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Abstract

Let T be a locally compact Hausdorfl space and let Co(T) =
{f: T - €, fis continuous and vanishes at infinity} be provided with
the supremum norm. Let X be a quasicomplete locally convex Hausdorff
space. Suppose .u : Co(T) — X is a continuous linear operator. Using the
Baire and o-Borel characterizations of weakly compact sets in M(T) as
given in [16] and combining the integration technique of [1], are obtained
35 characterizations for the operator u to be weakly compact, several of
which are new. The independent results on the regularity and on the
regular Borel extendability of o-additive X -valued Baire measures are de-
duced as an immediate consequence of these characterizations. Also are
included some other applications.

1 Introduction

For a locally compact Hausdorff space T, let C,(T") be the Banach space of
all continuous complex functions vanishing at infinity in T, endowed with the
supremum norm. Then its dual M(T) is the Banach space of all bounded
complex Radon measures g on T, with ||u|| = var(u,T). Let X be a quasi-
complete locally convex Hausdorff space (briefly,a quasicomplete lcHs) and let
u : Co{(T) = X be a continuous linear map. Grothendieck gave in [8] some
necessary and sufficient conditions for u to be weakly compact.

He studied in [8] some topological and range properties of the adjoint u* and
the biadjoint u** of the continuous linear operator u : Co(T) — X, characterized
weakly compact subsets of M (T') and proved some deep results such as Theorems
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2 Characterizations of Weakly Compact Operators on Co(T)

1 and 3 and Proposition 11 of [8] to obtain the characterization theorem ({8,
Theorem 6]) for weakly compact operators u on C,(T).

Most of the results obtained in Sections 1.1,1.2, 2.1 and 3.1 of [8] play a key
role in the proof of the said characerization theorem. Moreover, the major part
of the results proved in [8] are given only for the space C(K) with K compact
Hausdorff and is remarked that the results hold also for C,(T") with T locally
compact and Hausdorfl. Later, the results of Grothendieck [8] were proved in
detail for the locally compact case in Sections 4.21,4.22, 9.1-9.4 in Edwards [7].
(In this context see Remarks 3 and 4 below.)

Recently, in [16] we obtained several characterizations of weakly compact
sets in M(T) in terms of the Baire and o-Borel restrictions of the members of
the set in question. Using these characterizations and those of Theorem 2 of
[8] and combining the integration technique of Bartle-Dunford-Schwartz [1], we
obtain 35 characerizations for a continuous quasicomplete lcHs-valued operator
on C,(T) to be weakly compact and several of them are new. The advantage of
the present study is that as in [1] the strict Dunford-Pettis property of C,(T'))
is not needed and in fact, it is deduced from these characterization theorems.
Also the use of other deep results such as Theorem 3 and Proposition 11 of [8]
is dispensed with. Moreover, all the arguments are given directly for the locally
compact space case, without reducing to compact or compact metrizable case
as is done in [7,8].

Further, the isolated results on o-additive vector valued Baire measures as
in [4,5, 11] are deduced as consequences of the present study. Also are included
new proofs of Theorem 5 of [18] and of Theorem 5.3 (bounded Radon measure
case) of [20], avoiding the technique of reduction to metrizable compact case.

2 Preliminaries

In this section we fix notation and terminology and also give some definitions
and results from [7,8,9,16].

Let T be a locally compact Hausdorff space and let C,(T) be the Banach
space of all complex continuous functions vanishing at infinity in 7', endowed
with the supremum norm || - ||r. Let B(T) be the o-algebra of Borel sets in T,
which is the o-algebra generated by the class of all open sets in T. Then the dual
of C,o(T) is the Banach space M (T') of all bounded complex Radon measures u
on T, with ||u|| = var(p, T), where the variation of p in taken with respect to
B(T). We denote by C(T') (resp. C,(T)) the class of all compact subsets (resp.
compact Gs subsets) of T. B.(T) (resp. Bo(T)) is the o-ring generated by the
class C(T) (resp. by the class C,(T)) and B.(T) (resp. B,(T)) is the o-ring of
the the o-Borel (resp. the Baire) sets in T

We recall the following lemma from [16] before proceeding with some defini-
tions.
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Lemma 1. For u € M(T), let |p|(-) = var(p, (-)) in B(T). Then

|ull,(r)(-) = var(pls,(r), () and |p|ls(1)(-) = var(p|s, (1), ()

Notation 1. For p € M(T), let |x|(:) = var(p, () in B(T).

In the light of Lemma 1, the variations used in the following definition are
unambiguously defined.

Definition 1. Let S be a o-ring of sets in T such that C(T) C S or C,(T) C S.
A complex measure g on S is said to be S-regular if, given E € S and ¢ > 0,
there exists a compact set K € S and an open set U € S with K C E C U
such that |u(B)| < ¢ for every B € S with B C U\K. When § = B(T) (resp.
B.(T), B,(T)), we use the terminology Borel (resp. o-Borel, Baire) regularity
in place of S-regularity. Let A be a subset of M(T). We say that A is uni-
formly Baire inner regular (resp. Baire regular) in a set E € B,(T) if, given
€ > 0, there exists a compact K € B,(T) with K C E (resp. and an open
Baire set O in T with K C E C O) such that sup,¢ 4 |#|/(E\K) < € (resp. such
that sup,¢ 4 [#[(O\K) < €). If A is uniformly Baire inner regular (resp. Baire
regular) in each Baire set, then A is said to be uniformly Baire inner regular
(resp. Baire regular). Similarly, the uniform Borel (resp. o-Borel) regularity

and inner regularity of A and those of A in a Borel (resp. o-Borel) set E are
defined.

By Theorem 51.D of [9], a compact Baire set in T is a Gs.

It is well known that every complex Baire measure u, is Baire regular and
that it has a unique extension u to B(T) (resp. p. to B.(T)) such that u is a
Borel (resp. u. is a o-Borel) regular complex measure. Moreover, p|g (1) = pc-
(See, for example, Theroem 2.4 of [14].)

The following proposition which is a combination of Theorems 1 and 2 of
[16], plays a key role in Section 5.

Proposition 1. Let A be a bounded set in M(T). Then the following statements
are equivalent:

(i) A is relatively weakly compact.

(ii) For each disjoint sequence (U;) of open Baire sets (resp.(ii)’ open sets,
(i1)” o-Borel open sets) in T, lim; p(U;) = 0 uniformly in p € A.

