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Reflective subcategories 

Abstract 

Given a full subcategory 3 of a category A, the existence of left 3 -  
approximations (or 3-preenvelopes) completing diagrams in a unique way 
is equivalent to the fact that 3 is reflective in A, in the classical terminology 
of category theory. 

In the first part of the paper we establish, for a rather general A, the 
relationship between reflectivity and covariant finiteness of 3 in A, and 
generalize F'reyd's adjoint functor theorem (for inclusion functors) to not 
necessarily complete categories. Also, we study the good behaviour of reflec- 
tions with respect to direct limits. Most results in this part are dualizable, 
thus providing corresponding versions for coreflective subcategories. 

In the second half of the paper we give several examples of reflective 
subcategories of abelian and module categories, mainly of subcategories of 
the form Copres (M)  and Add (M).  The second case covers the study of 
all covariantly finite, generalized Krull-Schmidt subcategories of ModR, and 
has some connections with the "pure-semisimple conjecture". 

Dedicatory: Dedicated to Kent Fuller on his 60th anniversary 
Subjclass: 18A40, 16D90, 16E70 
Thanks: The second and third authors are supported by the DGES of Spain 

(PB96-0961-C02-02) and by the Fundacibn Seneca (Comunidad Aut6noma de la 
Regi6n de Murcia, PB/16/FS/97). 

In recent times, there has been strong interest in the study of (pre)envelopes 
and (pre)covers by an arbitrary class 3 of modules (cf. [?:I,[?], [?] , [?I ) .  One 
of the open problems there is to find when every module has an 3-envelope 
completing diagrams in a unique way. Results for the case when 3 is the 
class of projective or flat modules can be found in [?],[?],[?I. For an arbitrary 
class 3 of objects of a category A, the existence of an 3-envelope completing 
diagrams uniquely for every object of A is equivalent to the fact that 3 is 
a reflective subcategory of A in the classical terminology of category theory 
(see, e.g., [?I). The goal of this work is twofold. On one side, we shall show 
that F'reyd's adjoint functor theorem, in the case of an inclusion functor, is 
closely related to the notion of a covariantly finite subcategory introduced 
by Auslander's school, which also allows us in this case to extend F'reyd's 
theorem to noncomplete categories (see Theorem 1 and its corollaries). By 
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2 Reflective subcategories 

using that, as a second objective, we shall give a good supply of examples 
of reflective and coreflective subcategories, mainly in module and abelian 
categories. 

After introducing our notation and terminology, Section 3 contains the al- 
ready mentioned generalizations of Freyd's theorem which allow applications 
to non-complete categories; also, given a locally finitely presented abelian 
category, we give criteria for a subcategory consisting of direct limits of its 
finitely presented objects to be reflective. In Section 4 we give applications 
of the previous results, with special attention to subcategories of an abelian 
category A of the form Copres (M) for an object M of A. Finally, Sec- , 
tion 5 studies the reflective subcategories of ModR which are generalized 
Krull-Schmidt (see definition in Section 5). 

2. NOTATION AND TERMINOLOGY 

Let A be any category and 3 any class of objects of A (all classes of 
objects in a category are considered to be closed under isomorphisms, and 
we shall usually identify 3 with the full subcategory of A whose objects are 
those of 3 ) .  An object of 3 will be called an 3-object, and an 3-morphism 
will be a morphism between 3-objects. 

An 3-preenvelope of the A-object A is a morphism X : A + F with 
F E 3 such that, for any other morphism A' : A + F' with F' E 3 ,  there 
exists a morphism p : F + F' such that poX = A'. This means that the map 
A(F, F') + A(A, F') induced by X is surjective for any 3-object F'. An 3 -  
preenvelope of A is also called a left 3-approximation of A, and the class 3 
is said to be covariantly finite when every A-object has an 3-preenvelope. 
The 3-preenvelope X : A + F is said to be an 3-envelope (or a minimal 
left 3-approximation) when it is left minimal, i.e. when the preimages of X 
via A(F, F )  + A(A, F )  are all automorphism of F .  The dual concepts are 
3-precover (or right 3-approximation), contravariantly finite class and 
3-cover (or minimal right 3-approximation). 

An 3-(pre)envelope A + F for which the induced maps A(F, F') + 
A(M, F') (with F' E 3) are all bijective is called an 3-reflection of A 
([?],[?I; it is called an 3-envelope which complete diagrams in a unique way 
in [?I). A full subcategory 3 of A is said to be reflective in A ([?],[?I) 
when the inclusion functor U : 3 v A has a left adjoint F : A + 3 (called 
a reflector for 3 ) .  In this case the unit of the adjunction 77 : 1~ + U o F 
gives an 3-reflection 7 ) ~  for each A-object A and, conversely, when each 
A-object has an 3-reflection, it is clear how to define a reflector for 3 .  The 
dual concepts are 3-coreflection and coreflective subcategory. 

The class 3 is said to be locally initially small in A [?] if, for every 
A-object A, there exists a set FA 3 such that every morphism A + F 
with F E 3 factors through a direct product of modules in FA.  The dual 
concept is that of a locally finally small class. The class 3 is said to be 
closed for retracts  (in A) if, whenever F E 3 and F + F' is a retraction 
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in A, we have F' E 3 .  It is easy to see that, if 3 is reflective in A (or, 
more generally, if every object of A has an 3-envelope), then 3 is closed for 
retracts. 

Most of our results are given for well-powered categories, i.e., categories 
in which the subobjects of every given object form a set. Following [?I, an 
object X of a preadditive category A with direct limits will be called finitely 
presented when the functor H o m ~  (X, -) preserves direct limits. When 
the finitely presented objects of A form a skeletally small class f p  (A) of 
generators, we shall say that A is locally finitely presented. In that 
case, the finitely generated objects of A are just the homomorphic images of 
morphisms with finitely presented domain. When, moreover, every finitely 
generated subobject of a finitely presented one is again finitely presented, 
we shall say that A is locally coherent. For a class 3 of objects of f p  (A) 
we shall denote by the class of all objects of QTRA that are (isomorphic 
to) direct limits of objects in 3 .  

Following [?I, a coperfect object in a locally finitely presented category is 
one that satisfies DCC on finitely generated subobjects. When every object 
of A is coperfect, we say that A is a coperfect category. 

