept uniformly away from 0 and 1 for b 
arbitrarily large, just controlling the input f .  This implies that we can make 
l { (b )~  and lbl arbitrarily large, controlling 5 E ( 0 , l )  by convenient choices of 
the input f .  Note that such a procedure might be carried on independently 
of the remaining parameters. 

Theorem 2.3. If -b is sufficiently large, there are possible choices of the 
parameter p > 0 ,  restricted to a small interval (O,po), and the input f ,  such 
that, for sufficiently large a ,  the equilibrium x* of Equation (1.6) is unstable. 

Proof. The condition (v( ,B]( < - R is equivalent to 

The definitions given in (2.9) imply Q 2  - R~ > 0 and, therefore, a necessary 
condition for the existence of /3 > 0 satisfying the inequality (2.21) is that 

holds. By using (2.9) again one sees that (2.22) is equivalent to the following 
relation between the original parameters: 

According to the remarks made before the statement of Theorem 2.3, we 
can take )i~ so large that the inequality a2 < -2a i  holds for arbitrarily large 
a. Since < -+ i, as p -+ 0 ,  (2.23) is true by choosing p > 0 sufficiently small. 

The discriminant A := ( P 2  - 2Q)2 - 4(Q2 - R 2 )  of F ( P )  in  terms of the 
original parameters is given by 

(2.24) A = r4 [ ( a  + p ) 4  - 4a(a + p ) 2 ( p  - <) + 4 a 2 [ 2 e ~ 2 p r ]  

Letting p -+ 0 ,  we have 
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Consider y := P2. According to Lemma 2.1, Equation (2.10) has a root 
with positive real part if, and only if, there exists p satisfying (2.21). with 
y E (n2 ,  4n2) u (9n2, 16n2) u ([25n2, 36n2) U .  . . , such that the 2-vector 11 (fi) 
is a positive niultiple of w (fi). 

The roots of F(P)  are given by 

and taking into account that 

Q' - R' = r4a2 [(p - <)' - <2e-2pr] -+ 0, 

as.p -+ 0, we can ensure that the least root y is positive and, if p > 0 is 
taken small enough, we have y E (0, n2). Taking a > 0 sufficiently large, we 
have 

and, therefore, decreasing p further if necessary, the limit (2.25) implies the 
distance 6 between the two roots y (= P2) is greater than 4n2. 

Then, for all P E (n,2n),  the inequality (2.21) is satisfied, i.e., Iv(P)I < 
-R. Recalling that there exists a unique ,B E (n ,  2n) for which u(P) is a 
positive multiple of w(P), it is an immediate consequence of Lemma 2.1 that 
the characteristic Equation (2.10) has a root with positive real part. 

Remark 2.4. It is a clear consequence of the proof of Theorem 2.3 t11a.t 
increasing further the parameters a ,  6, and therefore ( (since we can do it in 
such a way that x* remains bounded away from 0 and l) ,  with arbitrary p in  
some interval (O,pa), the number of roots of Equation (2.10) to the right of 
the imaginary axis increases. That is, the (finite) dimension of the unstable 
eigenspace of the linearized equation (2.5) can be made arbitrarily large by 
a convenient choice of the parameters. 

Let us suppose the parameters b and p together with the input f are fixed 
in such a way that the hypotheses of Theorem 2.3 can be fulfilled. If the 
parameter a is allowed to increase, starting at  some value so small that the 
inequality (2.23) is not satisfied, then Theorem 2.3 guarantees the existence 
of a critical value a0 such that when a crosses the point a0 the equilibrium x* 
looses the stability. It is natural to ask if in this circumstances a branch of 
periodic. solutions of Equation (1.6) emanates from x*. Now we are going to 
answer this question. We apply a version of the Hopf bifurcation Theorem 
for retarded functional differential equations due to Hale, see 4. We state 
below this theorem i n  order to be as self-contented as possible. In spite of 
some conflict with our notation we maintain the original formulation of the 
theorem, as no confusion can be expected from this. 
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Consider the one-parameter family of retarded functional differential equa- 
tions of the form 

(3-1) i ( t )  = F(cr, z t )  

where F(a, 4) has continuous first and second derivatives in a, 4 for cr E R 
and 4 E C = C([-r, 01, Rn), and F(cr, 0) = 0, for all a. Define L : R x C + 
Rn by 

(3.2) L(a)ll, = D$F(@, 0111 

where D$F(cr, 0) is the derivative of F ( a ,  4) with respect to 4 at 4 = 0. So, 
we have a family of linear retarded functional differential equations 

Since L ( a )  is continuously differentiable in a, it is known that there is 
an cro > 0 and a simple characteristic root X(c r )  of the linear equation (3.3) 
that has a continuous derivative X1(cr) in cr for Icrl < cro, see 3 ,  Sectio~~ 7.10, 
Lemma 10.1. The following hypotheses are needed: 

(Hl )  The linear retarded functional differential equation i ( t )  = L(0)xt 
has a simple pure imaginary characteristic root Xo = iyo # 0 and all 
characteristic roots X j  # Xo, 1 0 ,  satisfy A, # mXo for any integer nr. 

(H2) 8(X1(0)) # 0. 
By taking cro sufficiently small, we may assume Cs(X(c r ) )  # 0 for Icrl < cro 

and obtain a function 4, E C that is continuously differentiable in cr and 
is a basis for the eigenspace of Equation (3.3) corresponding to X(cr). The 
functions 

(8(4Q), S(4Q)) := @a 

form a - basis for the eigenspace corresponding to the characteristic roots 
A ( @ ) ,  A(&) .  If Q, is the eigenspace corresponding to the remaining roots, 
the space C is decomposed as P, $ Q,. Given a function 4 E C, we denote 
by 4'" and the components of 4 in P, and in Q,, respectively, relative 
to this decomposition of C. 