(i) (a) A is uniformly Baire (resp. (a)’ Borel, (a)” o-Borel) inner regular
in each open Baire (resp. open, o-Borel open) set U in T
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(b) For each € > 0, there ezista a compact K € Bo(T) (resp. (b)”
K € C(T), such that

sup |ju)(T\K) < ¢.
my

(Note that (i) & (iii)(a)’.)
(iv) A is uniformly Baire (resp. (iv)’ Borel, (iv)” o-Borel) inner reqular.
(v) Alg,(r) (resp. (v)’ Als(T), (v)” Als.(1)) is uniformly o-additive.
(vi) A is uniformly Baire (resp. (vi)’Borel, (vi)” o-Borel) regular.

The following result is also used in Section 5.

Proposition 2. B,(T) is also the o-ring generated by the class of all relatively
compact open Baire sets. Each open Baire set U in T is a countable union of
compact Ggs in T'.

For a proof of the above proposition the reader can refer to § 14, Chapter 111 of

3].

A vector measure is an additive set function defined on a ring of sets with
values in a IcHs. In the sequel X denotes a lcHs with topology 7.

The strong topology B(X*, X) of X* is the locally convex topology induced
by the seminorms {pp : B bounded in X}, where pg(z*) = sup,¢p|z*(z}|.
X** denotes the dual of (X*, 8(X*, X)) and is endowed with the locally conver
topology 7. of uniform convergence in equicontinuous subsets of X*. Note that

(X‘vﬂ(X‘aX)) and (X“,Te) are IcHs.

It is well known that the canonical injection J : X — X** given by
< Jz,z* >=< z,z* > for all z € X and z* € X*, is linear. On identify-
ing X with JX C X**, one has 7.|JX =r.|X = 7.

Definition 2. A linear mapping u : Co(T}) = X is called a weakly compact
operator on Co(T) if {uf : ||f||r <1} is relatively weakly compact in X.

Let E and F be IcHs and let u : E — F be a continuous linear map. Then
the adjoint u* and the biadjoint u** of u are well defined linear maps with
u*: F* -5 E* and u** : E** 5 F**.

Proposition 3. Let E and F be IcHs and let u : E — F be a continuous

linear map. Then u* : (F*,0(F*,F)) — (E*,o(E*, E)) is continuous and
u** : (E**,1.) o (F**, 7.) is continuous.

N
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See Corollary to Proposition 1, §12, Chapter 3 of [10] and Proposition 8.7.2 of [7].

The following result (Corollary 9.3.2 of [7], which is essentially due to Lem-
mas 1 and 2 of [8]) is indispensable in the study of weakly compact operators
on C,(T) in Section 5.

Proposition 4. Let E and F be IcHs with F quasicomplete. Ifu: E = F is
linear and continuous,then u maps bounded subsets of E into relatively weakly
compact subsets of F if and only if u*(A) is relatively o(E*, E**)-compact for
each equicontinuous subset A of F*.

3 Integration of Bounded S-Measurable Scalar
Functions

In this section we define the integral of a bounded S-measurable scalar function
with respect to an X:-valued vector measure m defined on a g-ring S, where m
is either o-additive or bounded and X is a quasicomplete IcHs. To this end, we
introduce the following additional notation and terminology.

For each 7-continuous seminorm p on X, let p(z) = [|z||,, =z € X, and let
X, = (X, ]|-|lp) be the associated seminormed space. The completion of the quo-
tient normed space X/p~1(0) is denoted by X,. Let I, : X, = X/p~(0) C X,
be the canonical quotient map.

Let S be a o-ring of subsets of a non empty set £2. Given a vector measure
m: S — X, for each 7-continuous seminorm p on X let m, : S = X, be given
by mp(E) = II, o m(E) for E € S. Then m, is a Banach space valued vector
measure on S.We define the p-semivariation ||{m||, of m by

lIm|lp(E) = ||mp||(E) for E €S
and

lImllp(82) = [Im,|I(%2) = sup |Ims||(E)

where ||my|| is the semivariation of the vector measure m, : § & X,. When m
is o-additive, then m, is a Banach space valued o-additive vector measure and
hence, by a well known result on vector measures, ||m||,(£2) = ||m,]|(£2) < oo.

An X-valued vector measure m on a g-ring S of subsets of 2 is said to be
bounded if for each continuous seminorm p on X, [[m|[,(2) < oo.
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For an §-simple scalar function s = Z::l AiXE:, Mi#0, Ei €S, EinNE; =
B fori#j,4,5=1,2..,r and for an IcHs-valued bounded vector measure m

we define .
/ sdm =Y Am(E N E;)
E

=1

for E € §. It is easy to verify that fE sdm is well defined and for each E fixed in
8, it is linear on the normed space S(S) of all S-simple scalar functions endowed
with the supremum norm || - ||q.

Proposition 5. Let (s, ) and (s:,) be sequences of S-simple scalar functions,
converging uniformly to a function f in §). Suppose m : § = X is o-additive
or is a bounded vector measure, where X is a quasicomplete lcHs. Then:

(i) (fE spdm } is uniformly Cauchy in X for E€ S.
(i) lim, fpsndm =lim, [ sidm € X for each E € S.

Proof. Let p be a T-continuous seminorm on X and let € > 0. Since {[m,[|(2) <
oo, we can choose n, such that ||s, — s¢|la < ﬂm_:ﬂ'(ﬁf for n,£ > n,. Then

1 [ sndm = [ scdmily =11 [ (sn = s)dmylly < llan = sellallml|(@) < e
E E E
for n,£ > n, and for all £ € S. Hence (i) holds.

As X is sequentially complete, by (i) there exist vectors :cE,:c:E in X such
that lim, [, shdm = zg and lim, [, s’,,dm = 1:'E for E € S. Then

llzg—zsllp < | / sndm—zgl,+] / sndm— / st dmf |, | / sndm—z/g(lp = 0
E . E E E

as n — 0o, since
f i
[ /E sndm — /E sdmlly < llsn — s llallmp|1(2) = 0

as n — 0o0. As the 7-continuous seminorm p is arbitrary, it follows that zg = rlE
for each E € §. Hence (ii) holds.