All our rings are associative with identity, and all our modules are unital. 
We denote by ModR (resp. modR) the category of all (resp. all finitely 
presented) right R-modules. We write pd (MR) for the projective dimension 
of the right R-module MR, and rgD (R) (resp. 1gD (R), wD (R)) for the 
right global (resp. left global, weak global) dimension of the ring R. 

Definition 1. Let A be any category and let 3 be a full subcategory of A. 
Then: 

We say that (finite) products of 3-objects exist in A when any (fi- 
nite) family of 3-objects has a product in A. 

We say that equalizers of 3-morphisms exist in A when any pair 
of 3-morphisms with the same domain and codomain has an equalizer in 
A. If A has zero morphisms we get, as a particular case, the definition that 
kernels of 3-morphisms exist in A. 

When equalizers of 3-morphisms exist in A and, for any 3-object F ,  
every downward directed family {Eq (fi,gi))iEl (indexed by  a set) of equal- 
izers of pairs of 3-morphisms with domain F and common codomain has 
the property that niEIEq (fil gi) exists in A and, moreover, niErEq ( f i ,  g i )  = 
Eq ( f ,  g )  for some pair of 3-morphism f ,  g with domain F and common 
codomain, then we shall say that strong equalizers of 3-morphisms 
exist in A. Similarly, one gets the definition that strong kernels of 3- 
morphisms exist in A. 

Before giving our results, we present several examples of classes with the 
properties defined above. 
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Example 1. (1) Let A be a complete category and 3 be any class of objects 
in A. Then products of 3-objects and equalizers of 3-morphisms always 
exist in A. 

(2) Let A be a locally coherent abelian category; then, for every class 
3 of objects in f p (A), kernels of 3-morphisms exist in f p (A). Moreover, 
if 3 has products in A and is closed for retracts and finite products, then 
strong kernels of 3-morphisms exist in f p  (A) provided that the following 
condition is satisfied: for every morphism f : F -+ niEI Fi with F and each 
Fi in 3 ,  there exists a finite subset J of I such that Kerf = Ker (TJ o f ) ,  
where TJ : niEI Fi -+ niEJ F, is the canonical projection. In particular, , 
this happens when 3 consists of coperfect objects. 

(3) A particular case of (2) is the following: If R is a right coherent and 
left perfect ring, then for every class 3 & modR closed for direct summands 
and finite direct sums, strong kernels of 3-morphisms exist in modR. 

(4) If A is a locally finitely presented abelian category and 3 f p  (A) is 
a class of objects of finite length all whose composition factors are finitely 
presented, then strong kernels of 3-morphisms exist in f p (A). 

Theorem 1. Let A be a well-powered category and let 3 be a full subcategory 
of A such that equalizers of 3-morphisms and intersections of them exist in 
A. The following assertions are equivalent: 

(a) 3 is reflective in A. 
(b) 3 is covariantly finite in A and closed for intersections of equalizers 

of 3-morphisms. 

Proof. (a)+(b). This follows by [?, (36.13)]. 
(b)+(a). Let X : A -+ F be an 3-preenvelope of an arbitrary A-object 

A and consider the class R of all pairs of morphisms f , g  : F -+ F1 with 
F' E 3 and f o X = g o A. Since A is well-powered, we can fix a family 
i f i ,  gi : F -+ Fi I i E I) (indexed by a set I )  of elements of fl such that the 
equalizer of every pair of morphisms in fl equals Eq (fi, gi) for some i E I. 
Let now e : E -+ F be the intersection of the family {Eq (fi,gi) I i E I ) ;  
by hypothesis we have E E 3, and by construction there exists a unique 
morphism p : A -+ E such that e o p = A. Then it is clear that p is an 
3-preenvelope of A, and we shall prove that it is indeed an 3-reflection, 
which will finish the proof of the theorem. For this, we start by noting that, 
whenever f ,  g : F -+ F' is a pair of 3-morphisms with f o X = g o X and 
el : E' + F is its equalizer, there is a unique monomorphism u : E -+ E' 
such that e = e' o u. Now we check that e is a section: the preenveloping 
condition of X gives a morphism p : F -+ E with p = p o A,  and hence 

If el : E' -+ F is the equalizer of IF and e o p  then there is a monomorphism 
u : E -+ E' with e = el o u, and therefore 



Juan Rada, Manuel SaorIn and Alberto del Valle 5 

as e is monic this implies that p o e = lE, as claimed. Now suppose that 
h, h' : E + G are 3-morphisms with h o p  = hlop. Then hop0 X = hlopoX, 
and if e" : E" + F is the equalizer of h o p and h' o p then there is a 
monomorphism v : E + E" with e = el1 o v, and therefore 

' I  h = h o p o e = h o p o e " o v = h ' o p o e  o v = h 1 o p o e = h ' .  

The following result generalizes Freyd's adjoint functor theorem for in- 
clusion functors (see [?, p.117, Theorem 21). Note that the condition " 3  is 
locally initially small" is more general than the "solution set condition'' of 
the above cited result; indeed, if R is any ring and 3 is the class of all flat 
right R-modules, then 3 is locally initially small in ModR [?, Proposition ' 

2.81, but it has the solution set condition if and only if R is left coherent [?, 
Proposition 5.11, 

Corollary 1. Let A be a well-powered category and let 3 be a full subcat- 
egory of A such that products of 3-objects and equalizers of 3-morphisms 
exist in A. The following assertions are equivalent: 

(a) 3 is reflective in A. 
(b) 3 is covariantly finite in A and closed for equalizers. 
(c) 3 is locally initially small in A and closed for equalizers and prod- 

ucts. 

Proof. (a)+(b) follows as before, (b)@(c) is proven as in [?, Theorem 
3.31 (note that 3 is closed for retracts since it is closed for equalizers), and 
(b,c)+(a) follows from [?, (18.23)] and Theorem 1. 

Next we give a third partial version of Theorem 1 that is useful to deal 
with noncomplete categories. 
Corollary 2. Let A be a well-powered category and let 3 be a full subcat- 
egory of A such that finite products of 3-objects and strong equalizers of 
3-morphisms exist in A. Then the following assertions are equivalent: 

(a) 3 is reflective in A. 
(b) 3 is covariantly finite in A and closed for equalizers. 

