Universidad de los Andes Facultad de Ciencias Departamento de Matemática

Existence of Coexistence States: A Generic Property for Cyclic 3-Dimensional Competitive Systems.

Antonio Tineo

Notas de Matemática Serie: Pre-Print No. 200

Mérida - Venezuela 2000

۰ _

Notas de Matemática, No. 200 Mérida, 2000.

Existence of Coexistence States: A Generic Property for Cyclic 3-Dimensional Competitive Systems.

Antonio Tineo

Abstract

In this paper we consider the class C(T) of all dissipative 3-dimensional T-periodic Kolmogorov competitive and cyclic systems such that the trivial solution is a source, and we prove that "almost" every such system possesses a coexistence state. More precisely, we characterize an open and dense subset U of C(T); with respect to the topology of the uniform convergence in compact sets; such that each member of U has a coexistence state.

1 Introduction

In this paper we prove that almost every dissipative, three dimensional competitive system possesses a coexistence state if it has a cyclic connection on the boundary of \mathbb{R}^3 . The more celebrated example of a such system is due to May and Leonard [5]:

$$\begin{aligned} x_1' &= x_1 [1 - x_1 - \alpha x_2 - \beta x_3] \\ x_2' &= x_2 [1 - \beta x_1 - x_2 - \alpha x_3] \\ x_3' &= x_3 [1 - \alpha x_1 - \beta x_2 - x_3]. \end{aligned}$$
(1.1)

This system has been extensively studied by several authors. For instance see [1] and the references therein.

Let S_i be the two-dimensional system obtained from (1.1) by letting $x_{i-1} = 0$. (Here and henceforth we shall use the *mod* 3 notation). We remark that if $0 < \beta < 1 < \alpha$ (resp. $0 < \alpha < 1 < \beta$) then, in system S_i ; the species x_i (resp. x_{i+1}) is carried to extinction by x_{i+1} (resp. x_i), for all $i \in \mathbb{Z}$. In this case, we say that (1.1) is τ -cyclic (resp. σ -cyclic). Here, we are denoting by $\tau, \sigma : \mathbb{Z} \to \mathbb{Z}$ the permutations given by $\tau(i) = i+1$; $\sigma(i) = i-1$.

More generally, let us consider the system

$$x'_{i} = x_{i}F_{i}(t,x); x = (x_{1}, x_{2}, x_{3}); \ 1 \le i \le 3;$$

$$(1.2)$$

where $F_1, F_2, F_3 : \mathbb{R} \times \mathbb{R}^3_+ \to \mathbb{R}$ are continuous functions which are Tperiodic in t and locally Lipschitz continuous in x. We shall assume that the following hypotheses hold:

 H_1) System (1.2) is competitive. That is; $F_i(t, x)$ is decreasing with respect to x_i for all $i \neq j$.

 H_2) System (1.2) is dissipative. H_3) $\int_0^T F_i(t, 0)dt > 0$ for all *i*. This condition implies that the trivial solution is a source.

We say that (1.2) is τ -cyclic (resp. σ -cyclic) if the species x_i (resp. x_{i+1}) is carried to extinction by x_{i+1} (resp. x_i) in the subsystem obtained from (1.2) by letting $x_{i-1} = 0$; $i \in \mathbb{Z}$. A more precise definition will be given in section 3.

Remark. If H_1 holds then H_2 is equivalent to say that the system

$$z' = zF_i(t, ze_i) \tag{1.3}$$

is dissipative for $1 \leq i \leq 3$. Here and henceforth, (e_1, e_2, e_3) denotes the canonical vector basis of \mathbb{R}^3 . Thus, if H_1) – H_3) hold then (1.3) has a minimal positive T-periodic solution that we shall denote by v_i .

In section 3 we shall prove that if (1.2) is τ -cyclic then,

$$\int_0^T F_{i+1}(t, v_i(t)e_i)dt \ge 0 \ge \int_0^T F_i(t, v_{i+1}(t)e_{i+1})dt; \ i \in \mathbb{Z}$$

and the inequalities above are reversed if (1.2) is σ -cyclic. We shall prove the following results:

Theorem 1.1 Assume H_1 – H_3 hold. If (1.2) is τ -cyclic and

$$\int_{0}^{T} F_{i+1}(t, v_{i}(t)e_{i})dt > 0; \ i \in \mathbb{Z};$$
(1.4)

then the system has a coexistence state.