Definition 3. Let f be a bounded S-measurable scalar function so that there
exists a sequence (sp) of S-simple scalar functions such that s,, — f uniformly
in 2. If m : 8§ - X is o-additive or is additive and bounded, and X is a
quasicomplete IcHs, then we say that f is m-integrable and define

/fdm:lim/ spdm
E n JE

g SRR S S S e
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for each E € S.

In the light of Proposition 5, for a bounded S-measurable scalar function f,
J fdm is well defined. Since N(f) = {w € Q: f(w) # 0} € S, we then define

/nfdm - /N(f) fdm-

The following proposition is immediate from Definition 3.

Proposition 6. Let X be a quasicomplete IcHs. If f and g are bounded S-
measurable scalar functions, a, are scalars, m : § — X is o-additive or
bounded and additive, and E € S, then the following hold:

(1) [glaf +Bg)dm = a [ fdm + B [, gdm.
(i) |1 fg fdmil, < |Ifllelimpli(E) < [Ifllallmp () = [Ifllallm|lp() for each

T-continuous seminorm p on X.
(it1) For each z* € X*, z*(f fdm) = [, fd(z*m).

Proposition 7 (Lebesgue bounded convergence theorem).Let X be a quasicom-

plete lcHs and let m : § — X be o-additive. If (f,) is a bounded sequence of

S-measurable scalar functions with lim fo(w) = f(w) for each w € Q, then f is
n

/Efdm = li:n/Ef,,dm

m-integrable and

foreach E€ S.

Proof Foreach £ € §, Sg = SN E is a o- algebra in E. Then for each
7-continuous seminorm p on X, by Theorem I1.4.1 of [2], we have

II/Efndm—/EfdmIIp=II/Efndmp-/EfdmpHp ~+0

as n — oco. Hence the proposition holds.

Remark 1. Using the Egoroff-Lusin theorem for continuous submeasures, one
can also show that the limit in the above proposition is uniform with respect to
E € S. (See Theorem 1 of [6].)
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4 Representation of X-Valued Continuous Lin-
ear Transformations on C,(T)

The following result is analogous to Theorem VI.2.1 of [2] for a IcHs-valued con-
tinuous linear map on C,(T’), and plays a fundamental role in Sections 5 and 6.

Theorem 1. Let X be a IcHs. Let u : C,(T) = X be a continuous lin-
ear transformation. Then there erists an X** -valued vector measure m on B(T)
satisfying the following properties:

(i) z*m € M(T) for each z* € X" and consequently, m : B(T) — X** 1s
o-additive in o(X**, X*)-topology.

(i) The mapping z* — z*m of X* into M(T) ts weak*-weak* continuous.
(1) «*uf = [ fdz*m for each f € Co(T) and z* € X*.
(iv) {m(E): E € B(T)} is r.-bounded in X**.

Conversely, let m : B(T) — X** be a vector measure satisfying (1) and (1i).
Then there exists a unigue continuous linear transformation u : C,(T) = X
such that (iii) holds. Moreover, m(E) = u**(xg) for E € B(T) and m verifies
(iv).

Finally, the vector measure m satisfying (i)-(i11) is uniquely determined by
the continuous linear transformation u and has 7.-bounded range in X**.

Proof. Note that u* : X* — M(T) and u™* : C2*(T) — X** are linear. Since
each bounded Borel measurable scalar function f on T can be identified with
a unique element t(f} € C.;*(T} such that ||fllr = ||«(f)]|, we shall identify
{xe : E € B(T)} as a subset of C*(T). Let us define m : B(T) - X** by
putting m(E) = u**(xg) for E € B(T). Then m is clearly additive. Moreover,
u*z* € M(T) for each z* € X* and hence there exists a unique u.. € M(T)
such that u*z* = u,.. Consequently,

p=+(E) = (u'z°)(E) =< u'z", xg >=< z*,u**(xg) >
= <z",m(E) >= (z"m)(E)

for each £ € B(T). Hence py» = u"z* = 2"m for z* € X*. Thus (i) holds.

By the first part of Proposition 3, u*: (X*,0(X*, X)) = (M(T), c(M(T),Co(T)))
is continuous, whence (ii) follows.

Since

z'(uf) =< uf, 2" >=< f,u'z" >=< f,z'm >:/ fd(z"m)
T

R
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for each f € Co(T) and z* € X*, (iii) holds.

By the second part of Proposition 3 and by Theorem 1.32 of Rudin [19],
{m(E): E € B(T)} = {uv**(xg) : E € B(T")} is T.-bounded in X** and hence
(iv) holds.

Conversely, let m : B(T) — X** be a vector measure satisfying (i) and (ii).
Let z* € X*. Then by (i) there exists y,. € M(T) such that z*m = p,.
and by (ii) the mapping V : X* = M(T) given by Vz* = p.. is linear and
weak*-weak* continuous. For f € Co(T), let Vy : X* — (@ be given by V;(z*) =
< f,Vz* >= [} fduz-. Then by the weak*-weak* continuity of V it follows
that V; is a o(X*, X)-continuous linear functional on X* for each f € C,(T).
Consequently, there exists a unique vector z; € X such that Vyz* = z*(z;) for
each z* € X*. Let uf = z;, f € C,(T). Clearly, u : Co(T) — X is linear.
Moreover,

sup |z"uf|= sup |z'zy|
Hsiir <t Hsilr<y
sup |Viz*|
ls1lr<t

= sup || f
lisllr<1 JT
< Jeml(T) <o

d(z*m)|

for each z* € X*. Consequently, {uf : ||f||r < 1} is weakly bounded in X
and hence 7-bounded by Theorem 3.18 of Rudin [19]. Then by Theorem 1.32
of Rudin [19], u is continuous. Moreover,

g'uf =z2"z; = Viz* :/de(z"m) (4.1)

for each f € Co(T) and z* € X*. Thus the continuous linear transformation u
satisfies (iii).

If there exists another continuous linear transformation v : C,(T) — X such
that z*vf = [} fd(z*m) for each z* € X* and f € C,(T), then by (4.1) and by
the Hahn-Banach theorem we have v = u.

Let m; be the vector measure defined on B(T) by m, (E) = v**(xg). Then
as shown in the proof of the first part we have u*z* = z*m; for z* € X*,
z*uf = [ fd(z*m;) for f € C,(T) and z* € X*, and m; has 7.-bounded range
in X**. Then by (4.1) we have

wuf = [ faerm) = [ faetm)
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for f € Co(T). Since z*m, z*m; € M(T), by the uniqueness part of the Riesz
representation theorem it follows that z*m = z*m; on B(T) for each z* € X*
and hence m; = m. Consequently, m has 7.-bounded range.

