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Abstract 

In this paper we consider the class C ( T )  of all dissipative 3-dimensional 
T-periodic Kolmogorov competitive and cyclic systems such that the 
trivial solution is a source, and we prove that "almost" every such sys- 
tem possesses a coexistence state. More precisely, we characterize an 
open and dense subset U of C ( T ) ;  with respect to the topology of the 
uniform convergence in compact sets; such that each member of U has 
a coexistence state. 

1 Introduction 

In this paper we prove that almost every dissipative, three dimensional com- 
petitive system possesses a coexistence state if it has a cyclic connection on 
the boundary of R3. The more celebrated example of a such system is due 
to  May and Leonard [5] :  

This system has been extensively studied by several authors. For instance 
see [I.] and the references therein. 

Let S; be the two-dimensional system obtained from (1.1) by letting 
2;-1 = 0. (Here and henceforth we shall use the mod 3 notation). We 
remark that if 0 < p < 1 < a (resp. 0 < a < 1 < p) then, in system S;; 
the species xi (resp. xi+l) is carried to  extinction by x;+l (resp. xi), for all 
i E Z. In this case, we say that (1.1) is T-cyclic (resp. a-cyclic). Here, we are 
denoting by T, a : Z + %the  permutationsgiven by ~ ( i )  = i f l ;  a ( i )  = i-1. 
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More generally, let us consider the system 

where Fll F2, F3 : lR x lR: + R are continuous functions which are T- 
periodic in t and locally Lipschitz contiiluous in z. We shall assume that  
the following hypotheses hold: 

H1) System (1.2) is competitive. That  is; F i ( t ,x )  is decreasing with 
respect to  x j  for all i # j .  

Hz) System (1.2) is dissipative. 
. H3) J: Fi( t l  0)dt > 0 for all i. This condition implies that  the trivial 

solution is a source. 
We say that  (1.2) is r-cyclic (resp. a-cyclic) if the species xi (resp. x i+l)  

is carried to  extinction by x;+1 (resp. x,) in the subsystem obtained from 
(1.2) by letting xi-1 = 0; i E Z. A more precise definition will be given in 
section 3. 

Remark. If H I )  holds then Hz)  is equivalent to  say that  the system 

is dissipative for 1 < i < 3. Here and henceforth, ( e l l  ez, e3) denotes the 
canonical vector basis of lR3. Thus, if H I )  - H3) hold then (1.3) has a 
minimal positive T-periodic solution that  we shall denote by v;. 

In section 3 we shall prove that  if (1.2) is r-cyclic then, 

and the inequalities above are reversed if (1.2) is a-cyclic. We shall prove 
the following results: 

Theorem 1.1 Assume H I )  - H3) hold. If (1.2) is r-cyclic and 

then the system has a coexistence state. 

Theorem 1.2 Assume that H l )  - H3) hold and that (1 .2)  is r-cyclic. Then 
the system 

XI = x;F;S(tl x);  (1.5) 

satisfies the assumption in the above theorem, where 



Note that the minimal positive T-periodic solution of the logistic equation 
t' = tF;'(t, te;) is also v;, since F;'(t, te;) I;;(t, te;). 

Remark. Let C,(T) be the class of all systems (1.2) which are T-cyclic 
and satisfies H I )  - H3) and 

H4) F, (t, te;) is decreasing in t > 0 for all t E IR and F; (s;, t) is strictly 
decreasing in t, for some si = s;(F) E IR. 

From the results in [9] it follows easily that the subclass U, of C,(T), 
determined by equation (1.4), is an open subset of C,(T) in  the topology of 
the uniform convergence in compact sets. Moreover, by Theorem 1.2, this ' 
set is also dense. We have parallel results for a-cyclic systems. 

. This paper was motivated by an article of [I.] in which it is proved that a 
large class of cyclic systems have coexistence states, and is divided in three 
sections. In section 1, we use some ideas in Hirsch [3] to show that the 
Poincare map of (1.2) has a compact invariant %cell. In section 3, we use 
a result by Campos, Ortega and Tineo [2] and a contradiction argument to  
show Theorem 1.1. Finally, in section 2 we find necessary conditions under 
which system (1.2) is T-cyclic and we prove Theorem 1.2. 

2 Existence of a Compact Invariant 2-cell 

In this section we consider the n-dimensional system 

xi = x;F;(t, x);  z = ( x l , . . . ,  2,); 1 < i < n; (2.1) 

where Fl, Fn : IR x IR> IR are continuous functions which are T- 
periodic in t and locally Lipschitz continuous in z. We also assume that 
H I )  - H3) hold. 