Proof. We only need to prove (b)+(a), and for this one can adapt 
the proof of Theorem 1 after showing that, given {fi, gi : F + Fi I i E I) as 
there, niEzEq (fi,gi) exists and belongs to 3 .  Now, by the hypotheses, it 
is enough to show that {Eq (fi,gi) I i E I) is a downward directed family. 
For, given i ,  j E I, let F' be the product of Fi and Fj and let f (resp. g) 
be the morphism F + F' induced by fi ,  f j  (resp. gi,gj). By hypothesis, 
there exists k E I such that Eq ( f ,  g) = Eq ( fk,  gk) , and this is a subobject 
of both Eq(fi ,gi)  and Eq( f j , g j ) .  
Remark 1. (1) Corollary 1 applies to Example 1.(1), showing that a full 
subcategory of a well-powered complete category A is reflective in A if and 
only if it is locally initially small and closed for products and equalizers. 

(2) Corollary 2 applies to Example 1.(2-4), showing for instance that if 
A is a locally coherent abelian category and 3 C f p  (A) is a subcategory 
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consisting of coperfect objects, then 3 is reflective in f p  (A) if and only if 3 
is covariantly finite in f p  (A) and closed for kernels and finite direct sums. 

Remark 2. The above results admit straightforward dualizations which are 
left to the reader. 

For suitable classes 3 ,  the uniqueness in the completion of diagrams allows 
to construct, from an 3-reflection for each member of a direct system, an 
3-reflection for the direct limit of the system. This fact is exploited in the 
following result. 

Proposition 1. Let QTRA be a locally finitely presented category, and let 
3 f p  (A) be a class of objects closed for retracts. Then 3 is reflective i n  
f p  (A) i f  and only i f ?  is reflective in  QTRA. 

Proof. (a)+(b). First note that, if X E f p  (A) and X : X -+ F is 
an 3-(pre)envelope, then it is an ?-(pre)envelope. Moreover, if it is an 3- 
reflection then it is also an ?-reflection. To see this it is enough to show that, 
if F E ? (say F = lqFi with each Fi E 3 and canonical maps $i : Fi -+ F), 
then any morphism a : F -+ F with a o X = 0 must be zero. By [?, Lemma 
1.1.31, there exists an index i and a morphism /3 : F -+ Fi with /3 o X = 0 
such that a = $i o /3. Now, the fact that X is an 3-reflection gives /3 = 0 
and hence a = 0. The rest of the proof follows that of [?, Theorem 2.111. 

(b) +(a). If X E f p (A) and X : X -+ F is an ?-reflection, where 
F = lqFi with each Fi E 3 and canonical maps $i : Fi -+ F ,  then X = $ioX' 

for some A' : X -+ Fi, but in turn this A' factors as A' = h o X and, by the 
uniqueness in the completion of diagrams, we get $i o h = IF. So, by hy- 
pothesis, F E 3 and therefore X is an 3-reflection. El 

Remark 3. (1) We cannot omit the hypothesis that 3 is closed for retracts. 
For example, if R is a von Neumann regular ring and 3 is the class of all 
finitely generated free modules, then ? = ModR but 3 is not reflective in 
modR unless R is a division ring. 

(2) Putting together [?, Theorem 4.21, [?, Theorem 12.31 and results of 
[?, $7 & ff.], one easily deduces that, in the situation of our Proposition 1, if 
A is (co)complete and kernels of 3-morphisms are finitely presented, then 
(a-b) hold if and only i f?  is closed for products and kernels, if and only if 
? is closed for products and 3 is closed for kernels. 

(3) Proposition 1 together with the above remark can be used to character- 
ize coreflectivity of subcategories of modR, when R is a ring with self-duality 
[?, $301. 

We start by applying the results in Section 3 to some L'classical" classes 
of modules. We write In jR ,  ProjR,  FlatR, and F P I n j R  for the classes of 
all injective, projective, flat and FP-injective right R-modules, respectively. 
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Also, P<OO, and 3 < w  denote the classes of right R-modules of finite 
projective, injective and flat dimension, respectively. 

Proposition 2. For any ring R, the following conditions hold: 

(i) I n j R  is reflective in  ModR iff Pro jR  is coreflective in ModR i f f  R 
is semisimple. 

(ii) F P I n j R  is reflective in  ModR iff FlatR is coreflective in  M O ~ R  iff 
R is von Neumann regular. 

(iii) Foe is reflective in  ModR iffP<OO is coreflective in  ModR iffI<OO 
is reflective in  ModR ~ f f I < ~  is coreflective in  ModR i f f r g D  (R) < 
00. 

(iv) 3 < w  is reflective in  ModR iff 3<00 is coreflective in  ModR iff 
w D  (R) < 00. 

(v) FiatR is reflective in  ModR iff R is left coherent and w D  (R) 5 2. 
[?, Prop. 2.11 

(vi) P r o j R  is reflective in  ModR iff R is right perfect, left coherent, and 
rgD (R) 5 2. 

(vii) I n j R  is coreflective in ModR iff R is right noetherian and rgD (R) 5 
2. 

Proof. (i-iv) follow from Corollary 1 and its dual, since each of the 
relevant classes equals ModR when it is closed for kernels or cokernels (de- 
pending on whether we are considering reflectivity or coreflectivity) . By 
[?, Propositions 2.8 and 2.91, FlatR and P r o j R  are always locally initially 
small classes, so that (v) and (vi) follow again by Corollary 1. Finally, if R 
is right noetherian then I n j R  is a locally finally small class and therefore 
(vii) follows from the dual of Corollary 1. 

In the next application we consider a skeletally small preadditive category 
C, and write (COP, Ab) for the category of contravariant functors from C to the 
category Ab of abelian groups. A functor F E (COP, Ab) is representable if 
it is naturally isomorphic to (-, C)  = Hornc (-, C)  for some C E C, and a 
direct limit of representable functors is said to be flat (see, e.g., [?I). 

Proposition 3. Let C be as above, and let R (resp. 3 )  be the class of all 
representable (resp. flat) functors in (COP, Ab). Then the following assertions 
are equivalent: 

(a) C has cokernels. 
(b) R is a reflective subcategory of f p  (COP, Ab) 
(c) 3 is a reflective subcategory of (COP, Ab). 

