Universidad de los Andes
 Facultad de Ciencias
 Departamento de Matemática

Existence of Coexistence States: A Generic Property for Cyclic 3-Dimensional Competitive Systems.

Antonio Tineo

Notas de Matemática

Serie: Pre-Print
No. 200

Mérida - Venezuela
 2000

Existence of Coexistence States: A Generic Property for Cyclic 3-Dimensional Competitive

 Systems.Antonio Tineo

Abstract

In this paper we consider the class $C(T)$ of all dissipative 3 -dimensional T-periodic Kolmogorov competitive and cyclic systems such that the trivial solution is a source, and we prove that "almost" every such system possesses a coexistence state. More precisely, we characterize an open and dense subset U of $C(T)$; with respect to the topology of the uniform convergence in compact sets; such that each member of U has a coexistence state.

1 Introduction

In this paper we prove that almost every dissipative, three dimensional competitive system possesses a coexistence state if it has a cyclic connection on the boundary of \mathbb{R}^{3}. The more celebrated example of a such system is due to May and Leonard [5]:

$$
\begin{gather*}
x_{1}^{\prime}=x_{1}\left[1-x_{1}-\alpha x_{2}-\beta x_{3}\right] \\
x_{2}^{\prime}=x_{2}\left[1-\beta x_{1}-x_{2}-\alpha x_{3}\right] \tag{1.1}\\
x_{3}^{\prime}=x_{3}\left[1-\alpha x_{1}-\beta x_{2}-x_{3}\right] .
\end{gather*}
$$

This system has been extensively studied by several authors. For instance see [1] and the references therein.

Let S_{i} be the two-dimensional system obtained from (1.1) by letting $x_{i-1}=0$. (Here and henceforth we shall use the mod 3 notation). We remark that if $0<\beta<1<\alpha$ (resp. $0<\alpha<1<\beta$) then, in system S_{i}; the species x_{i} (resp. x_{i+1}) is carried to extinction by x_{i+1} (resp. x_{i}), for all $i \in \mathbb{Z}$. In this case, we say that (1.1) is τ-cyclic (resp. σ-cyclic). Here, we are denoting by $\tau, \sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ the permutations given by $\tau(i)=i+1 ; \sigma(i)=i-1$.

More generally, let us consider the system

$$
\begin{equation*}
x_{i}^{\prime}=x_{i} F_{i}(t, x) ; x=\left(x_{1}, x_{2}, x_{3}\right) ; 1 \leq i \leq 3 ; \tag{1.2}
\end{equation*}
$$

where $F_{1}, F_{2}, F_{3}: \mathbb{R} \times \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}$ are continuous functions which are T periodic in t and locally Lipschitz continuous in x. We shall assume that the following hypotheses hold:
H_{1}) System (1.2) is competitive. That is; $F_{i}(t, x)$ is decreasing with respect to x_{j} for all $i \neq j$.
H_{2}) System (1.2) is dissipative.
$\left.H_{3}\right) \int_{0}^{T} F_{i}(t, 0) d t>0$ for all i. This condition implies that the trivial solution is a source.

We say that (1.2) is τ-cyclic (resp. σ-cyclic) if the species x_{i} (resp. x_{i+1}) is carried to extinction by x_{i+1} (resp. x_{i}) in the subsystem obtained from (1.2) by letting $x_{i-1}=0 ; i \in \mathbb{Z}$. A more precise definition will be given in section 3.

Remark. If H_{1}) holds then H_{2}) is equivalent to say that the system

$$
\begin{equation*}
z^{\prime}=z F_{i}\left(t, z e_{i}\right) \tag{1.3}
\end{equation*}
$$

is dissipative for $1 \leq i \leq 3$. Here and henceforth, $\left(e_{1}, e_{2}, e_{3}\right)$ denotes the canonical vector basis of \mathbb{R}^{3}. Thus, if H_{1}) $-H_{3}$) hold then (1.3) has a minimal positive T-periodic solution that we shall denote by v_{i}.