Let r = ( r l ,  . - . , rn) : IR; + IRn be the Poincare map of (2.1). By 
H I )  - H3), there exists a; > 0 such that r(a;e;) = a;e; and r ; ( te ; )  > z for 
all t E (0, a;). In fact, a, = v,(O), where v; is the minimal positive T-periodic 
solution of (1.3). Analogously, there exists b; > a; such that r(b;ei) = b;e; 
and ri(zei) < t for all t > b;. 

Given p E IR;, we denote by S( t ,  p) the solution of (2.1) determined 
by the initial condition S(0,p) = p. We also define D as the subset of IR; 
consisting of all points p such that S ( t , p )  is defined on IR and Do as the 
subset of D consisting of all points p such that 

That is, Do is the domain of repulsion of p = 0. Note that by H3), DO is 
an open subset of IR"+ Using some ideas i n  [3], we shall prove the following 
result. 
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Theorem 2.1 The boundary A := i3Do of Do relative to Rn+ is a compact 
(n - 1)-cell invariant by T ,  such that aie; E A; 1 < i < n. 

The proof requires two short results. We begin with the followi~ig well known 
fact, which we estate here for reference purposes. 

Proposition 2.2 If u, v are non negative solutions of (2.1) and u(0) < v(O), 
then u(t) < v(t) for all t E (-co, 0)  n domain(u) n donzain(v). 

Proposition 2.3 If u = ( u l , .  . . ,  u,) is a non negative solution of (2 .1)  
defined on R then u;(O) < b;. Moreover, if u(0) E Do, then u;(O) < a;. In 
particular, D is conzpact and Do C [0, a , )  x . x [0, a,). 

Proof. Let us fix 1 < i < n and let w; be the solution of (1.3) determined 
by the initial condition wi(0) = ui(0). By H I ) ,  u; is a subsolution of (1.3) 
and hence, w;(t) < u;(t) if t E (-co,O) n domain(w;). Consequently, w; is 
defined on IR and so u;(O) < b;. Moreover, if u(0) E Do, then w;(t) -+ 0 as 
t -+ -co and the proof follows easily. 

Proof of Theorem 2.1. Since D is compact, we conclude that A is a 
compact subset of D. Note also that 0 8' A. Moreover, A n  IR+ei = {c l ie ; }  

since Do f l  IR+e; = [O, ai)ei. In particular, aie; E A. 
Given x = (x l , . . . ,x , )  E IR;, we define 1x1 = xl + a * - +  x, and we 

note that I( := {x E Rn+ : 1x1 = 1) is a compact (n - 1)-cell. We shall 
prove that the radial projection R : A -+ I<; R(x) = x/lxl; is a bijection 
and consequently, a homeomorphism onto I< since R is continuous and A is 
compact. 

For each nonempty subset J of (1 , .  . . , n),  let us define R: = {x E IR"+ 
xi = 0 V i 8' J) and note that IRJ IR+ej if J = {j) is a singular set. In J = particular, the restriction R j  : IR+ n A -+ I< is injective if J is singular. 

We shall prove that R is injective. By induction, we can suppose that 
R j  is injective for all proper subsets of (1, . , n). On the other hand, R: 
is invariant by n and so it suffices to show that the relations x, y E A; x, y > 
0; R(x) = R(y) implies x = y. 

To do this suppose x # y and define w = R(x).  Then w > 0 and 
x - y = Xw for some X E R. Without loss of generality, we can assume that 
X > 0 and so x > y. Since N := {p E IRn+ : 2p > x + y) is a neighborhood 
of x, there exists p E Do such that p E N. On the other hand, y < p and 
by Proposition 2.2, S( t ,y )  < S( t ,p )  for all t 5 0. From this, S ( t ,  y) -+ 0 as 
t -+ -m and hence, y E Do. This contradiction proves that R is injective. 

As above, we can suppose that R(A) 3 I< n IR: for all proper subsets of 
(1, . . . , n). Thus it suffices to show that R(A)  contains all positive vectors 
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in I<. To this end, let us fix w > 0 in I< and note that aw E Do for solile 
a > 0, since Do is an open subset of R b o n t a i n i n g  the origin. Now, let 
X := sup{a > 0 : aw E Do}, it is clear that Xw E A and R(Xw) = w. 

3 The Proof of Theorem 1.1 

Let A be ttie 2-cell given by Theorem 2.1. Then .rr : A + A is an orien- 
tation preserving homeomorphism onto A ,  since aie; E A; 1 5 i 5 3. See , 

proposition 3.2 of [7]. As above, .rr denotes the Poincark map of (1.2). 
. Assume by contradiction that .rr has no positive fixed points. Since (1.2) 

is T-cyclic, then Fix(.rr) n A = {alel ,  aze2, age3}. Now, let us quote the 
following result in [2] (theorem 2.1): 

Theorem. Let D C lR2 be a closed disk and let h : D + D be an 
orientation preserving homeomorphism such that Fix(h) C dD. Then, the 
w-limit set of any orbit of h is a connected subset of Fix(h) .  