Proof. Assume that C has cokernels and let F E f p  (Cop, Ab); then there 
(-4 exists a morphism f : C + C' in C and an exact sequence (-, C)  + 

(-,C1) & F + 0 in (COP,Ab). If g : C' + C" is the cokernel of f then 
(-, g) factors through T and, using Yoneda's Lemma, it is easy to see that 
the morphism u : F + ( -, C") such that (-, g) = u o T is an R-reflection of 
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F. This proves (a)+(b). The converse is proven along the same lines, and 
( b ) s ( c )  follows from Proposition 1, since F = e. 
Remark  4. (1) When C = modR or C = F M o d R  (the class of all finitely 
generated modules) then C has cokernels and therefore F is reflective in 
(COP, Ab) . 

(2) When C = projR (the class of all finitely generated projective modules) 
then (Cop, Ab) and ModR are equivalent, and thus in Proposition 2.(v) we 
can add the condition that projR has cokernels ([?, Proposition 31). 

(3) Straightforward variations on the above arguments prove that R is 
covariantly finite in f p (Cop, Ab) if and only if C has pseudo-cokernels (see ' 

[?I), and that the subcategory of representable covariant functors is reflective 
(resp. covariantly finite) in f p  (C,Ab) if and only if C has kernels (resp. 
pseudo-kernels) . 

In the rest of this section, we let A be a complete abelian category; for 
a fixed object M E A, we say that an object A E A is M-cogenerated if 
there exists a monomorphism A + M' for some set I ,  and we say that A is 
M-copresented if there exists an exact sequence 0 + A + M' + M~ for 
some sets I, J. We denote by Cogen (M)  and Copres (M)  the classes of M- 
cogenerated and M-copresented objects in A, respectively, and by Prod (M)  
the class of all modules isomorphic to a product of copies of M.  

Copres (M)  can be thought of as the closure of M with respect to products 
and kernels of morphisms between these products. So, in view of Corollary 
1, Copres (M)  is always contained in (and should be very close to) the 
smallest reflective subcategory of A containing M.  It seems thus interesting 
to give necessary and sufficient conditions for Copres (M)  to be a reflective 
subcategory of A. One such condition can be derived from [?, (16.4.7)] 
(note that Copres (M)  is always closed for products), but we give it as a 
consequence of a more general result which may have independent interest. 

Proposition 4. Let A be a complete abelian category, and let M be any 
object of A. Then Copres (M)  is covariantly finite i n  A. In particular, 
when A is well-powered, Copres (M) is a reflective subcategory of A if and 
only if i t  is closed for kernels. 

Proof. We prove that every object A of A has a Copres (M)-preenvelope, 
and the second part of the statement will then be a consequence of Corollary 
1. 

Let H = Hom (A, M )  and let a : A + M~ be the morphism induced by 
the family {hIhEH, that is h = .rrh oa for every h E H ,  where T h  : M~ -i M 
are the canonical projections. Then it is easy to see that a is a Prod (M)- 
preenvelope of A. 

We claim that, if a : A -i M' is a morphism in A and (k,, K,) is the 
intersection of the kernels of all morphisms f : M' + M such that f o a  = 0, 
then a factors through k, and K, E Copres  (M). The first assertion is 
clear and, if J = { f  : M' + M ( f o CY = 0) and cp : M' + M~ is such that 
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~f o cp = f for every f E J, where ~f : M J  -+ M is the canonical projection, 
then (k, , K,) is the kernel of cp and therefore K, E Copres (M)  . 

In particular, a factors as A 3 K, 3 M H  with K, E Copres (M),  
and we shall show that A, is a Copres (M)-preenvelope. To see this, let 
/3 : A -+ F be any morphism in A with F E Copres (M)  and take an exact 
sequence 

in A. Now set a = v o : A -+ M' and consider the factorization A 3 
K, 3 M' of a given by the above claim. If q, : MX -+ M are the canonical 
projections, then we get 

Now, since q, o g o a = q, o g o v o B = 0 for each x E X,  we see that k, 
factors through v and therefore B factors through A,. So, in order to see 
that B factors through A, it is enough to see that A, does. To prove this, 
let J and cp : MI -+ M J  be as in the proof of the above claim and consider 
the diagram 

A X". K, "". M H  

II -19' JP 
A X". K, k"' MI (P' M J  

Since a is a Prod (M)-envelope, there exists g : M H  -+ MI such that 
a = goo. But now the morphism cpog : M H  -+ M verifies cpogoa = cpoa = 0, 
and therefore cp o g o k, = 0 by the definition of k, ; this implies that go k, fac- 
tors through k,, i.e. there exists g' : K, -+ K, with go k, = k, og', and then 
it is clear that A, = g'o A,, which is the factorization we were seeking for. 

Next we list several sufficient conditions for Copres (M)  to be reflective 
in A. 
Proposition 5. Let A be a well-powered complete abelian category with 
enough injectives, and consider the following conditions on  an object M of 
A: 

(a) M has injective dimension at most 1 and E x t l  (MI,  M) = 0 for 
every set I .  

(b) E x t l  (C, M )  = 0 for each C E Cogen (M) .  
(c) Hom (-, M )  takes exact sequences of the form 0 -+ A -+ MI -+ 

C -+ 0 with C E Cogen (M)  to exact sequences in Ab. 
(d) Cogen (M) is closed for extensions. 
(e) Copres (M)  is a reflective subcategory of A. 

Then (a)+ (b)+ (c)+ (e)  and (b)+ (d)+ (e). 
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Proof. (a)+ (b). Let C E Cogen (M) and take an exact sequence 0 + 
C + M' + B -+ 0; now we have Extl (M', M) = 0 = Ext2 (B, M) ,  and 
so Extl (C, M )  = 0. 

(b)+(c). This is clear. 
(c)+ (e). It is clearly enough to show that, if B E Cupres (M), then the 

kernel A of any morphism f : B + M' is also in Cupres (M).  Since 

A = n {Kerh I h E Horn (B, M )  with A Kerh) , 

by taking a copresentation 0 -+ B 4 M J  + MK,  the hypothesis implies 
that 

~ a k i n ~  now the composition A ~t B 4 MJ and L = {g E Horn (MJ, M) ( A Ker (g o v)) , 
we get an exact sequence 0 -+ A + M J  4 M L  which proves the claim. 