In section 3 we shall prove that if (1.2) is τ-cyclic then,

$$
\int_{0}^{T} F_{i+1}\left(t, v_{i}(t) e_{i}\right) d t \geq 0 \geq \int_{0}^{T} F_{i}\left(t, v_{i+1}(t) e_{i+1}\right) d t ; i \in \mathbb{Z}
$$

and the inequalities above are reversed if (1.2) is σ-cyclic. We shall prove the following results:
Theorem 1.1 Assume $\left.H_{1}\right)-H_{3}$) hold. If (1.2) is τ-cyclic and

$$
\begin{equation*}
\int_{0}^{T} F_{i+1}\left(t, v_{i}(t) e_{i}\right) d t>0 ; i \in \mathbb{Z} \tag{1.4}
\end{equation*}
$$

then the system has a coexistence state.
Theorem 1.2 Assume that $\left.H_{1}\right)-H_{3}$) hold and that (1.2) is τ-cyclic. Then the system

$$
\begin{equation*}
x_{i}^{\prime}=x_{i} F_{i}^{\epsilon}(t, x) \tag{1.5}
\end{equation*}
$$

satisfies the assumption in the above theorem, where

$$
F_{i}^{\epsilon}(t, x):=F_{i}(t, x)+\epsilon\left[F_{i}(t, 0)-F_{i}\left(t, x_{i-1} e_{i-1}\right)\right] ; \quad \epsilon \in(0,1) .
$$

Note that the minimal positive T-periodic solution of the logistic equation $z^{\prime}=z F_{i}^{\epsilon}\left(t, z e_{i}\right)$ is also v_{i}, since $F_{i}^{\epsilon}\left(t, z e_{i}\right) \equiv F_{i}\left(t, z e_{i}\right)$.

Remark. Let $\mathcal{C}_{\tau}(T)$ be the class of all systems (1.2) which are τ-cyclic and satisfies $\left.H_{1}\right)-H_{3}$) and
$\left.H_{4}\right) F_{i}\left(t, z e_{i}\right)$ is decreasing in $z \geq 0$ for all $t \in \mathbb{R}$ and $F_{i}\left(s_{i}, z\right)$ is strictly decreasing in z, for some $s_{i}=s_{i}(F) \in \mathbb{R}$.

From the results in [9] it follows easily that the subclass \mathcal{U}_{τ} of $\mathcal{C}_{\tau}(T)$, determined by equation (1.4), is an open subset of $\mathcal{C}_{\tau}(T)$ in the topology of the uniform convergence in compact sets. Moreover, by Theorem 1.2, this set is also dense. We have parallel results for σ-cyclic systems.

This paper was motivated by an article of [1] in which it is proved that a large class of cyclic systems have coexistence states, and is divided in three sections. In section 1, we use some ideas in Hirsch [3] to show that the Poincare map of (1.2) has a compact invariant 2-cell. In section 3, we use a result by Campos, Ortega and Tineo [2] and a contradiction argument to show Theorem 1.1. Finally, in section 2 we find necessary conditions under which system (1.2) is τ-cyclic and we prove Theorem 1.2.

2 Existence of a Compact Invariant 2-cell

In this section we consider the n-dimensional system

$$
\begin{equation*}
x_{i}^{\prime}=x_{i} F_{i}(t, x) ; x=\left(x_{1}, \cdots, x_{n}\right) ; 1 \leq i \leq n ; \tag{2.1}
\end{equation*}
$$

where $F_{1}, \cdots, F_{n}: \mathbb{R} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ are continuous functions which are T periodic in t and locally Lipschitz continuous in x. We also assume that $\left.H_{1}\right)-H_{3}$) hold.

Let $\pi=\left(\pi_{1}, \cdots, \pi_{n}\right): \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}^{n}$ be the Poincare map of (2.1). By $\left.\left.H_{1}\right)-H_{3}\right)$, there exists $a_{i}>0$ such that $\pi\left(a_{i} e_{i}\right)=a_{i} e_{i}$ and $\pi_{i}\left(z e_{i}\right)>z$ for all $z \in\left(0, a_{i}\right)$. In fact, $a_{i}=v_{i}(0)$, where v_{i} is the minimal positive T-periodic solution of (1.3). Analogously, there exists $b_{i} \geq a_{i}$ such that $\pi\left(b_{i} e_{i}\right)=b_{i} e_{i}$ and $\pi_{i}\left(z e_{i}\right)<z$ for all $z>b_{i}$.