Theorem 1.2 Assume that H_1 – H_3 hold and that (1.2) is τ -cyclic. Then the system

$$x_i' = x_i F_i^{\epsilon}(t, x); \tag{1.5}$$

satisfies the assumption in the above theorem, where

$$F_i^{\epsilon}(t,x) := F_i(t,x) + \epsilon [F_i(t,0) - F_i(t,x_{i-1}e_{i-1})]; \ \epsilon \in (0,1).$$

Note that the minimal positive *T*-periodic solution of the logistic equation $z' = zF_i^{\epsilon}(t, ze_i)$ is also v_i , since $F_i^{\epsilon}(t, ze_i) \equiv F_i(t, ze_i)$.

Remark. Let $C_{\tau}(T)$ be the class of all systems (1.2) which are τ -cyclic and satisfies H_1 – H_3 and

 H_4) $F_i(t, ze_i)$ is decreasing in $z \ge 0$ for all $t \in \mathbb{R}$ and $F_i(s_i, z)$ is strictly decreasing in z, for some $s_i = s_i(F) \in \mathbb{R}$.

From the results in [9] it follows easily that the subclass \mathcal{U}_{τ} of $\mathcal{C}_{\tau}(T)$, determined by equation (1.4), is an open subset of $\mathcal{C}_{\tau}(T)$ in the topology of the uniform convergence in compact sets. Moreover, by Theorem 1.2, this set is also dense. We have parallel results for σ -cyclic systems.

This paper was motivated by an article of [1] in which it is proved that a large class of cyclic systems have coexistence states, and is divided in three sections. In section 1, we use some ideas in Hirsch [3] to show that the Poincare map of (1.2) has a compact invariant 2-cell. In section 3, we use a result by Campos, Ortega and Tineo [2] and a contradiction argument to show Theorem 1.1. Finally, in section 2 we find necessary conditions under which system (1.2) is τ -cyclic and we prove Theorem 1.2.

2 Existence of a Compact Invariant 2-cell

In this section we consider the n-dimensional system

$$x'_{i} = x_{i}F_{i}(t,x); \ x = (x_{1}, \cdots, x_{n}); \ 1 \le i \le n;$$
(2.1)

where $F_1, \dots, F_n : \mathbb{R} \times \mathbb{R}^n_+ \to \mathbb{R}$ are continuous functions which are *T*-periodic in *t* and locally Lipschitz continuous in *x*. We also assume that $H_1 - H_3$ hold.

Let $\pi = (\pi_1, \dots, \pi_n) : \mathbb{R}^n_+ \to \mathbb{R}^n$ be the Poincare map of (2.1). By $H_1 - H_3$, there exists $a_i > 0$ such that $\pi(a_i e_i) = a_i e_i$ and $\pi_i(ze_i) > z$ for all $z \in (0, a_i)$. In fact, $a_i = v_i(0)$, where v_i is the minimal positive *T*-periodic solution of (1.3). Analogously, there exists $b_i \ge a_i$ such that $\pi(b_i e_i) = b_i e_i$ and $\pi_i(ze_i) < z$ for all $z > b_i$.

Given $p \in \mathbb{R}^n_+$, we denote by S(t, p) the solution of (2.1) determined by the initial condition S(0, p) = p. We also define D as the subset of \mathbb{R}^n_+ consisting of all points p such that S(t, p) is defined on \mathbb{R} and D_0 as the subset of D consisting of all points p such that

$$S(t, p) \to 0$$
 as $t \to -\infty$.

That is, D_0 is the domain of repulsion of p = 0. Note that by H_3), D_0 is an open subset of \mathbb{R}^n_+ . Using some ideas in [3], we shall prove the following result.

Theorem 2.1 The boundary $\Delta := \partial D_0$ of D_0 relative to \mathbb{R}^n_+ is a compact (n-1)-cell invariant by π , such that $a_i e_i \in \Delta$; $1 \leq i \leq n$.

The proof requires two short results. We begin with the following well known fact, which we estate here for reference purposes.

Proposition 2.2 If u, v are non negative solutions of (2.1) and $u(0) \le v(0)$, then $u(t) \le v(t)$ for all $t \in (-\infty, 0) \cap domain(u) \cap domain(v)$.