This completes the proof of the theorem.

Definition 4. Given a coutinuous linear transformation u : C,(T) — X, the
unique X**-valued vector measure m satisfying (i)-(iii) of Theorem 1 is called
the representing measure of u.

5 Characterizations of X-Valued Weakly
Compact Operators on Co(T)

Making use of the results of the earlier sections, we obtain 35 characterizations of
a quasicomplete lcHs-valued weakly compact operator on C,(T). Among them
are included Gothendieck’s characterizations as in Remark 2 of [8] as well as
several new ones.” For the convenience of exposition we give these characteriza-
tions through eight theorems, in stead of giving all of them in a single theorem.
The equivalent statements given in these theorems are numbered successively
and they will be referred to as (viii) ,(xii), etc. without mentioning the theorem
in which they appear.

Motivated by Definition 3.2 of {13] we give the following notions of regularity
for a vector measure.

Definition 5. Let R be a ring of sets in T with R D C(7) or R D C,o(T).
Let m : R — X be a vector measure. 'Then m is said to be R-regular or simply
regular (resp. R-outer regular or simply outer regular, R-inner regular or simply
inner regular) in E € R if, given £ > 0 and a r-continuous seminorm p in X,
there exists a compact set K € R and an openset U € R with K CECU
(resp. there exists an open set U € R with £ C U, there exists a compact set
K € R with K C E) such that for each B € R with B C U\K (resp. with
B C U\E, with B C E\K), p(m(B)) < €. Even though T does not belong
to R one can define R-inner regularity of m in T on similar lines. The vector
measure m is said to be R- regular or simply regular (resp. R-outer regular or
simply outer regular, R-inner regular or simply inner regular) if it is so in each
E € R. When R = B(T) (resp. B.(T), B,(T)), we use the terminolgy Borel
(resp. o-Borel, Baire) regularity or outer regularity or inner regularity.

Remark 2. In Definition 5 one can restrict to any family of T-continuous semi-
norms on X which induces the topology 7 in X.
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Notation 2. For a set E in X*, pg(z**) = sup |z**(z*)|, z** € X**.

z*€E
Lemma 2. Let X be a quasicomplete IcHs and let u : C,(T) — X be a contin-
uous linear map. Then u* E is bounded in M(T) for each equicontinuous set E
in X*.

Proof. Let m be the representing measure of u. Then by Theorem 1(i), v*E =
{z* om : z* € E}. As m has 7.-bounded range by Theorem 1(iv), it follows
that

sup [z*om|(T) <4 sup |(z"om)(A)| =4 sup pe(m(A)) < co.
z*€E z*€E,A€B(T) A€B(T)

Thus u* E is bounded in M (T).

Theorem 2. Let u : Co(T) = X be a continuous linear transformation, where
X is a quasicomplete IcHs and let m : B(T) — X** be the representing measure
of u. Then the following statements are equivalent:

(i) u is weakly compact.
(i) The range of m is contained in X .
(iii) m is o-additive in the topology 1. of X**.

Proof.

(i) = (ii). By the equivalence of (1) and (2) of Lemma 1 of Grothendieck (8],
u is weakly compact if and only if «**(C}*(T)) C X .Since m(E) = u**(xEg) for
E € B(T), (i) = (ii).(Note that the quasicompleteness of X is not needed for
this implication.)

(i1) = (iil) By Theorem 1(i), the hypothesis (ii), and the fact that r.|x = 7, the
vector measure m is g-additive in o(X, X*)-topology. Thus (iii) holds by the
Orlicz-Pettis theorem (see, for example, [12]).

(iii) = (i) Let (U,) be a disjoint sequence of open sets in T and let E be
an equicontinuous subset of X*. If U = |J;2, Uy, then (iii) implies that
||m(Un)|lpez — 0 as n — oo. In other words, lim,, z* o m(U,) = 0 uniformly in
z* € E. Since u*E is bounded in M(T) by Lemma 2, and since u*z* = z*om,
by the equivalence of (i) and (ii)’ of Proposition 1 it follows that u*E is rela-
tively weakly compact in M(T). Then by Proposition 4, u is weakly compact
and hence (i) holds.

This completes the proof of the theorem.
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Theorem 3. Let X, u and m be as in Theorem 2. Then u s weakly compact if
and only if anyone of the following conditions holds:

(iv) m(U) € X for all open sets U inT.
(v) m(F) € X for all closed sets F in T.
(vi) m(U) € X for all open sets U in T which are g-Borel.
(vii) m(U) € X for all open Baire setsU in T.
(visi) m(U) € X for all open sets U in T which are o-compact in T.

(iz) m(F) € X for all closed sets F in T which are G; .

(z) m(U) € X for all open sets U in T which are a countable union of closed
sets in T. ’

(zi) For each increasing sequence (fa)y° C Co(T), with 0 < fr < 1, (ufn)
converges weakly in X.

Proof. Obviously (iv) = (v) = (ix); (iv) = (vi) = (vii); (iv) = (viii); (iv) =
(x) and (x) = (viii). Moreover, (viii) = (vii) by Proposition 2 and (i) = (iv)
by Theorem 2.

(vil) = (i) Let (U,) be a disjoint sequence of open Baire sets in T and let
U = Uy%, Us. Then by Theorem 1(i), the hypothesis (vii) and the Orlicz-
Pettis theorem, m(U) = Y oo, m(Un) in the topology 7 of X. Let E be an
equicontinuous set in X*. Since T|x = 7, it follows that |[m(U,)|[pz — 0.
Then the argument in the proof of (iii) = (i) of Theorem 2 holds here verbatim
except that we have to invoke the equivalence of (i) and (ii) of Proposition 1 in
stead of that of (i) and (ii)’ of Proposition 1.Hence u is weakly compact.

(ix) = (vii) Let U be an open Baire set in T. Then by Proposition 2, U is of the
form U = |J;2_, K with K, € C,(T) for each n. Then T\U =), (T\K,) is
a Gs. Thus (ix) implies that m(T) and m(T\U) belong to X. Then m(U) =
m(T) — m(T\U) € X and hence (vii) holds.