(b)+(d). Let 0 + A -+ B + C + 0 beexact i n A w i t h A , C  E 
Cogen (M); taking the pushout of A + B and a monomorphism A + MI, 

we get a commutative diagram with exact rows and vertical monomorphisms: 

Now the lower row splits, so that B, and hence B ,  are in Cogen (M).  
(d)+(e). It is enough to show that, if 0 + A -+ B + C -+ 0 is exact in A 

with B E Copres (M)  and C E Cogen (M), then A E Copres (M). For, we 
have an exact sequence 0 -+ B + M' + D + 0 with D E Cogen (M), and 
applying the cross lemma to these sequences we get new exact sequences 
0 + C + E + D + 0 (and so, by (d), E E Cogen(M)) and 0 + A + 
M I  + E + 0, which shows that A E Copres (M).  
Example 2. (1) None of the non-stated implications in the above result 
is true. For instance, if M is a cogenerator of A then (d) and (e) trivially 
hold, while (b) and (c) hold only if M is injective. On the other hand, if S 
is a simple module which is finite dimensional over its endomorphism ring, 
then Cogen (S) consists of the semisimple S-homogeneous modules (cf. [?, 
Proposition 4.5]), and thus (c) and (e) hold, while (b) and (d) hold only 
if Extl (S, S )  = 0, which is not always the case (e.g. take S = Z2 as a 
Z-module). Finally, if S is as above and Extl  (S, S )  = 0 then (b) holds, but 
S needs not have injective dimension 5 1. 

(2) If M is an injective object of A then condition (a) in Proposition 
5 holds, and hence Cupres (M) is reflective in A. In that case, 7 = 
{T E A I Horn (T, M )  = 0) is a localizing subcategory of A and Copres (M) 
is just the subcategory of T-closed objects in the terminology of Gabriel [?I. 
Moreover, the left adjoint a : A + Cupres (M)  of the inclusion is exact and 
identifies Cupres (M) with the quotient category A/T. 

(3) A typical class of objects satisfying condition (a) in Proposition 5 
is that of partial cotilting objects, i.e. objects M such that Cogen (M) 
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KerEztl  (-, M) and KerEzt l  (-, M )  is a hereditary torsion class (cf. the 
obvious generalization of [?, Lemma 2.6(b)]). 

(4) If MR is a quasi-injective module which is finitely generated over its 
endomorphism ring S then, by [?, Lemma 1.51, M' is M-generated for every 
set I .  But then condition (c) in Proposition 5 holds since the exact sequences 
under consideration are in the category a [MI of M-subgenerated modules 
(see [?, (16. I)]). Therefore Copres (M) is a reflective subcategory of ModR. 
If s M  is not finitely generated and we denote by TM (N)  the trace of M 
in N ,  the M-copresented objects in a [MI are those X fitting in an exact 
sequence of the form 0 + X + TM (MI) + TM (MJ) for some sets I, J. , 
They form a reflective subcategory of a [MI. 

(5) In general, not even for A = ModR it is true that Copres (M) is a 
reflective subcategory of A, for a given object M.  To show this we give the 
following proposition: 
Proposition 6. The following assertions are equivalent for an artinian com- 
mutative ring R: 

(a) R is quasi-fiobenius (i.e. self-injective). 
(b) Copres (R) is a reflective subcategory of ModR. 
(c) Copres (R) is closed for direct summands. 

Proof. The implications (a)+(b)+(c) are clear. To see that (c)+(a), 
it is not restrictive to assume that R is also local. Suppose R is not quasi- 
F'robenius. Then the simple module S is not reflexive [?, (30.8)] and thus, by 
[?, Exercise (12), p. 33l.1, we have Soc (S) "= Sn for some integer n 2 2 and 
S* = HornR (S, R) "= Sn. Now, by using the fact that RI is projective for 
each set I, one easily proves that any non-zero finitely generated module of 
Copres (R) must be isomorphic to X* for some non-zero finitely generated 
R-module X .  On the other hand, such an X * contains a copy of S* , and 
thus it cannot be isomorphic to S.  Hence Sn S* E Copres (R) and 
S ft! Copres (R). 
Remark 5. All results about Copres (M) admit straightforward dualiza- 
tions to a cocomplete abelian category A. Hence, the subcategory Pres  (M) 
of M-presented objects is coreflective in A if and only if it is closed for cok- 
ernels. When A = ModR that includes, as particular situations, the cases 
when MR is tilting [?I, MR is C-quasiprojective [?I or, more generally, MR 
is w-C-quasiprojective in the sense of [?I. 

5. REFLECTIVITY OF Add (M) 

An additive category C will be called a generalized Krull-Schmidt 
category when every object in C is a direct sum of indecomposable objects 
with local endomorphism ring and, moreover, the isomorphism classes of 
indecomposable objects form a set. In this section, we study reflective gen- 
eralized Krull-Schmidt subcategories of ModR. It is clear (see [?I) that it is 
equivalent to study reflective subcategories of the form Add (MR) (i.e., the 
subcategory of direct summands of coproducts of copies of a module MR). 
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By [?I, Add (M)  is closed for products if and only if it is covariantly finite 
in ModR, in which case M is called product-complete. Such a mod- 
ule is always C-pure-injective, so that Add (M) consists in that case of the 
direct summands of products of copies of MR. In particular, Add (M)  
Copres (M),  and the converse inclusion holds exactly when Add (M)  is re- 
flective in ModR: 

Proposition 7. Let MR be any module. Then the following assertions are 
equivalent: 

(a) Add (M)  is reflective in ModR. 
(b) Add (M)  is closed for products and kernels. 
(c) Add (M)  = Copres (M).  

Proof. ( a ) e ( b ) .  Follows from Theorem 1 and. [?, Theorem 3.11. 
(b)+(c). Condition (b) implies Copres (M) C Add (M),  and hence equal- 

ity. 
(c)+(a). We have to show that Add (M)  = Copres (M) is closed for ker- 

nels, and it is enough to see that, if 0 -+ A -+ B -+ C -+ 0 is exact with 
B E Copres (M)  and C E Cogen (M),  then A E Copres (M). But we have 
a split sequence 0 -+ B -+ MI -+ D -+ 0 with D E Cogen (M),  and by 
applying the cross lemma we get a split sequence 0 -+ C -+ X -+ D -+ 0, 
whence X E Cogen (M),  and an exact sequence 0 -+ A -+ MI -+ X -+ 0, 
which shows that A E Copres (M). 

For the rest of this section, we fix a nonzero module MR and set S = 
End (MR) and R = BiEnd (MR) = End (SM). We write p : R -+ R for 
the canonical ring homomorphism, and denote by p, : Modfi -+ ModR the 
restriction of scalars functor. 