Proposition 2.3 If $u = (u_1, \dots, u_n)$ is a non negative solution of (2.1) defined on \mathbb{R} then $u_i(0) \leq b_i$. Moreover, if $u(0) \in D_0$, then $u_i(0) < a_i$. In particular, D is compact and $D_0 \subset [0, a_1) \times \cdots \times [0, a_n)$.

Proof. Let us fix $1 \le i \le n$ and let w_i be the solution of (1.3) determined by the initial condition $w_i(0) = u_i(0)$. By H_1 , u_i is a subsolution of (1.3) and hence, $w_i(t) \le u_i(t)$ if $t \in (-\infty, 0) \cap domain(w_i)$. Consequently, w_i is defined on \mathbb{R} and so $u_i(0) \le b_i$. Moreover, if $u(0) \in D_0$, then $w_i(t) \to 0$ as $t \to -\infty$ and the proof follows easily.

Proof of Theorem 2.1. Since *D* is compact, we conclude that Δ is a compact subset of *D*. Note also that $0 \notin \Delta$. Moreover, $\Delta \cap \mathbb{R}_+ e_i = \{a_i e_i\}$ since $D_0 \cap \mathbb{R}_+ e_i = [0, a_i)e_i$. In particular, $a_i e_i \in \Delta$.

Given $x = (x_1, \dots, x_n) \in \mathbb{R}^n_+$, we define $|x| = x_1 + \dots + x_n$ and we note that $K := \{x \in \mathbb{R}^n_+ : |x| = 1\}$ is a compact (n-1)-cell. We shall prove that the radial projection $R : \Delta \to K$; R(x) = x/|x|; is a bijection and consequently, a homeomorphism onto K since R is continuous and Δ is compact.

For each nonempty subset J of $\{1, \dots, n\}$, let us define $\mathbb{R}^J_+ = \{x \in \mathbb{R}^n_+ : x_i = 0 \forall i \notin J\}$ and note that $\mathbb{R}^J_+ = \mathbb{R}_+ e_j$ if $J = \{j\}$ is a singular set. In particular, the restriction $R_J : \mathbb{R}^J_+ \cap \Delta \to K$ is injective if J is singular.

We shall prove that R is injective. By induction, we can suppose that R_J is injective for all proper subsets of $\{1, \dots, n\}$. On the other hand, \mathbb{R}^J_+ is invariant by π and so it suffices to show that the relations $x, y \in \Delta$; x, y > 0; R(x) = R(y) implies x = y.

To do this suppose $x \neq y$ and define w = R(x). Then w > 0 and $x - y = \lambda w$ for some $\lambda \in \mathbb{R}$. Without loss of generality, we can assume that $\lambda > 0$ and so x > y. Since $N := \{p \in \mathbb{R}^n_+ : 2p > x + y\}$ is a neighborhood of x, there exists $p \in D_0$ such that $p \in N$. On the other hand, y < p and by Proposition 2.2, $S(t, y) \leq S(t, p)$ for all $t \leq 0$. From this, $S(t, y) \to 0$ as $t \to -\infty$ and hence, $y \in D_0$. This contradiction proves that R is injective.

As above, we can suppose that $R(\Delta) \supset K \cap \mathbb{R}^J_+$ for all proper subsets of $\{1, \dots, n\}$. Thus it suffices to show that $R(\Delta)$ contains all positive vectors

in K. To this end, let us fix w > 0 in K and note that $aw \in D_0$ for some a > 0, since D_0 is an open subset of \mathbb{R}^n_+ containing the origin. Now, let $\lambda := \sup\{a > 0 : aw \in D_0\}$, it is clear that $\lambda w \in \Delta$ and $R(\lambda w) = w$.

3 The Proof of Theorem 1.1

Let Δ be the 2-cell given by Theorem 2.1. Then $\pi : \Delta \to \Delta$ is an orientation preserving homeomorphism onto Δ , since $a_i e_i \in \Delta$; $1 \leq i \leq 3$. See proposition 3.2 of [7]. As above, π denotes the Poincaré map of (1.2).

Assume by contradiction that π has no positive fixed points. Since (1.2) is τ -cyclic, then $Fix(\pi) \cap \Delta = \{a_1e_1, a_2e_2, a_3e_3\}$. Now, let us quote the following result in [2] (theorem 2.1):

Theorem. Let $D \subset \mathbb{R}^2$ be a closed disk and let $h : D \to D$ be an orientation preserving homeomorphism such that $Fix(h) \subset \partial D$. Then, the ω -limit set of any orbit of h is a connected subset of Fix(h).