(vii) = (viil) since (iv) < (vii) and (iv) = (viii).
(viil) = (x) since (viil) = (vil) & (iv),and (iv) = (x).
(1) = (xi) Let (fn)$° be an increasing sequence in C,(T), with 0 < f, < 1.

Clearly, lim,, f,(t) = f(t) exists in [0,1] for each ¢ € T and moreover, f is Borel
measurable. Then by Proposition 7, Theorem 2 and the fact that r¢|x = 7 we

have
lim/ f,,dm:/fdeX
noJr T
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in the topology T of X. Consequently, by Theorem 1(iii)
limz*uf, = lim/ fad(z"m) = :c"(/ fdm)
n n T T

for each z* € X*. Hence (xi) holds.

(xi) = (vii) Let U be an open Baire set in T. Then by Proposition 2, U is
the union of an increasing sequence (Ky,) of compact G5 subsets of T. Then
by Urysohn’s lemma there exists an increasing sequence (g,)$° of non negative
continuous functions with compact support such that g, / xu. Therefore,
by hypothesis there exists a vector z, € X such that z*ug, — z*(z,) for each
z* € X*. On the other hand, by Theorem 1(iii) and by the Lebesgue dominated
convergence theorem we have

limz*ug, = lim/ gnd(z*m) = / xud(z*m) = (z*m)(U)
n n T T

for each z* € X*.. Thus z*(m(U) — z,) = 0 for each z* € X*. Since z, € X
and m(U) € X**, it follows that m(U) = z, € X. Hence (vii) holds.

This completes the proof of the theorem.

Remark 3. An alternate proof of (i) = (xi) without using Proposition 7 is
given in Grothendieck [8]. Since (fn) is weakly Cauchy, u is weakly compact
and C,(T) has strict Dunford-Pettis property, it follows that (uf,) is Cauchy
in the quasicomplete IcHs X and hence (uf,) converges in the topology T of X.
Thus, in particular, it is weakly convergent. Qur proof does not use the strict
Dunford-Pettis property of Co(T’), which will later be deduced in Section 6 as
a consequence of Theorems 1 and 2 and Proposition 7. In this connection we
would also like to point out that the argument in the proof of (1) implies (3)
of Theorem 9.4.10 of Edwards [7] is incorrect and has to be replaced as above,
invoking the strict Dunford-Pettis property of C,(T).

Remark 4. When T is compact and Hausdorff, Grothendieck proved in (8] the
equivalence of the statements (i), (v), (ix) and (xi) (see Theorem 6 of [8]). Then
he commented in Remark 2 on p.161 of [8] that the theorem holds also for lo-
cally compact Hausdorff spaces, but did not provide details. Later, Edwards
provided details for the general case in the proof of Theorem 9.4.10 of [7], but
unfortunately his proof of (3) = (2 bis) is incorrect. However, Theorems 2 and
3 above establish its validity in the general case. Moreover, even for the com-
pact case, Grothendieck’s proof needs his deep results such as Theorem 3 and
Proposition 11 of [8]. On the other hand, our proof given here is not only more
elementary but also is applicable to the general locally compact case.

"
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—

Theorem 4. Let X, u and m be as in Theorem 2. Let m. = mig () and
m, = m|g, (7). Then u is weakly compact if and only if anyone of the following
equtvalent statements holds:

(zii) m. is o-additive in the topology 7. of X**.
(ziit) m, is o-additive in the topology T. of X**.
(xiv) m¢ has range in X.
(xv) m, has range in X.

Proof. In the light of Theorem 2, it suffices to show that (xiii) = (i) and (xv)
= (xiii).

(xiii) = (i) Let (U,) be a disjoint sequence of open Baire sets in T with

U =S Un. Then, by hypothesis (xiii), mo(U) = 37" mo(Un) in the topology

1e of X** and hence lim, m,(U,) = 0in 7, of X**. Thus, for each equicontinuous .
set Ein X*, ||m,(Un)llpe = 0as n — co. In other words, lim,(z* om,)(Uy,) =0

uniformly in £* € E. Since u*2* = z* o m and since u*E is bounded in M(T)

by Lemma 2, by the equivalence of (i) and (ii) of Proposition 1 it follows that

u* E is relatively weakly compact in M(T). Now by Proposition 4 we conclude

that u is weakly compact.

(xv) = (xiii) Since m, is o-additive in o(X**, X*)-topology by Theorem 1(i)
and since m, has range in X, by the Orlicz-Pettis theorem m, is o-additive in
the topology 7 of X. Since 7.[x = 7, the statement (xiii) holds.

This completes the proof of the theorem.

Let us recall that a vector measure v defined on a ring of sets R with values

in a lcHs X is said to be strongly additive if for each disjoint sequence (E,) C R

we have limv(E,) = 0. Since in the proof of (xiii) = (i} we have only used the
n

fact that lim, m,(U,) = 0 for a disjoint sequence of open Baire sets (U,) in T,
and since g-additivity in a o-ring implies strong additivity, the following theo-
rem 1s immediate.

Theorem 5. Let X,u,m,m, and m, be as in Theorem 4. Then u is weakly
compact if and only if any one of the following conditions holds:

(zvi) m is strongly additive in the topology 7. of X**.
(zvii) m. is strongly additive in the topology 1. of X**.

(zviii) m, is strongly additive in the topology 7. of X**.

s
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Theorem 6. Let X,u and m be as in Theorem 2. Then u is weakly compact
if and only if anyone of the following conditions holds, where the regularities
referred to are with respect to the topology 7. of X**.

(ziz) m is Borel regular.
(zz) m is Borel inner regular.
(zzi) m is Borel inner regular in each open set in T.

(zzii) m is Borel outer regular in each compact set in T and Borel inner regular
in the set T.

Proof.

(i) = (xix) Let A € B(T), ¢ > 0 and E be an equicontinuous set in X*. It
suffices to show that there exists a compact K and an open set U in T with
K C E C U such that pg(m(B)) < ¢ for all B € B(T) with B C U\K. Since u
is weakly compact, by Proposition 4 u*E is relatively weakly compact in M (T)
and hence by the equivalence of (i) and (vi)’ of Proposition 1 and by the fact
that u*z* = z* o m the statement (xix) holds.

Obviously, (xix) => (xx) = (xxi).