In the examples that will come, we will frequently consider the case when 
M = R @ X for certain module XR. Then there is a canonical ring isomor- 

phism S r (X7 R, and, setting e = 
X End (XR) ( :) ~ S r w e h a v e  

S M  r Se and thus R =  eSe E R. 
The proof of the following lemma is left to the reader. 

Lemma 1. The functor p, induces an equivalence of categories Add (MR) r 
Add (MR) . 
Lemma 2. MR is product complete if and only zf ME is product complete. 

Proof. The "if" part is trivial. For the converse, fix a set I; by the 
preceding lemma there is a module in Add (MR) whose restriction of scalars 
is isomorphic to MA. So we have a right R-module structure on the abelian 
group M' such that M' E Add(Mfi). Now, by Lemma 1, the canonical 
projections pi : MI -+ M are R-homomorphisms and hence, for any m = 
(mi)iEI E MI and a E R, we have p j  (ma)  = (pjm) a = m j a  and therefore 
(mi)iEI a = ( r n i r ~ ) ~ ~ ~ .  This means that the described structure of M I  is the 
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canonical one (induced by the natural structure on ME), and thus MR is 
product-complete. 

Theorem 2. Add (MR) is reflective i n  ModR if and only i f  Add (ME) is 
reflective i n  ModR. When these conditions hold, we have: 

(i) S M  is projective and finitely generated. 
(ii) R is right C-pure-injective. 

(iii) The canonical map p : RR += RR is the Add (MR)-reflection of RR. 

Proof. If Add (MR) is reflective in Modii then MR is product-complete 
by Lemma 2, and we only have to check that every R-homomorphism f : , 
X += Y with X,  Y E Add (MR) has its kernel in Add (M). But Lemma 1 
tells us that f is also a R-homomorphism. Hence K e r f  E Add (ME) and, 
by'restricting scalars, K e r f  E Add (MR). For the converse, reverse the 
argument. 

Suppose now that Add (MR) is reflective in ModR, and let us prove: 
(i) Let X : R += X is an Add (M)-reflection; since RR is finitely generated, 

it is easy to see that X is a direct summand of M n  for some positive integer 
n. Now, the image of X by the functor HornR (-, M) is an isomorphism 
HOmR(X, M )  E M and it is clear that H m R ( X ,  M )  is projective and 
finitely generated as a left S-module. 

(ii) Since MR is product-complete, Add (MR) consists of C-pure-injective 
modules, and since MR is a generator [?, (IV.6.7)] we have E Add (ME). 

(iii) Lemma 1 implies that RR E Add (MR), and it is easy to see that the 
composition of the natural maps 

H o ~ R (  M )  MR 5 H m R  (R, M) = H m R  (R, M) H ~ R  (R, M )  5 MR 

is the identity. Therefore H m R  (p ,  M )  is an isomorphism and it follows 
that p is an Add (MR)-reflection. 

Remark 6. If Add (MR) is reflective in ModR then R += R is the ring of 
definable scalars corresponding to the definable subcategory Add (MR) (see 
[?, Corollary 11.101). 

Corollary 3. The following assertions are equivalent: 

(a) MR is indecomposable and Add (MR) is  refEective i n  ModR. 
(b) S is  a division ring and S M  is finite dimensional. 

Proof. (a)=+-(b). From [?, Theorem 4.11, [?, Proposition 4.41 and our 
Theorem 2, one gets that s M  is free of finite rank and S is left artinian and 
local. Hence sMR defines a Morita equivalence and Add (MR) = P r o j ~ .  
Therefore rgD (S) = rgD (R) 5 2, which implies that S is a division ring. 

(b)=+-(a). Since R is semisimple, the implication is clear. 

A module MR is called self-small when, for every set I, the canonical 
homomorphism H m R  (M, M)(') += H m R  (M, ~ ( ' 1 )  is an isomorphism. 
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It is clear that MR is self-small if and only if so is MR. We shall say that 
a ring A is right pro-reflective when ProjA is reflective in ModA, i.e., 
when A is right perfect, left coherent and r g D  (A) 5 2. 

Proposition 8. Let MR be self-small. Then  the following assertions are 
equivalent: 

(a) Add (MR) is reflective i n   mod^. 
(b) S is right pro-reflective and SM is finitely generated projective. 

I n  case these conditions hold, we have: 

(i) R is right perfect. 
(ii) r g D  (R) 5 2 + pd (MR). 
(iii) Assume that MR is finitely generated. Then  R i s  left coherent if and 

only z f  HomR (M, R) is a finitely generated left R-module. 

Proof. The equivalence of (a) and (b) is proven as Proposition 3.8 in 
[?I, using Theorem 2.(i). For the rest, by replacing M by some power Mn 
if necessary, we can assume that M = R b X for certain X E ModR. Now 
we can prove: 

(i) Since S is right perfect and S = End (R b X) " 
we get that R is right perfect [?, (28.6)]. 

(ii) For each NR, we get an exact sequence 0 + K + PI + Po -+ N + 0 
in ModR with Po and Pl projective. Since Mfi is a generator, we have 
ProjR Add (MR), and therefore K E Add (ME), which clearly implies 
that pd (KR) 5 pd (MR), whence the result follows. 

(iii) Assume that MR is finitely generated and (a),(b) hold, so that R is 
right perfect. If R is left coherent then it is indeed strongly left coherent (or 
left II-coherent) in the sense of [?I, and therefore Hom (M, R) is a finitely 
generated left R-module by [?, Theorem I]. 

Conversely, suppose that Hom (M, R) is a finitely generated left R-module. 
Considering S as matrices in the above sense, we consider the element 

e = ( ) E S and the bimodule R (eS)s. In  mod we have eS I. 

R @ HomR (x, R) , and since this is finitely generated by the hypothesis, [?, 
Lemma 1.51 says that ( e ~ ) '  is eS-generated in Mods. Now, since the func- 
tor Horns (eS, -) : Mods -+ Modfi takes projective eS-generated right S- 
modules to projective right R-modules, we infer that R' 

is projective in ModR, so that R is left coherent. 