Let us fix a positive solution 11 = (ul ,  U Z ,  u3) of (1.2), with t ~ ( 0 )  E A.  By 
the above theorem, there exists i E Z such that 

~ ( t )  - ~ ; - l ( t ) e ; - ~  + 0 ast -+ +oo. (3.1) 

Integrating relation 

over [nT, nT + TI; n E IN; and letting n + oo, we obtain 

From this, {u;(nT)} is an eventually strictly increasing sequence, which 
contradicts 3.1, and the proof of our first assertion is complete. 

4 Planar Systems 

In this section we prove some auxiliary results. We begin with a maybe well 
known result. All systems considered in this section are assumed to satisfy 
the hypotheses in sections 1 and 2. We say that x is carried to extinction 
by y in system (4.1) below 
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if liml,+, u(t)  = 0 for any positive solution (u, v) of the system. 

Proposition 4.1 Let us consider the system 

X' = xFo(t, 2, y); y' = yGo(t, 2, Y);  (4.2) 

and suppose that F > Fo and G 5 Go. If x is carried to extinction by y in 
(4.1) then the same holds for system (4 .2 ) .  

Proof. Let (uo, vO) be a positive solution of (4.2) and fix a positive solution 
(u ,  v) of (4.1) such that  u(0) > uO(0) and v(0) < vo(0). It suffices to show ' 
that 

u(t)  > uo(t); t > 0. (4.3) 

Assume on the contrary that  there exists to > 0 such that  

Since Go(t, x ,  y) is decreasing with respect to x then, 

and hence, the restriction of v to [O,to] is a subsolution of the equation 

On the other hand, vo is a solution of this equation and so, v 5 vo in [O,to]. 
From this, in this interval we have, 

If u'(s) > u ( ~ ) F ~ ( s , u ( ~ ) , v o ( s ) )  for some s E (O,to) then, by Lemma A1 in 
the Appendix, u > uo on [s, to], which contradicts (4.4) and proves that  

~ ' ( t )  = u(t)Fo(t, ~ ( t ) ,  uo(t)) vt E [O, to]. 

Thus, u, u0 are solutions of the equation z' = zFo(t, z ,  vo(t)) in the interval 
[0, to] and by uniqueness u uo in this interval, since u(tO) = uO(tO). Hence, 
u(0) = uo(0) and this contradiction ends the proof. 

Proposition 4.2 Suppose that (4.1) satisfies the assumptions in section 2 
and let 5 be the minimal positive T-periodic solution of 

If x is carried to extinction by y in (4.1) then 
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Proof. By the change of variables (.Y, Y )  = ( a / < ,  Y ) ,  we can suppose that 

< 1. Assume now that (4.5) is false; that is, suppose 

then we can write G( t ,  1,O) = -p + A1(t)/A(t) for some positive T-periodic 
function A. (-p is the average of G(., 1,O)). From the change of variables 
(x, y) I+ (x, y/A), we can suppose that G(t ,  1,O) < 0 for all t E IR. Thus, . 
there exists 1 > c > 0 such that 

G( t ,x ,y)  < O i f  t E IR; 12- 11 5 c;  0 5 y 5 c. (4.6) 

Let A be the compact 1-cell given by Theorem 2.1. As it was pointed in 
[6], it follows from Proposition 2.2 that A is a decreasing curve. That is, if 
(21, yi) ,  ( ~ 2 ,  Y Z )  E A and yi 5 YZ then, xi > xz. 

Given p E IR:, let S( t ,p )  = (u( t ,p) ,v( t ,p))  be the solution of (4.1.) 
determined by the initial condition S(0,p)  = p. Since S ( t ,  1,O) = (1,O) E 
(1 - 6,  1 + 6)  x [O, c )  for all t E IR, there exists p E A such that S ( t ,  p) E 
(1 - c ,  1 + 6) x [0,c) for all t E [O,T]. From this and (4.6), v'(t,p) < 0 in 
[0, TI and hence, v(T, p) < v(0, p). Therefore, u(T, p) > u(0,p) since A is 
decreasing. 

Using H1) we conclude that u(t + T, p) > u(t,  p) and v(t + T,p)  5 v(t, p) 
for all t 2 0. In particular, {u(nT,p)} is an increasing sequence of positive 
numbers, which is a contradiction since u(t, p) + 0 as t + +oo. This 
contradiction ends the proof. 