Given $p \in \mathbb{R}_{+}^{n}$, we denote by $S(t, p)$ the solution of (2.1) determined by the initial condition $S(0, p)=p$. We also define D as the subset of \mathbb{R}_{+}^{n} consisting of all points p such that $S(t, p)$ is defined on \mathbb{R} and D_{0} as the subset of D consisting of all points p such that

$$
S(t, p) \rightarrow 0 \text { as } t \rightarrow-\infty .
$$

That is, D_{0} is the domain of repulsion of $p=0$. Note that by H_{3}), D_{0} is an open subset of \mathbb{R}_{+}^{n}. Using some ideas in [3], we shall prove the following result.

Theorem 2.1 The boundary $\Delta:=\partial D_{0}$ of D_{0} relative to \mathbb{R}_{+}^{n} is a compact ($n-1$)-cell invariant by π, such that $a_{i} e_{i} \in \Delta ; 1 \leq i \leq n$.

The proof requires two short results. We begin with the following well known fact, which we estate here for reference purposes.

Proposition 2.2 If u, v are non negative solutions of (2.1) and $u(0) \leq v(0)$, then $u(t) \leq v(t)$ for all $t \in(-\infty, 0) \cap \operatorname{domain}(u) \cap \operatorname{domain}(v)$.

Proposition 2.3 If $u=\left(u_{1}, \cdots, u_{n}\right)$ is a non negative solution of (2.1) defined on \mathbb{R} then $u_{i}(0) \leq b_{i}$. Moreover, if $u(0) \in D_{0}$, then $u_{i}(0)<a_{i}$. In particular, D is compact and $D_{0} \subset\left[0, a_{1}\right) \times \cdots \times\left[0, a_{n}\right)$.

Proof. Let us fix $1 \leq i \leq n$ and let w_{i} be the solution of (1.3) determined by the initial condition $w_{i}(0)=u_{i}(0)$. By $\left.H_{1}\right), u_{i}$ is a subsolution of (1.3) and hence, $w_{i}(t) \leq u_{i}(t)$ if $t \in(-\infty, 0) \cap \operatorname{domain}\left(w_{i}\right)$. Consequently, w_{i} is defined on \mathbb{R} and so $u_{i}(0) \leq b_{i}$. Moreover, if $u(0) \in D_{0}$, then $w_{i}(t) \rightarrow 0$ as $t \rightarrow-\infty$ and the proof follows easily.

Proof of Theorem 2.1. Since D is compact, we conclude that Δ is a compact subset of D. Note also that $0 \notin \Delta$. Moreover, $\Delta \cap \mathbb{R}_{+} e_{i}=\left\{a_{i} \epsilon_{i}\right\}$ since $D_{0} \cap \mathbb{R}_{+} e_{i}=\left[0, a_{i}\right) e_{i}$. In particular, $a_{i} e_{i} \in \Delta$.

Given $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}_{+}^{n}$, we define $|x|=x_{1}+\cdots+x_{n}$ and we note that $K:=\left\{x \in \mathbb{R}_{+}^{n}:|x|=1\right\}$ is a compact $(n-1)$-cell. We shall prove that the radial projection $R: \Delta \rightarrow K ; R(x)=x /|x|$; is a bijection and consequently, a homeomorphism onto K since R is continuous and Δ is compact.

For each nonempty subset J of $\{1, \cdots, n\}$, let us define $\mathbb{R}_{+}^{J}=\left\{x \in \mathbb{R}_{+}^{n}\right.$: $\left.x_{i}=0 \forall i \notin J\right\}$ and note that $\mathbb{R}_{+}^{J}=\mathbb{R}_{+} e_{j}$ if $J=\{j\}$ is a singular set. In particular, the restriction $R_{J}: \mathbb{R}_{+}^{j} \cap \Delta \rightarrow K$ is injective if J is singular.

We shall prove that R is injective. By induction, we can suppose that R_{J} is injective for all proper subsets of $\{1, \cdots, n\}$. On the other hand, \mathbb{R}_{+}^{J} is invariant by π and so it suffices to show that the relations $x, y \in \Delta ; x, y>$ $0 ; R(x)=R(y)$ implies $x=y$.