Example 3. (1) In the situation of Proposition 8 we can have r g D  (R) = w 
. . 

and R not left coherent. Indeed. let us consider a non-Artinian commutative 
K [ x ~ ,  ...xn, ...I 

local ring R with J~ = 0, where J is the radical (e.g. R = 
(51, ..exn, ...)2 

with K a field). We propose the reader to prove that, if {el, ..., et) is a finite 
family of elements in RI (for some set I) which is RIJ-linearly independent 



Juan Rada, Manuel Saorin and Alberto del Valle 15 

modulo J', then it is R-linearly independent and thus zFz1 eiR = $E=leiR 
is a projective submodule of R'. Once this is done, if {e, I cr E A) is a 
maximal family of R/ J-linearly independent elements of R' modulo J' and 
{ fp  I P E B )  is a maximal family of R/ J-linearly independent elements of J' 
modulo R' J, then one easily sees that R' = ($e,R) $ ($ fpR), so that R' 
is a direct sum of a free and a semisimple submodule. If now M = R $ R/ J, 
then Add (M) is clearly reflective in ModR, but R 2 R has infinite global 
dimension and is not coherent. 

(2) We do not know if a module MR satisfying either (a) or (b) in Propo- 
sition 8 is necessarily self-small, but it needs not be finitely generated over 
R. Indeed, if R is the Kronecker algebra over a field K ,  then the generic 
module GR (cf. [?I) satisfies End (GR) 2 K (X)  and dimK(x) G = 2. So 
GBiEnd(G), and consequently GR, is self small. Now set M = R$ G, so that 
R = R and MR is not finitely generated; since Hom (G, R) = 0, it follows 
easily that (a-b) in Proposition 8 hold for M.  

(3) In Proposition 8, it is easy to give examples where both S and R are 
right pro-reflective but MR is not an endogenerator. For instance, take any 
right pro-reflective ring R and a module XR such that D = End (XR) is 
a division ring and is finite-dimensional (if R is a C-algebra such that 
R I J  (R) is an Artin C-algebra, then every simple right R-module has that 
property). If XR is not a direct summand of any kernel of a morphism 
between projectives, then M = R $ X satisfies all the above conditions. 

In what follows, we shall deal with the special case in Theorem 2 when 
SM is a (pro)generator. For this purpose we define: 

Definition 2. A module MR will be called a reflective endogenerator 
when Add (MR) is reflective in  ModR and S M  is a generator. Two Mect ive  
endogenerators MR and NR will be called equivalent when Add (MR) = 
Add (NR) . 

In this situation MR is also a progenerator, so that Add (MR) = ProjR 
and S and R are Morita equivalent rings. By Proposition 8, both rings 
are right pro-reflective. On the other hand, since direct summands of MR 
and Mfi are the same, we have M = Mrl  $ - .  $ Mtnt, where the nils are 
positive integers and MI,  . . . , Mt are pairwise non-isomorphic indecomposable 
modules. 

Definition 3. A ring homomorphism cp : R -+ A will be called a right 
pseudoepimorphism when the canonical ring homomorphism A 2 End (AA) + 
End (AR) induced by cp, is onto (and hence, an isomorphism). Two right 
pseudoepimorphisms cp : R -+ A and cp' : R -+ A' will be said to be equiva- 
lent when there is a ring isomorphism q5 : A -+ A' such that q5 o cp = cp'. 

If cp : R -+ A is a right pseudoepimorphism then A = BiEnd (AR) and 
cp is (equivalent to) the canonical map R + BiEnd (AR); by Proposition 8, 
AR is a reflective endogenerator if and only if A is right pro-reflective. In 
fact, we have: 
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Proposition 9. Let R be any ring. There is a bijective correspondence 
between: 

(a) the set of equivalence classes of reflective endogenerators in  ModR; 
and 

(b) the set of equivalence classes of right pseudoepimorphisms cp : R + A 
with A right pro-reflective. 

Proof. If Add (MR) is reflective then RR E Add (MR) by Theorem 2, and 
End (RE) = End (RR) by Lemma 1, so that the ring homomorphism p : 
R + R is a right pseudoepimorphism. Note that, if Add (MR) = Add (NR), ' 

then BiEnd (MR) = BiEnd (NR) [?, (14. I)], and thus p does not depend 
on.MR but on its equivalence class. If, moreover, MR is a reflective endo- 
generator, then R is right pro-reflective ant thus the assignation MR I+ p 
establishes a map from (a) to (b). 

Conversely, if cp : R + A is as in (b), then Add (AR) is reflective in ModR 
by the remark above, so that AR is a reflective endogenerator in ModR. 
Clearly, the assignation cp t+ AR depends only on the equivalence class of cp, 
and so it establishes a map from (b) to (a) which is an inverse for MR t+ p. 

Remark 7. (1) If cp is a right pseudoepimorphism then the restriction of cp, 
to Add (AA) is a full functor. In particular, when the ring A is semisimple, 
every pseudoepimorphism R + A is an epimorphism (cf. [?, (X1.1.2)]). 
Thus, in view of Corollary 3, the above proposition extends Proposition 2.1 
in [?I. 

(2) The bijection of Proposition 9 induces another one between the set of: 
(a) equivalence classes of flat reflective endogenerators; and (b) isomorphism 
classes of flat ring epimorphisms cp : R + A with A right pro-reflective. In- 
deed, if MR is a flat reflective endogenerator then every module in Add (MR) 
(and in particular RR) is flat, and thus all we need to prove is that a flat 
right pseudoepimorphisms cp : R + A with A right pro-reflective is an epi- 
morphism. But, in that case, A @R A is projective (and hence torsionless) 
in ModA and the multiplication map p : A @R A + A is carried to an iso- 
morphism by the functor HornA (-,A), so that it is an isomorphism and 
therefore cp is a ring epimorphism by [?, (XI.1.2)]. 

(3) When the ring R is commutative, there is a bijective correspondence 
between the sets of: (a) equivalence classes of reflective endogenerators in 
ModR; (b) equivalence classes of ring epimorphisms cp : R + A where A 
is a finite direct product of fields; and (c) finite parts of Spec (R). Indeed, 
one proves along the lines of [?, Corollary 1.21 that if R + A is a right 
pseudoepimorphism then the commutativity of R implies that of A, so that 
pro-reflectivity of A means that it is a finite direct product of fields. The 
rest follows the pattern of [?, Example 1.2.a]. The bijection ( b ) ~ ( c )  takes 
c p :  R + Ki x . - -  x Kn to {Ker(.rriocp) I i =  1, ..., n) (where Xi : n K i  + 
Ki is the canonical projection) in one direction and {PI, ..., Pn) to R + 
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Q (RIPl)  x . . . x Q (RIP,) (where Q (D) is the quotient field of the domain 
D)  in the other. 