(xxi) = (i) Let U be an open set in T and let ¢ > 0. Given an equicontinu-
ous set E in X*, by hypothesis there exists a compact set K C U such that
pe(m(B)) < € for all B € B(T) with B C U\K. Thus sup,.cg |(z*om)(B)| < ¢
for all such B. Since £*om = u*z* and since u* E is bounded in M (T) by Lemma
2, by the equivalence of (i) and (iii)(a)’ of Proposition 1 it follows that u*E is
relatively weakly compact in M (T'). Then u is weakly compact by Proposition 4.

(xix) = (xxii) Obvious.

(xxii) = (i) Let K be compact in T and € > 0. By hypothesis, given an
equicontinuous set E in X*, there exists an open set U with K C U such that
pe(m(B)) < € for all B € B(T) with B C U\K. Then by Lemma 2 u*E is
bounded and sup_.¢g |(z* om)(B)| < € for all such B. The Borel inner regular-
ity of m in T implies as in the proof of (xxi) = (i) that there exists a compact
set K in T such that sup,¢,.g |#(B)] < € for all B € B(T) with B C T\K.
Thus by Theorem 4.22.1 of Edwards [7], «*E is relatively weakly compact in
M(T). Now an appeal to Proposition 4 proves that u is weakly compact.

This completes the proof of the theorem.

Theorem 7. Let X, u, m and m, be as in Theorem 4. Then u is weakly compact
if and only if anyone of the following conditions holds, where the regularities
referred to are with respect to the topology 1. of X™**.
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(zziit) The vector measure m. is o-Borel regular.
(zziv) The vector measure m,. is c-Borel inner regular.

(zzv) The vector measure m. is o-Borel inner reqular in each o-Borel open set
U inT and in the set T.

(zzvi) The vector measure m. is o-Borel outer regular in each compact subset of
T and is o-Borel inner regular in the set T.

Proof. Let E be an equicontinuous set in X* and let € > 0.

Following an argument similar to that in the proof of (i) = (xix) (resp. of
(xxi) = (i)) with obvious modifications and appealing to the equivalence of (i)
and (vi)” (resp. of (i) and (iii}{(a)"” and (b)"}) of Proposition 1 and to Propo-
sition 4, one can show that (i} = (xxiii) (resp. (xxv) = (i)}. Clearly, (xxiii) =
(xxiv).

(xxiv) = (xxv) By Lemma 2 the set u*E is bounded in M(T) . The hy-
pothesis (xxiv) then implies that u*E is uniformly o-Borel inner regular and
consequently, by the equivalence of (iv)” and (iii){(a)” and (b)"} of Proposition
1 the statement (xxv) holds.

(xxiil) = (xxvi) u"E is bounded in M(T) by Lemma 2 and the hypothesis im-
plies that the set u*E is uniformly o-Borel regular. Thus by the equivalence
of (i) and (vi)” of Proposition 1, the set u*E is relatively weakly compact in
M(T). Then by Theorem 4.22.1 of Edwards 7] and by Theorem 50.D of [9] the
statement (xxvi) holds.

(xxvi) = (i) By Lemma 2, «*F is bounded in M(T). Let K be a compact set
in T. Then by hypothesis there exists a o-Borel open set U in T such that

sup |ul(U\K) <
ueEu'E

where the variation is taken with respect to B.(T). Then by Lemma 1 it follows
that (4)(a) of Theorem 4.22.1 of [7] is satisfied by u* E in K. Again by hypothesis
there exists a compact C in T such that

sup |u(B)| <e (5.1)
peEu*E

for all B € B.(T) with B C T\C. Then, for each compact K C T\C and
z* € E, by (5.1) and Lemma 1 we have
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|z* om|(K) = sup {Z |(z* o m)(B:)] : (Bi)izy C Be(T),
=1
B,‘ﬂBj =0,i;/:j,L'_‘JB.' :K}
< A4e. =

Since |z* o m| is Borel regular by Theorem 1(i), it follows that

|z* o m|(T\C) = sup |z* o m|(K) < 4e.
Kcompact, KCT\C

Consequently, we have
sup |pu|(T\C) < 4e
BEU*E
~and thus (4)(b) of Theorem 4.22.1 of [7] is also satisfied by u*E. Therefore,

u*FE is relatively weakly compact in M (T) and hence u is weakly compact by
Proposition 4.

e This completes the proof of the theorem.

Remark 5. The above theorem can be compared with Corollary 4.9 of Pancha-

\ pagesan [15], where the vector measure is assumed to be g-additive on B.(T).

T Since the vector measure m is o-additive only in ¢(X**, X*)-topology of X**,

unlike the said corollary, the hypothesis of o-Borel inner regularity of m. in the

set T has to be included in the statements (xxv) and (xxvi) for the validity of
J their equivalence with the o-Borel regularity.

Theorem 8. Let X,u. m and m, be as in Theorem 4. Then u is weakly compact
if and only if anyone of the following equivalent conditions holds, where the
regularities referred to are with respect to the topology r. of X**.

(zzvii) The vector measure m, is Baire regular.
(zzviii) The vector measure m, is Baire inner regular.
‘

(zzix) The vector measure m, is Baire inner regular in each open Baire set U in
T and in the set T.

(zzz) The vector measure m, is Baire outer rgular in each compact G in T and
Baire inner regular in the set T. ’

Proof. The proof is similar to that of Theorem 7, except that we have to use
Baire sets in place of o-Borel sets in Proposition 1 and make use of Theorem

50.D of Halmos [9] in the last step to show that sup,..g |z* o m|(T\C) < 4e.
The details are left to the reader.

TV
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Remark 6. It is well known that a o-additive IcHs-valued Baire measure is Baire
regular (see [4,5]). Neither this result nor the Baire measure case of Corollary
4.9 of [15] can hold here verbatim as m is o-additive only in ¢(X**, X*)- topol-
ogy and hence the Baire regularity of m, (resp., the Baire inner regularity of
m, in T') have to be included in (xxvii) (resp., in (xxix) and (xxx)) of the above
theorem.

Theorem 9. Let X,u,m, m., and m, be as in Theorem J. Then u is weakly
compact if and only if anyone of the following equivalent conditions holds:

(zzzi) All bounded Borel measurable scalar functions on T are m-integrable and
Jpfdme X.

(zzxii) All bounded B.(T)-measurable scalar functions on T are m,-integrable and
Jp fdm. € X.

(zzziii) All bounded Baire measurable scalar functions on T are m,-integrable and
Jpfdm, e X.