To do this suppose $x \neq y$ and define $w=R(x)$. Then $w>0$ and $x-y=\lambda w$ for some $\lambda \in \mathbb{R}$. Without loss of generality, we can assume that $\lambda>0$ and so $x>y$. Since $N:=\left\{p \in \mathbb{R}_{+}^{n}: 2 p>x+y\right\}$ is a neighborhood of x, there exists $p \in D_{0}$ such that $p \in N$. On the other hand, $y<p$ and by Proposition 2.2, $S(t, y) \leq S(t, p)$ for all $t \leq 0$. From this, $S(t, y) \rightarrow 0$ as $t \rightarrow-\infty$ and hence, $y \in D_{0}$. This contradiction proves that R is injective.

As above, we can suppose that $R(\Delta) \supset K \cap \mathbb{R}_{+}^{J}$ for all proper subsets of $\{1, \cdots, n\}$. Thus it suffices to show that $R(\Delta)$ contains all positive vectors
in K. To this end, let us fix $w>0$ in K and note that $a w \in D_{0}$ for some $a>0$, since D_{0} is an open subset of \mathbb{R}_{+}^{n} containing the origin. Now, let $\lambda:=\sup \left\{a>0: a w \in D_{0}\right\}$, it is clear that $\lambda w \in \Delta$ and $R(\lambda w)=w$.

3 The Proof of Theorem 1.1

Let Δ be the 2 -cell given by Theorem 2.1. Then $\pi: \Delta \rightarrow \Delta$ is an orientation preserving homeomorphism onto Δ, since $a_{i} e_{i} \in \Delta ; 1 \leq i \leq 3$. See proposition 3.2 of [7]. As above, π denotes the Poincaré map of (1.2).
. Assume by contradiction that π has no positive fixed points. Since (1.2) is τ-cyclic, then $\operatorname{Fix}(\pi) \cap \Delta=\left\{a_{1} e_{1}, a_{2} e_{2}, a_{3} e_{3}\right\}$. Now, let us quote the following result in [2] (theorem 2.1):

Theorem. Let $D \subset \mathbb{R}^{2}$ be a closed disk and let $h: D \rightarrow D$ be an orientation preserving homeomorphism such that $F i x(h) \subset \partial D$. Then, the ω-limit set of any orbit of h is a connected subset of $F i x(h)$.

Let us fix a positive solution $u=\left(u_{1}, u_{2}, u_{3}\right)$ of (1.2), with $u(0) \in \Delta$. By the above theorem, there exists $i \in \mathbb{Z}$ such that

$$
\begin{equation*}
u(t)-v_{i-1}(t) e_{i-1} \rightarrow 0 \text { ast } \rightarrow+\infty \tag{3.1}
\end{equation*}
$$

Integrating relation

$$
\frac{u_{i}^{\prime}}{u_{i}}=F_{i}(t, u(t))
$$

over $[n T, n T+T] ; n \in \mathbb{N}$; and letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\ln \frac{u_{i}(T+n T)}{u_{i}(n T)} & =\int_{n T}^{n T+T} F_{i}(t, u(t)) d t= \\
\int_{0}^{T} F_{i}(t, u(t+n T)) d t & \rightarrow \int_{0}^{T} F_{i}\left(t, v_{i-1}(t) e_{i-1}\right) d t>0
\end{aligned}
$$

From this, $\left\{u_{i}(n T)\right\}$ is an eventually strictly increasing sequence, which contradicts 3.1 , and the proof of our first assertion is complete.

4 Planar Systems

In this section we prove some auxiliary results. We begin with a maybe well known result. All systems considered in this section are assumed to satisfy the hypotheses in sections 1 and 2 . We say that x is carried to extinction by y in system (4.1) below

$$
\begin{equation*}
x^{\prime}=x F(t, x, y) ; y^{\prime}=y G(t, x, y) ;(x, y) \in \mathbb{R}_{+}^{2} \tag{4.1}
\end{equation*}
$$

if $\lim _{t \rightarrow+\infty} u(t)=0$ for any positive solution (u, v) of the system.
Proposition 4.1 Let us consider the system

$$
\begin{equation*}
x^{\prime}=x F_{0}(t, x, y) ; y^{\prime}=y G_{0}(t, x, y) \tag{4.2}
\end{equation*}
$$

and suppose that $F \geq F_{0}$ and $G \leq G_{0}$. If x is carried to extinction by y in (4.1) then the same holds for system (4.2).