Let us fix a positive solution $u = (u_1, u_2, u_3)$ of (1.2), with $u(0) \in \Delta$. By the above theorem, there exists $i \in \mathbb{Z}$ such that

$$u(t) - v_{i-1}(t)e_{i-1} \to 0 \text{ as} t \to +\infty.$$

$$(3.1)$$

Integrating relation

$$\frac{u_i'}{u_i} = F_i(t, u(t))$$

over [nT, nT + T]; $n \in \mathbb{N}$; and letting $n \to \infty$, we obtain

$$\ln \frac{u_i(T+nT)}{u_i(nT)} = \int_{nT}^{nT+T} F_i(t, u(t)) dt =$$
$$\int_0^T F_i(t, u(t+nT)) dt \to \int_0^T F_i(t, v_{i-1}(t)e_{i-1}) dt > 0$$

From this, $\{u_i(nT)\}\$ is an eventually strictly increasing sequence, which contradicts 3.1, and the proof of our first assertion is complete.

4 Planar Systems

In this section we prove some auxiliary results. We begin with a maybe well known result. All systems considered in this section are assumed to satisfy the hypotheses in sections 1 and 2. We say that x is carried to extinction by y in system (4.1) below

$$x' = xF(t, x, y); \ y' = yG(t, x, y); (x, y) \in \mathbb{R}^2_+;$$
(4.1)

if $\lim_{t\to+\infty} u(t) = 0$ for any positive solution (u, v) of the system.

Proposition 4.1 Let us consider the system

$$x' = xF_0(t, x, y); \ y' = yG_0(t, x, y); \tag{4.2}$$

and suppose that $F \ge F_0$ and $G \le G_0$. If x is carried to extinction by y in (4.1) then the same holds for system (4.2).

Proof. Let (u_0, v_0) be a positive solution of (4.2) and fix a positive solution (u, v) of (4.1) such that $u(0) > u_0(0)$ and $v(0) < v_0(0)$. It suffices to show that

$$u(t) > u_0(t); t > 0.$$
 (4.3)

Assume on the contrary that there exists $t_0 > 0$ such that

$$u(t) > u_0(t)$$
 for $t \in (0, t_0)$ and $u(t_0) = u_0(t_0)$. (4.4)

Since $G_0(t, x, y)$ is decreasing with respect to x then,

$$v'(t) \leq v(t)G_0(t, u(t), v(t)) \leq v(t)G_0(t, u_0(t), v(t)); 0 \leq t \leq t_0;$$

and hence, the restriction of v to $[0, t_0]$ is a subsolution of the equation

$$z' = zG_0(t, u_0(t), z).$$

On the other hand, v_0 is a solution of this equation and so, $v \leq v_0$ in $[0, t_0]$. From this, in this interval we have,

$$u'(t) \ge u(t)F_0(t, u(t), v(t)) \ge u(t)F_0(t, u(t), v_0(t)).$$

If $u'(s) > u(s)F_0(s, u(s), v_0(s))$ for some $s \in (0, t_0)$ then, by Lemma A1 in the Appendix, $u > u_0$ on $[s, t_0]$, which contradicts (4.4) and proves that

$$u'(t) = u(t)F_0(t, u(t), v_0(t)) \ \forall t \in [0, t_0].$$

Thus, u, u_0 are solutions of the equation $z' = zF_0(t, z, v_0(t))$ in the interval $[0, t_0]$ and by uniqueness $u \equiv u_0$ in this interval, since $u(t_0) = u_0(t_0)$. Hence, $u(0) = u_0(0)$ and this contradiction ends the proof.

Proposition 4.2 Suppose that (4.1) satisfies the assumptions in section 2 and let ξ be the minimal positive T-periodic solution of

$$x' = xF(t, x, 0).$$

If x is carried to extinction by y in (4.1) then

$$\int_0^T G(t,\xi(t),0)dt \ge 0.$$
 (4.5)

.