(zzziv) All bounded scalar functions f belonging to the first Baire class in T are
m,-integrable and f’I‘ fdm, € X.

(zzzv) ©**f € X for all bounded scalar functions f belonging to the first Baire
class in T.

Proof. By Theorem 1(iv), m has 7.-bounded range in X**. If u is weakly com-
pact, then by Theorem 2, m has range in X. As X is quasicomplete, by the
results of Section 3, (i) implies each one of the statements (xxxi)-(xxxiv). If
(xxxi) (resp. (xxxii), (xxxiii)) holds, then for A € B(T) (resp. A € B.(T),
A € B,(T)), m(A) € X (resp. m.(A) € X, m,(A) € X) and consequently, by
(i1) (resp. by (xiv), by (xv)) u is weakly compact.

(xxxiv) = (vii) Let U be an open Baire set in 7. Then by Proposition 2, U is
the union of an increasing sequence of compact G4 sets K,, in T. Consequently,
by the Urysohn’s lemma there exists an increasing sequence (f,) of non nega-
tive continuous functions with compact support in T such that f,(t) & xu(?)
for each t € T. Thus yxy belongs to the first Baire class in T and hence by
hypothesis m,(U) € X. Thus (vii) holds.

(xxxiv) = (xxxv) Note that the bounded scalar functions of the first Baire class
belong to C3*(T).If (xxxiv) holds, then as (xxxiv) implies (vii) < (i), u is weakly
compact and hence by (xv), m,(A) € X for each A € B,(T). Moreover, by
Theorem 1(iv), m, has r-bounded range in X. If f is a bounded Baire function,
then f is m,-integrable with fT fdm, € X and hence for each z* € X* we have

< / fdme, z* >= / fdz* om, = / fdu'z* =< fiu'z* >=< ™ fz* >.
T T T

[ NS
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Thus u** f € X. (Alternatively, one can also use Lemma 1 of [8].)
(1) = (xxxiv) and (xxxv) since (xxxi) <> (i) and (xxxi) => (xxxiv) = (xxxv).

(xxxv) = (vii) Since u**(xv) = m,(U) for each open Baire set U in T and since
xu belongs to the first Baire class as observed in the proof of (xxxiv) implies
(vii), it follows from the hypothesis that m,(U) € X for all open Baire sets U
in T. Hence (vii} holds.

This completes the proof of the theorem.

Remark 7. In {17] are given further characterizations of weakly compact opera-
tors on Co(T) considered as weakly compact Radon operators.

6 Applications

As an immediate consequence of the results of Section 5 we deduce the well
known resutls on vector measures such as the regularity (resp. regular Borel
extendability) of X-valued o-additive Baire measures (resp. when X is quasi-
complete), strict Dunford-Pettis property of C,(T), and a theorem of Pelczynski
[18] and of Thomas [20] on weakly compact operators on Co(T). Also is given a
generalization of Corollary VI.2.17 of [2] to quasicmplete IcHs-valued operators
on C,(T).

Theorem 10. Let X be a lcHs and T a locally compact Hausdorff space. Then
each X -valued o-additive Baire measure p, is reqular. If X is further quasicom-
plete, then there exrists a unique X -valued o-additive regular Borel ( resp. regular
o-Borel) vector measure u on B(T') (resp. p. on B.(T)) such that pis (1) = to
(resp. pelg,(T) = po). Besides, p. = plp (1)

Proof Let X be the completion of X. Since each f € Co(T) is bounded and
Baire measurable, by Definition 3 the function f is p,-integrable and fT fdm, €

X. Let
v;:/depo, feCT). (6.1)

Then V : C,(T) = X is linear. V is also continuous, since for each continuous
seminorm p on X, by Proposition 6(ii) we have

WAl < Hflirlpollp(T), f € Co(T)

and {{po]lp(T") < co. Let m be the representing measure of V. Then by Theorem
1, m is an X**-valued vector measure on B(T) such that m is o-additive in
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o(X**, X*)-topology, z*m € M(T) for each z* € X* and

z*Vf :/ fdz*m  (6.2)
T
for each f € C,(T). Then by (6.1), (6.2) and Proposition 6(iii) we have
z'Vf :/ fdz*p, = / fd{z*m), for f € Co(T) and for z* € X*
T T

where (z*m), = (z*m)| (r). Then, as (z*m), and z*y, are o-additive scalar
measures on B,(T), by the uniqueness part of the Riesz representation theo-
rem (Baire measure version) we conclude that (z*m)(A) = (z*p,)(A) for each
A € B,(T). Since u, has range in X and m has range in X**, it follows that
m(A) = po(A) for all A € B,(T). Consequently, by Theorem 4 the operator V
is weakly compact and then by (xxvii) of Theorem 8, the Baire measure py, (=
m|p, (1)) is regular (as a o-additive Baire measure with values in X).

‘Moreover, by Theorem 2(ii) m and m. = m|g () have range in X . Further,
m is Borel regular and o-additive by Theorems 6 and 2 while m,. is o-Borel regu-
lar and ¢-additive by Theorems 7 and 4. Let C(F) = {K : K C E, K compact}
for £ € B(T). Let us define K; < K3 for K, K2 € C(E) if Ky C K,. Similarly,
let U(E) = {O : E C 0,0 open} and let us define O, < O, for 0,0, € U(E)
if O; C O1. Let U,(E) = Bo(T)[U(E) with the same partial ordering as in
U(E). Then clearly C(E), U(E) and U,(E) are directed sets. Given a balanced
closed neighbourhood W of 0 in X, and a compact set K in T,by the Borel
regularity of m there exists O, € U(K) such that m(K) — m(Q) € W for all
0 € U(K) with O > O,. Then in virtue of Theorem 50.D of Halmos [9], we
have m{(K) —m(U) € W for all open Baire sets U in T with K C U C O,. Thus
we have

m(K) = Uelz}?(‘x)m(U) = UElLl(f,r(lK)mO(U) €X (6.3)

since the range of m, is bounded in X and X is quasicomplete. Consequently,
the inner Borel regularity of m in E € B(T), (6.3) and the quasicompleteness
of X imply that m(E) € X for each E € B(T). Therefore, the ranges of m and
m, are contained in X. This shows that u, has a s-additive regular Borel (resp.
o-Borel) extension m (resp. m.) with values in X and moreover, m. = m|g (7).