Proof. Let $\left(u_{0}, v_{0}\right)$ be a positive solution of (4.2) and fix a positive solution (u, v) of (4.1) such that $u(0)>u_{0}(0)$ and $v(0)<v_{0}(0)$. It suffices to show that

$$
\begin{equation*}
u(t)>u_{0}(t) ; t>0 . \tag{4.3}
\end{equation*}
$$

Assume on the contrary that there exists $t_{0}>0$ such that

$$
\begin{equation*}
u(t)>u_{0}(t) \text { for } t \in\left(0, t_{0}\right) \text { and } u\left(t_{0}\right)=u_{0}\left(t_{0}\right) \tag{4.4}
\end{equation*}
$$

Since $G_{0}(t, x, y)$ is decreasing with respect to x then,

$$
v^{\prime}(t) \leq v(t) G_{0}(t, u(t), v(t)) \leq v(t) G_{0}\left(t, u_{0}(t), v(t)\right) ; 0 \leq t \leq t_{0}
$$

and hence, the restriction of v to $\left[0, t_{0}\right]$ is a subsolution of the equation

$$
z^{\prime}=z G_{0}\left(t, u_{0}(t), z\right)
$$

On the other hand, v_{0} is a solution of this equation and so, $v \leq v_{0}$ in $\left[0, t_{0}\right]$. From this, in this interval we have,

$$
u^{\prime}(t) \geq u(t) F_{0}(t, u(t), v(t)) \geq u(t) F_{0}\left(t, u(t), v_{0}(t)\right)
$$

If $u^{\prime}(s)>u(s) F_{0}\left(s, u(s), v_{0}(s)\right)$ for some $s \in\left(0, t_{0}\right)$ then, by Lemma A1 in the Appendix, $u>u_{0}$ on $\left[s, t_{0}\right]$, which contradicts (4.4) and proves that

$$
u^{\prime}(t)=u(t) F_{0}\left(t, u(t), v_{0}(t)\right) \forall t \in\left[0, t_{0}\right] .
$$

Thus, u, u_{0} are solutions of the equation $z^{\prime}=z F_{0}\left(t, z, v_{0}(t)\right)$ in the interval [$0, t_{0}$] and by uniqueness $u \equiv u_{0}$ in this interval, since $u\left(t_{0}\right)=u_{0}\left(t_{0}\right)$. Hence, $u(0)=u_{0}(0)$ and this contradiction ends the proof.
Proposition 4.2 Suppose that (4.1) satisfies the assumptions in section 2 and let ξ be the minimal positive T-periodic solution of

$$
x^{\prime}=x F(t, x, 0)
$$

If x is carried to extinction by y in (4.1) then

$$
\begin{equation*}
\int_{0}^{T} G(t, \xi(t), 0) d t \geq 0 \tag{4.5}
\end{equation*}
$$

Proof. By the change of variables $(X, Y)=(x / \xi, y)$, we can suppose that $\xi \equiv 1$. Assume now that (4.5) is false; that is, suppose

$$
\int_{0}^{T} G(t, 1,0) d t<0
$$

then we can write $G(t, 1,0)=-\mu+A^{\prime}(t) / A(t)$ for some positive T-periodic function A. ($-\mu$ is the average of $G(., 1,0)$). From the change of variables $(x, y) \mapsto(x, y / A)$, we can suppose that $G(t, 1,0)<0$ for all $t \in \mathbb{R}$. Thus, . there exists $1>\epsilon>0$ such that

$$
\begin{equation*}
G(t, x, y)<0 \text { if } t \in \mathbb{R} ;|x-1| \leq \epsilon ; 0 \leq y \leq \epsilon . \tag{4.6}
\end{equation*}
$$

Let Δ be the compact 1 -cell given by Theorem 2.1. As it was pointed in [6], it follows from Proposition 2.2 that Δ is a decreasing curve. That is, if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \Delta$ and $y_{1} \leq y_{2}$ then, $x_{1} \geq x_{2}$.