Example 4. (1) Let D be a commutative integral domain with quotient . . 

field Q; then the inclusion R = ( f  E )  u - ( L ~ )  z )  = T is a r ing  

epimorphism and, since T is left &d right heredit&ry and irtinian, TR and 
RT are both reflective endogenerators. 

(2) Let R be a right artinian ring and let MR be such that HomR (-, M )  
is an object of finite length in the category (mod:, Ab). Let ZM be a family 
of representatives of the isomorphism classes of indecomposable modules 
X E modR with HornR (X, M )  # 0; by [?, Theorem 2.121 we know that ZM 
is finite, and we set M = @xEzMX. 

We claim that Add (M) is reflective in ModR, but M is an endogenerator 
, I 

if and only if MR is projective. To prove that we first replace MR by MR 

if necessary and assume from the beginning that, for an indecomposable 
X E modR, HornR (X, M )  # 0 implies X E Add (MR). In particular, if 
E : P + M is the projective cover of MR then P E Add (MR) and so the 
class of indecomposable projective direct summands of MR is not empty. 
We pick a set {PI = el R, ..., Pt = etR) of representatives of the isomorphism 
classes of these direct summands, where {el, .. ., et ) are pairwise orthogonal 
idempotents of R. One immediately gets that, if S = End (MR), then 
SM = Sel @ - - .  @ Set (viewing the ei as elements of MR, since eiR is a 
direct summand of MR for each i = 1, . . . , t )  . Also, clearly, Sei S SE~,  where 
E i  is the idempotent endomorphism MR + eiR + MR. Hence S M  is finitely 
generated projective. On the other side, again by [?, Theorem 2.121, S is 
left artinian and so MR has finite endolength, which implies that Add (MR) 
is closed for products and direct limits (cf. [?, Theorem 4.11). 

If now f : M(') + M ( ~ )  is a R-homomorphism, then it is the direct limit 
of a system of morphisms fa : Mna + ~ ( ~ 1 ,  whose kernels are in Add (MR) 
by our choice of MR. Hence Kerf = l q K e r f ,  is in Add (MR) and therefore 
Add (MR) is reflective in M o ~ R .  Moreover, SM is a generator if and only 
if all indecomposable direct summands of SS appear as direct summands of 
sM. This is equivalent to say that all indecomposable direct summands of 
MR belong, up to isomorphism, to the family {PI, ..., Pt), i.e., that MR is 
projective. 

In view of the previous example, a natural question arises: Suppose that 
Add (MR) is reflective in ModR; are there only finitely many non-isomorphic 
indecomposable direct summands of MR? Note that if R is right pure- 
semisimple and MR is the direct sum of all indecomposable right R-modules, 
an affirmative answer would solve the "pure-semisimple conjecture" (see [?I 
and [?I for the most recent advances). Hence, the question seems difficult 
and we can only give the following partial affirmative answers: 
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Proposition 10. Let R be a principal ideal domain, Q its quotient field 
and M an arbitrary R-module. Then Add (MR) is reflective in  ModR if 
and only if there are finitely many (and perhaps none) pairwise nonas- 
sociated prime elements pl, ..., pt i n  R, integers nl,  ..., nt 2 1 and sets 
Ill, ..., Ilnl, ..., Itl, ..., I tn t ,  J (non-empty except perhaps J )  such that 

Proof. Assume first that M has the given form; then by [?, Theorem * 

4.:1.] each summand is product-complete and hence so is M;  since Add (M) 
is clearly closed for kernels, it is reflective in ModR. 

For the converse we can assume that M is of the form M = @Ma 
for some set {Ma I a E A) of pairwise non-isomorphic indecomposable C- 
pure-injective R-modules. Now, by [?, (8.56)], the indecomposable C-pure- 
injective R-modules are: (a) the quotient field Q; and, for every prime 
element p E R, (bl) the modules R/ (pn) with n 2 1; and (b2) the Priifer 
module R/ (pm) (the padic module & is not C-pure-injective since it is not 
an artinian ring). Note that, for a fixed prime p, Add (M) cannot contain a 
copy of R/ (pn) for each n 2 1, since Add (M) is closed for inverse limits and 
it does not contain R ~ .  On the other hand, the fact that Add (M) is closed 
for kernels implies that, if R/ (pn) is among the Ma's, then so is R/ (pi) for 
each i = 1,2, ..., n. And it also implies that no R/ (pm) is a direct summand 
of M,  because otherwise Add (M) would contain every R/ (pn). So, we only 
have to prove that the number of distinct R/ (p) that can appear among 
the Ma's is finite. But if R/ (pi) E Add (M) for infinitely many primes 
{p1,p2, ...) then we would have Q g l R /  (pi) E Add (M), so that the pure 
monomorphism @ z l R /  (pi)  + nzl R/ (pi) would split. 
Proposition 11. Let R be a finite dimensional tame hereditary algebra 
over a field K which is not representation-finite, and let G be the generic 
module. If Add (MR) is  reflective i n  ModR, then there are finitely generated 
indecomposable R-modules XI, ..., Xt and (possibly empty) sets 11, ..., It and 
J such that 

MR 2 xir1) Q ... Q G ( ~ ) .  

Proof. Following the terminology of [?I, this is proved as Proposition 10 
by taking S, S [n], S [oo], s and G instead of R/ (p) , R/ (pn) , R/ (pm), & 
and Q, where S is a simple regular module and G is the generic module. 

Remark 8. Notice the difference between reflectivity of Add (M) in ModR 
and reflectivity of add (M) in modR. If R is a right artinian ring and MR 
is the direct sum of one copy of each indecomposable R-module XR such 
that HornR (-, X) is an object of finite length in (mod:, Ab) ( 

ple 4), then add (MR) is reflective in modR (and hence a m i " i s  I ~ I  
tive in ModR by Proposition 1). However, it is well known (cf. [?I) that, 
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when R is a hereditary finite dimensional algebra over a field that is not 
representation-finite, MR has infinitely many non-isomorphic direct sum- 
mands. Then Proposition 11 says that Add (MR) is not reflective in ModR 
when R is tame and not representation-finite. 
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