We now state the Hopf Bifurcation Theorem as set in 4. 

Theorem 3.1. Suppose F(cr, 4) has continuous first and second derivatives 
with respect to a, 4, F(cr, 0) = 0 for all a ,  and hypotlleses ( H  1) uric1 (H2)  
are satisfied. Then there are constants a0 > 0, cro > 0, do > 0, functions 
cr(a) E R, w(a) E R, and (1 w(a)-periodic function .c*(a), iuith all fu~rciio~rs 
being continuously differentiable in (1 for la1 < ao, such that z*(a)  is a 
solution of Equation (3.1) with 

where y*(a) = ( a , ~ ) ~  + o(lal), as a + 0, z;(a) = o(lal), cis u + 0. Fur- 
thermore, for Icrl < cro and (w - (2r/yo) l < do, every w-periodic solution of 
Equation (3.1.) with lztl < do must be of this type except for a trunslation in 
phase. 
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Attempting to apply theorem above to our setting, we will need the fol- 
lowing lemma: 

Lemma 3.1. If z is a double root of Equation (2.10), then %(z) # 0. 

Proof. In fact, if z is a double root of Equation (2.10), it must satisfy the 
system 

So that if z = ip, p E R, then p satisfies 

and, therefore, p = 0. That is, z = 0 is a root of Equation (2.10). This is a 
contradiction because - R < Q. 

Theorem 3.2. Suppose the parameters f ,  b and p are fixed in such a way the 
hypotheses of Theorem 2.3. Suppose, further, the inequality rtep" < 1 holds. 
Then, there exists ao, 0 < a0 < -2(, such that Equation (1.6) undergoes a 
Hopf bifurcation at a = ao. 

Proof. Suppose a1 > 0 is sufficiently large, subjected to the bound a1 + 6 < - 
-2al$, for some 6 > 0 fixed. Choose a l ,  in addition, in such a way that 
v(P) < -R, for all p E (?r,2?r), if a = al .  That is, there exists a root z of 
Equation (2.10) such that %(z) > 0, with a = a l .  

Now, keeping b fixed and noticing that -t < b, one sees that, for a2 > a l  
sufficiently large, if a = a2, 

Thus, if a = a2, the polynomial F(p) defined in (2.21) is positive for every 
p > 0, that is, v(P) > -R, for p > 0. This means that x* is asymptotically 
stable. So, there exists the least ao, a1 < a0 < a2, such that for a = ao, 
Equation (2.10) has a pure imaginary root zo = poi. 

The characteristic equation (2.10) can be written in its vector counterpart, 
A ( a , p )  = -Rw(p), that is equivaleilt to 

(3.8) e" [(2ap, a2 + Pa) + (Pp, Q - p2:)] = -R(- sill B, C O S ~ )  

and, in terms of the original parameters, 

(3.9) ea [a (2P1 a + r (a  + p))  + r (r(a + p)B, r2a(p - t) - p2)] = 

- R(- sill 3, cos B). 

Equation (3.9) is equivalent to the system 

F1(a, p, a )  := ea[2ap + r ( a  + p)P] - r2ate-p" sill ,4 = 0 
(3.10) F2(a, p, a )  := ea[a2 + a r ( a  + p) + r2a(p - <) - p2]+ 

+r2a<e-p" cos /3 = 0. 
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We know that, for some betao E (n,  2n), System (3.10) has a solution of the 
form (a, P, a )  = (0, Po, ao), i.e., 

(3.11) r ( a  + p)Po = r2a<e-pr sin Po 
r2a(p - <) - pi = -r2a<e-pr cos PO. 

It is a matter of routine to express the partial derivatives of F1 and F2 
with respect to a and ,B as 

F$ = ea[2a + r (a + p)] - r2a<e-Pr cos ,B, 
(3.12) 

F: = e"[a2 + (a + l ) r ( a  + p) + r2a(p - <) - ,B2 + 2a], 

F; = -2e"P - r2a<e-(prt") sin P. 

The reasoning below depends on the fact that the number < does not de- 
pend on a. If F(a, ,B, a )  := (F* (a, ,B, a ) ,  F2(a, ,B, a ) ) ,  it follows from Equa- 
tion (3.12), together with the formulae (3.11), that the partial derivative 
of F(a, ,B, a )  with respect to ( a ,  p),  in (0, Po, ao) ,  is a linear isomorphism 
represented by the nonsingular matrix 

Note that d e t M  < 0. As a consequence of the Implicit Function Theorem, 
there are smooth functions a H @*(a) and a H P*(a),  defined for a i n  a 
neighborhood, J ( ao ) ,  of ao, such that a*(ao) = 0, P*(ao) = PO and 

Moreover, if 

(3.15) rPo r(ao + P) + r2ao<e 
-[2 + r(ao + p)lPo 

the Implicit Function Theorem also gives 
-pr - 

do* det Ma 
-(ao) = - 

det M ' da 

According to formulae (3.11) and to the hypothesis r<epr < 1, one sees that 

Therefore, det Ma < 0 and this implies [da*/da] a=ao < 0. That is, hypoth- 
esis (H2) is satisfied for Equation (1.6). 

According to Lemma 3.1, the root i,Bo is simple and the non-resonance 
condition ( A j  # Xo for any root X j  # mXo, Xo and any integer m) is trivially 
satisfied because, according to the proof of Lemma 2.1, there is 110 more than 
two imaginary roots of Equation (2.10). So, hypothesis (HI)  is satisfied for 
Equation (1.6). Theorem 3.2 follows now as a consequence of Theorem 
3.1 
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