Given $p \in \mathbb{R}_{+}^{2}$, let $S(t, p)=(u(t, p), v(t, p))$ be the solution of (4.1) determined by the initial condition $S(0, p)=p$. Since $S(t, 1,0)=(1,0) \in$ $(1-\epsilon, 1+\epsilon) \times[0, \epsilon)$ for all $t \in \mathbb{R}$, there exists $p \in \Delta$ such that $S(t, p) \in$ $(1-\epsilon, 1+\epsilon) \times[0, \epsilon)$ for all $t \in[0, T]$. From this and (4.6), $v^{\prime}(t, p)<0$ in [$0, T]$ and hence, $v(T, p)<v(0, p)$. Therefore, $u(T, p) \geq u(0, p)$ since Δ is decreasing.

Using H_{1}) we conclude that $u(t+T, p) \geq u(t, p)$ and $v(t+T, p) \leq v(t, p)$ for all $t \geq 0$. In particular, $\{u(n T, p)\}$ is an increasing sequence of positive numbers, which is a contradiction since $u(t, p) \rightarrow 0$ as $t \rightarrow+\infty$. This contradiction ends the proof.

Remark. Assume the hypotheses of Proposition 4.2 hold and let η be the minimal positive T-periodic solution of the logistic equation $z^{\prime}=z F(t, 0, z)$. Using the arguments in that proposition, we can prove that

$$
\int_{0}^{T} F(t, 0, \eta(t)) d t \leq 0
$$

From this, we obtain the following result.
Corollary 4.3 If (1.2) is τ-cyclic then

$$
\int_{0}^{T} F_{i+1}\left(t, v_{i}(t) e_{i}\right) d t \geq 0 \geq \int_{0}^{T} F_{i}\left(t, v_{i+1}(t) e_{i+1}\right) d t ; \quad i \in \mathbb{Z}
$$

The inequalities are reversed if (1.2) is σ-cyclic.

Proof of Theorem 1.2. If $x_{i-1}=0$ we have, $F_{i}^{\epsilon}(t, x)=F_{i}(t, x)$ and $F_{i+1}^{\epsilon}(t, x)=F_{i+1}(t, x)+\epsilon\left[F_{i+1}(t, 0)-F_{i+1}\left(t, x_{i} e_{i}\right)\right] \geq F_{i+1}(t, x)$; and by Proposition 4.1, (1.5) is τ-cyclic. On the other hand,

$$
F_{i+1}^{\epsilon}\left(t, v_{i}(t) e_{i}\right)=(1-\epsilon) F_{i+1}\left(t, v_{i}(t) e_{i}\right)+\epsilon F_{i+1}(t, 0),
$$

and the proof follows from H_{3}), Corollary 4.3 and Theorem 1.1.
Examples.

1. We first show an example that satisfies the assumptions of Theorem • 1.1, but does not satisfies the assumptions in [1]:

$$
x^{\prime}=x\left[(1-x)(x-2)^{2}-y-16 z\right] ; \quad y^{\prime}=y[1-x-2 y-z] ; \quad z^{\prime}=z[3-x-7 y-4 z] .
$$

2. We shall sketch the construction of a τ-cyclic autonomous system satisfying $\left.H_{1}\right)-H_{3}$), which has no positive equilibria. To this end, let us first show that $F(x, y):=\left(1-x^{2}-y^{2}-2 y(1-y), 2 x(1-y)\right)$ is a C^{∞}-vector field in the unitary disk $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$, such that the limit sets of any trajectory are equal to $\{(0,1)\}$. To this end, note first that $(0,1)$ is the unique equilibrium of F and let S_{h} be the sphere of center $(0,(1+h) / 2)$ and radius $(1-h) / 2$, for $h \in[-1,1]$. Then, D is the union of S_{h} and $S_{h} \cap S_{k}=\{(0,1)\}$ if $h \neq k$. On the other hand, the restriction of F to S_{h} is a vector field on S_{h}, and our assertion about the trajectories of F follows easily. From this, $\left(1-x^{2}\right) F(x, y)$ is a smooth vector field on D, which only has three equilibria and these equilibria belongs the boundary of D. Moreover, F has a cycle in ∂D. Using the above ideas, we can construct a continuously differentiable vector field G in the standard twosimplex $\Delta:=\left\{(x, y, z) \in \mathbb{R}_{+}^{3}: x+y+z=1\right\}$ such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the set of all equilibria of G and G has a cycle in the relative boundary of Δ. Our example follows now from the Smale's construction [8].