Remark. Assume the hypotheses of Proposition 4.2 hold and let 7 be the 
minimal positive T-periodic solution of the logistic equation a' = aF( t ,  0 , ~ ) .  
Using the arguments in that proposition, we can prove that 

From this, we obtain the following result. 

Corollary 4.3 If (1.2) is r-cyclic then 

l o  Pi+, (t ,  v,(t)e,)dt > 0 2 Fi(t, ~ ~ + ~ ( t ) e ; + i ) d t ;  .i E %. l o  
The inequalities are reversed if (1.2) is a-cyclic. 
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Proof of Theorem 1.2. If x,-1 = 0 we have, F:(t, x) = F;(t, x) and 

F&1 ( t , ~ )  = Fi+l (t ,  X )  + ~[Fi+l  (t, 0) - Fi+l (t ,  xiei)] 2 Fi+l (t ,  x ) ;  and by 
Proposition 4.1, (1.5) is r-cyclic. On the other hand, 

F;+1 (t, vi(t)ei) = (1 - ~)Fi+l (t ,  vi(t)ei) + €Fi+l ( t ,  0) ,  

and the proof follows from H3), Corollary 4.3 and Theorem 1.1. 
Examples. 
1. We first show an example that satisfies the assumptions of Theorem 

1.1, but does not satisfies the assumptions in [I]: 

2. We shall sketch the construction of a r-cyclic autonomous system satis- 
fying H I )  - H3), which has no positive equilibria. To this end, let us first 
show that F (x ,  y) := (1 - x2 - y2 - 2y(l - y),2x(1 - y)) is a Cm-vector 
field in the unitary disk D = {(x, y) E IR2 : x2 + y2 5 11, such that the 
limit sets of any trajectory are equal to { ( O , l ) ) .  To this end, note first 
that ( 0 , l )  is the unique equilibrium of F and let Sh be the sphere of center 
(0, (1 + h)/2) and radius (1 - h)/2, for h E [-I, 11. Then, D is the union 
of Sh and Sh n Sk = ( (0 , l ) )  if h # k. On the other hand, the restriction 
of F to Sh is a vector field on Sh, and our assertion about the trajectories 
of F follows easily. From this, (1  - x 2 ) ~ ( x ,  y) is a smooth vector field on 
D, which only has three equilibria and these equilibria belongs the bound- 
ary of D. Moreover, F has a cycle in dD.  Using the above ideas, we can 
construct a continuously differentiable vector field G in the standard two- 
simplex A := {(x, y ,  2) E IR3$ : x + y + : = 1) such that {e l ,  e2, e3) is the 
set of all equilibria of G and G has a cycle in the relative boundary of A. 
Our example follows now from the Smale's construction [S]. 

A Appendix 

In this section we prove a partially well known result about extension of 
inequalities in O.D.E.'s. Let us consider the scalar system 

where f : U + IR is a continuous function, defined on an open subset of IR2, 
which is locally Lipschitz continuous in x. 



Lemma A . l  Let u ,  v : [a,  b] + R be continuously differentiable functions 
such that u (resp. v )  is a subsolution (resp. supersolution) of (1.1). If 
u ( a )  5 v ( b ) ,  then u 5 v .  Moreover, if 

v ' ( s )  - u'(s) > f ( s ,  v ( s ) )  - f ( s ,  u ( s ) )  for* some s E ( a ,  b ) ,  (1.2)  

then u < v in [ s ,  b] 

Proof. The first assertion is well known [4]; Th. 1.1.1; but we include the 
proof of it by completeness. Since f is locally Lipschitz continuous and [a ,  b] ' 
is compact, there exists M > 0 such that 

Now, let us write UI = v - u and note that by (1.3) ,  

Assume now that w ( t o )  < 0 for some to E ( a ,  61. Since w ( a )  2 0 ,  there exists 
t l  E [a , to )  such that w < 0 in ( t l , t o )  and w ( t l )  = 0. From this and (1 .4) ,  
we have w' - M w  > 0 in [ t l , t o ]  and hence e -Mtw( t )  is increasing in this 
interval. Consequently, 

and this contradiction proves that w > 0. Assume now that (1.2) holds. 
Then w l ( s )  + M ( w ( s ) l  > 0. If w ( s )  = 0 then, w'(s)  > 0 and so w < 0 in 
( s  - E ,  S )  for some t- > 0. This contradiction proves that w ( s )  > 0. Suppose 
that there exists to E ( s ,  b] such that w > 0 on [ s ,  to) and w (to)  = 0. By (1 .4) ,  
w' + M w  > 0 on [ s ,  to] and by the above argument, 0 = e x p ( M t o ) w ( t o )  > 
e x p ( M s ) w ( s )  > 0. This contradiction ends the proof. 
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