Proof. By the change of variables $(X, Y) = (x/\xi, y)$, we can suppose that $\xi \equiv 1$. Assume now that (4.5) is false; that is, suppose

$$\int_0^T G(t,1,0)dt < 0,$$

then we can write $G(t, 1, 0) = -\mu + A'(t)/A(t)$ for some positive *T*-periodic function *A*. $(-\mu \text{ is the average of } G(., 1, 0))$. From the change of variables $(x, y) \mapsto (x, y/A)$, we can suppose that G(t, 1, 0) < 0 for all $t \in \mathbb{R}$. Thus, there exists $1 > \epsilon > 0$ such that

$$G(t, x, y) < 0 \text{ if } t \in \mathbb{R}; \ |x - 1| \le \epsilon; \ 0 \le y \le \epsilon.$$

$$(4.6)$$

Let Δ be the compact 1-cell given by Theorem 2.1. As it was pointed in [6], it follows from Proposition 2.2 that Δ is a decreasing curve. That is, if $(x_1, y_1), (x_2, y_2) \in \Delta$ and $y_1 \leq y_2$ then, $x_1 \geq x_2$.

Given $p \in \mathbb{R}^2_+$, let S(t,p) = (u(t,p), v(t,p)) be the solution of (4.1) determined by the initial condition S(0,p) = p. Since $S(t,1,0) = (1,0) \in (1-\epsilon, 1+\epsilon) \times [0,\epsilon)$ for all $t \in \mathbb{R}$, there exists $p \in \Delta$ such that $S(t,p) \in (1-\epsilon, 1+\epsilon) \times [0,\epsilon)$ for all $t \in [0,T]$. From this and (4.6), v'(t,p) < 0 in [0,T] and hence, v(T,p) < v(0,p). Therefore, $u(T,p) \ge u(0,p)$ since Δ is decreasing.

Using H₁) we conclude that $u(t+T, p) \ge u(t, p)$ and $v(t+T, p) \le v(t, p)$ for all $t \ge 0$. In particular, $\{u(nT, p)\}$ is an increasing sequence of positive numbers, which is a contradiction since $u(t, p) \to 0$ as $t \to +\infty$. This contradiction ends the proof.

Remark. Assume the hypotheses of Proposition 4.2 hold and let η be the minimal positive *T*-periodic solution of the logistic equation z' = zF(t, 0, z). Using the arguments in that proposition, we can prove that

$$\int_0^T F(t,0,\eta(t))dt \leq 0.$$

From this, we obtain the following result.

Corollary 4.3 If (1.2) is τ -cyclic then

$$\int_0^T F_{i+1}(t, v_i(t)e_i)dt \ge 0 \ge \int_0^T F_i(t, v_{i+1}(t)e_{i+1})dt; \ i \in \mathbb{Z}.$$

.

The inequalities are reversed if (1.2) is σ -cyclic.

Proof of Theorem 1.2. If $x_{i-1} = 0$ we have, $F_i^{\epsilon}(t, x) = F_i(t, x)$ and $F_{i+1}^{\epsilon}(t, x) = F_{i+1}(t, x) + \epsilon[F_{i+1}(t, 0) - F_{i+1}(t, x_i e_i)] \ge F_{i+1}(t, x)$; and by Proposition 4.1, (1.5) is τ -cyclic. On the other hand,

$$F_{i+1}^{\epsilon}(t, v_i(t)e_i) = (1-\epsilon)F_{i+1}(t, v_i(t)e_i) + \epsilon F_{i+1}(t, 0),$$

and the proof follows from H_3), Corollary 4.3 and Theorem 1.1.

Examples.

1. We first show an example that satisfies the assumptions of Theorem . 1.1, but does not satisfies the assumptions in [1]:

$$x' = x[(1-x)(x-2)^2 - y - 16z]; \quad y' = y[1-x-2y-z]; \quad z' = z[3-x-7y-4z].$$

2. We shall sketch the construction of a τ -cyclic autonomous system satisfying H_1) – H_3), which has no positive equilibria. To this end, let us first show that $F(x,y) := (1 - x^2 - y^2 - 2y(1 - y), 2x(1 - y))$ is a C^{∞} -vector field in the unitary disk $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, such that the limit sets of any trajectory are equal to $\{(0,1)\}$. To this end, note first that (0,1) is the unique equilibrium of F and let S_h be the sphere of center (0, (1+h)/2) and radius (1-h)/2, for $h \in [-1, 1]$. Then, D is the union of S_h and $S_h \cap S_k = \{(0,1)\}$ if $h \neq k$. On the other hand, the restriction of F to S_h is a vector field on S_h , and our assertion about the trajectories of F follows easily. From this, $(1 - x^2)F(x, y)$ is a smooth vector field on D, which only has three equilibria and these equilibria belongs the boundary of D. Moreover, F has a cycle in ∂D . Using the above ideas, we can construct a continuously differentiable vector field G in the standard twosimplex $\Delta := \{(x, y, z) \in \mathbb{R}^3_+ : x + y + z = 1\}$ such that $\{e_1, e_2, e_3\}$ is the set of all equilibria of G and G has a cycle in the relative boundary of Δ . Our example follows now from the Smale's construction [8].