A Appendix

In this section we prove a partially well known result about extension of inequalities in O.D.E.'s. Let us consider the scalar system

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{1.1}
\end{equation*}
$$

where $f: U \rightarrow \mathbb{R}$ is a continuous function, defined on an open subset of \mathbb{R}^{2}, which is locally Lipschitz continuous in x.

Lemma A. 1 Let $u, v:[a, b] \rightarrow \mathbb{R}$ be continuously differentiable functions such that u (resp. v) is a subsolution (resp. supersolution) of (1.1). If $u(a) \leq v(b)$, then $u \leq v$. Moreover, if

$$
\begin{equation*}
v^{\prime}(s)-u^{\prime}(s)>f(s, v(s))-f(s, u(s)) \text { for some } s \in(a, b) \tag{1.2}
\end{equation*}
$$

then $u<v$ in $[s, b]$.
Proof. The first assertion is well known [4]; Th. 1.1.1; but we include the proof of it by completeness. Since f is locally Lipschitz continuous and $[a, b]{ }^{\text {' }}$ is compact, there exists $M>0$ such that

$$
\begin{equation*}
|f(t, v(t))-f(t, u(t))| \leq M|v(t)-u(t)| ; t \in[a, b] . \tag{1.3}
\end{equation*}
$$

Now, let us write $w=v-u$ and note that by (1.3),

$$
\begin{equation*}
w^{\prime}+M|w| \geq 0 \text { on }[a, b] \tag{1.4}
\end{equation*}
$$

Assume now that $w\left(t_{0}\right)<0$ for some $t_{0} \in(a, b]$. Since $w(a) \geq 0$, there exists $t_{1} \in\left[a, t_{0}\right)$ such that $w<0$ in $\left(t_{1}, t_{0}\right)$ and $w\left(t_{1}\right)=0$. From this and (1.4), we have $w^{\prime}-M w \geq 0$ in $\left[t_{1}, t_{0}\right]$ and hence $e^{-M t} w(t)$ is increasing in this interval. Consequently,

$$
0=\exp \left(-M t_{1}\right) w\left(t_{1}\right) \leq \exp \left(-M t_{0}\right) w\left(t_{0}\right)<0
$$

and this contradiction proves that $w \geq 0$. Assume now that (1.2) holds. Then $w^{\prime}(s)+M|w(s)|>0$. If $w(s)=0$ then, $w^{\prime}(s)>0$ and so $w<0$ in $(s-\epsilon, s)$ for some $\epsilon>0$. This contradiction proves that $w(s)>0$. Suppose that there exists $t_{0} \in(s, b]$ such that $w>0$ on $\left[s, t_{0}\right)$ and $w\left(t_{0}\right)=0$. By (1.4), $w^{\prime}+M w \geq 0$ on $\left[s, t_{0}\right]$ and by the above argument, $0=\exp \left(M t_{0}\right) w\left(t_{0}\right) \geq$ $\exp (M s) w(s)>0$. This contradiction ends the proof.

References

[1] Battauz A. and Zanolin F., Coexistence States for Periodic Competitive Kolmogorov Systems . J. Math. Anal. and Appl. 219, (1998), 179-199.
[2] Campos J. Ortega R. and Tineo A., Homeomorphisms od the Disk with Trivial Dynamics and Extinction of Competitive Systems. J.D.E., Vol. $138, N^{0} 1$ (1997), 157-170.
[3] Hirsch M., Systems of Differential Equations which are competitive or Cooperative. III: Competing species. Nonlinearity, (1988), 1, 51-71.
[4] Ladde G. S., Laksmikantham V. Vatsala A. S., Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman Advanced Publishing Program. Boston-London-Melbourne (1985).
[5] May R. and Leonard W., Nonlinear Aspects of Competition Between Three Species. SIAM J. Appl. Math. Vol. 29, No. 2, (1975), 243-253.
[6] P. de Mottoni and A. Schiaffino, Competition Systems which Periodic coefficients: A Geometric Approach. J. Math. Biol., 11 (1981), 319-335. .
[7] Ortega R. and Tineo A., An Exclusion Principle for Periodic Competitive Systems in Three Dimensions. Nonlinear Analysis T.M.A., 193 (1997), 975-978.
[8] S. Smale, On the differential equations of species in competition. J. Math. Biol., 3 (1976),5-7.
[9] Tineo A., Iterative Schemes for some Population Models. Nonlinear World, 3, (1996), 695-708.