A Appendix

In this section we prove a partially well known result about extension of inequalities in O.D.E.'s. Let us consider the scalar system

$$x' = f(t, x) \tag{1.1}$$

where $f: U \to \mathbb{R}$ is a continuous function, defined on an open subset of \mathbb{R}^2 , which is locally Lipschitz continuous in x.

Lemma A.1 Let $u, v : [a, b] \to \mathbb{R}$ be continuously differentiable functions such that u (resp. v) is a subsolution (resp. supersolution) of (1.1). If $u(a) \le v(b)$, then $u \le v$. Moreover, if

$$v'(s) - u'(s) > f(s, v(s)) - f(s, u(s))$$
 for some $s \in (a, b)$, (1.2)

then u < v in [s, b].

Proof. The first assertion is well known [4]; Th. 1.1.1; but we include the proof of it by completeness. Since f is locally Lipschitz continuous and [a, b] is compact, there exists M > 0 such that

$$|f(t, v(t)) - f(t, u(t))| \le M |v(t) - u(t)|; \ t \in [a, b].$$
(1.3)

Now, let us write w = v - u and note that by (1.3),

$$w' + M|w| \ge 0 \text{ on } [a, b].$$
 (1.4)

Assume now that $w(t_0) < 0$ for some $t_0 \in (a, b]$. Since $w(a) \ge 0$, there exists $t_1 \in [a, t_0)$ such that w < 0 in (t_1, t_0) and $w(t_1) = 0$. From this and (1.4), we have $w' - Mw \ge 0$ in $[t_1, t_0]$ and hence $e^{-Mt}w(t)$ is increasing in this interval. Consequently,

$$0 = \exp(-Mt_1)w(t_1) \le \exp(-Mt_0)w(t_0) < 0$$

and this contradiction proves that $w \ge 0$. Assume now that (1.2) holds. Then w'(s) + M|w(s)| > 0. If w(s) = 0 then, w'(s) > 0 and so w < 0 in $(s - \epsilon, s)$ for some $\epsilon > 0$. This contradiction proves that w(s) > 0. Suppose that there exists $t_0 \in (s, b]$ such that w > 0 on $[s, t_0)$ and $w(t_0) = 0$. By (1.4), $w' + Mw \ge 0$ on $[s, t_0]$ and by the above argument, $0 = \exp(Mt_0)w(t_0) \ge \exp(Ms)w(s) > 0$. This contradiction ends the proof.

References

- [1] Battauz A. and Zanolin F., Coexistence States for Periodic Competitive Kolmogorov Systems. J. Math. Anal. and Appl. 219, (1998), 179-199.
- [2] Campos J. Ortega R. and Tineo A., Homeomorphisms od the Disk with Trivial Dynamics and Extinction of Competitive Systems. J.D.E., Vol. 138, N⁰ 1 (1997), 157-170.
- [3] Hirsch M., Systems of Differential Equations which are competitive or Cooperative. III: Competing species. Nonlinearity, (1988), 1, 51-71.

- [4] Ladde G. S., Laksmikantham V. Vatsala A. S., Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman Advanced Publishing Program. Boston-London-Melbourne (1985).
- [5] May R. and Leonard W., Nonlinear Aspects of Competition Between Three Species. SIAM J. Appl. Math. Vol. 29, No. 2, (1975), 243-253.
- [6] P. de Mottoni and A. Schiaffino, Competition Systems which Periodic coefficients: A Geometric Approach. J. Math. Biol., 11 (1981), 319-335.
- [7] Ortega R. and Tineo A., An Exclusion Principle for Periodic Competitive Systems in Three Dimensions. Nonlinear Analysis T.M.A., 193 (1997), 975-978.
- [8] S. Smale, On the differential equations of species in competition. J. Math. Biol., 3 (1976),5-7.
- [9] Tineo A., Iterative Schemes for some Population Models. Nonlinear World, 3, (1996), 695-708.

.