Finally, to prove the uniqueness of m (resp. of m.), let m; (resp. m3) be
an X-valued Borel regular (resp. o-Borel regular) o-additive extension of u,.
Then, as Vf = [, fdu,, f € Co(T), it follows that

x‘Vf:/fd;r"po::/fdz'mlz/fd:r‘mz
T T T

for f € C,(T) and z* € X*. Now by the uniqueness part of the Riesz repre-
sentation theorem of Borel version (resp. of o-Borel version), we conclude that
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z*m; = z*m (resp. z*my; = z*m.) for each z* € X*. Then by the Hahn-
Banach theorem, m; = m (resp. my = m,). Define g = m and y. = m,.

This completes the proof of the theorem.

Remark 8. The regularity of a IcH-valued o-additive Baire measure on a locally
compact Hausdorff space was first proved by Dinculeanu and Kluvének in [4], for
which a direct proof was later given by Dinculeanu and Lewis in [5]. Using the
results of [4], Kluvanek [11] proved that each Banach space valued o-additive
Baire measure on such spaces has a unique o-additive Borel regular extension.
Kluvanek’s result can easily be extended to quasicomplete IcHs-valued Baire
measures. The idea of the present proof has its origin in the proof of Theorem
3.7 of Panchapagesan {13]. Moreover, the last part of the above theorem gener-
alzes Theorem 3.7 of {13] and Theorem 2.4 of {14] to vector valued o-additive
Baire measures.

Theorem 11. Co(T) has strict Dunford-Pettis property(briefly, (SDP)-property).
That s, for each weakly compact operator u : Co(T) = X, X a quasicomplete
lcHs, u transforms each weak Cauchy sequence in Co(T) into a convergent se-
quence in X and consequently, u transforms each weakly compact set in C,(T)
into a relatively compact set in X.

Proof. 1 (fn)3%, is weakly Cauchy in Co(T), then (f,) converges to a function
f pointwise in T and (f, )%, is norm bounded. By Theorem 2 the representing
measure m of u has range in X and is o-additive in X. Consequently, by
Definition 3, Theorem 1{iii), Proposition 7, and the Hahn-Banach theorem we
have

limuf,,:lim/ f,,dm:/fdmeX.
n n T T

Hence C,,(Tv) has (SDP)-property. The second part is immediate from the first
due to the Smulian theorem (see 9.4.3(d) of Edwards [7}).

This completes the proof of the theorem.

Remark 9. The above result is due to Grothendieck {8}, which was used in the
proof of Theorem 6 of [8] (which treats only the compact case). The proofs
of all the characterization theorems given in Section 5 are independent of the
(SDP)-property of Co(T') and our proof of the above theorem is quite analogous
to that of Corollary 3.3 of [1].

The following theorem is a generalization of Corollary V1.2.17 of [2] to qua-
sicomplete IcHs-valued operators on C,o(T').
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Theorem 12. Let u : Co,{T) = X be a continuous linear map and let X be a
quasicomplete IcHs. Then the following are equivalent:

(i} u is unconditionally convergent; that is, u maps weakly unconditionally
covergent Cauchy series into unconditionally convergent sertes.

(i) u is weakly compact.

(iii) u maps sequences that tend to zero weakly into sequences convergent to
zero.

(iv) u maps weak Cauchy sequences into convergent sequences.

(v) If (fn) is a bounded sequence in Co(T) with fo.fe = 0 for n # £, then
lim, u(fn) = 0.

Proof.

(i) = (ii) Let U be an open Baire set. Then by Proposition 2, U is of the form
U= U;"":l K, , with K, compact G for each n and K,, . By Urysohn’s lemma
there exists an increasing sequence (gn) of non negative continuous functions
with compact support such that g,(t) 7 xu(t) for each t € T. Then by the
Lebesgue dominated convergence theorem,

n
#(U)=lim/ ynd/z=lim2(/ gk+1dﬂ“/gkd#)+/gld#
A ? o= U7 T T

for each u € M(T). Moreover,

oo

31 [ nis = gndil < 5 [ ner = gn)a

n=1 T
= li{n/ykdlﬂl-/yxdlm
T T

2A(U) < oo,

iA

Therefore the series Y oo (gn+1 — gn) + 91 1s an unconditionally weakly Cauchy
series (see p.150 of [2]) and hence by (i), there exists a vector £ € X such that

D (4(gn41) ~ u(gn)) + ulg1) = limu(gn) = z.

n=1

If m is the representing measure of u, then by Theorem 1(iii) and by the
Lebesgue dominated convergence theorem we have

'm(V) =limz"u(gn) = 2"z
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for each £* € X* and hence m(U) = z € X. Consequently, u is weakly compact
by Theorem 3(vii).

(1) = (i) and (iv) by Theorem 11 and (iv) => (iii) obviously. (One can also
apply the Orlicz-Pettis theorem to show (ii) = (i) as on p.150 of [2]).

(it1) = (v) Such a norm bounded sequence (f,) converges to zero pointwise in
T and hence is weakly convergent to zero. Thus (ii1) implies (v).

(v) = (i1). If u is not weakly compact and if m is the representing measure
of u, then by Propositions 1(ii) and 4 there would exist an equicontinuous set
Ein X* an £ > 0, a disjoint sequence {U,) of open Baire sets in T and a
sequence (z;) in E such that |(z}, o m)(U,)| > €. By Propositions 2 and 7
and by Urysohn’s lemma we can choose a continuous function f, with compact
support such that 0 < f, < xv, and '

I /T fad(ziom)[ > e (6.4)

for each n. Then clearly (f.) satisfies the hypothesis of (v) and consequently,
limy, u(f,) = 0. Thus there exists ng such that pg(u(fn)) = sup |z*(u(fa))| <€
z*cE

for all n > no. Then by Theorem 1 (iii), this means that sup | [ fadz*m| < ¢
z°€E

for n > n,, which contradicts (6.4). Hence u is weakly compact.
This completes the proof of the theorem.

Theorem 13. Suppose the quasicomplete lcHs X contains no copy of ¢,. Then
every continuous linear map u : C,(T) - X is weakly compact. If w is the set
IN endowed with the discrete topology and if X is a quasicomplete IcHs such
that every continuous linear map u : C,(w) = X is weakly compact, then X
contains no copy of ¢,. Consequently, a quasicomplete lcHs X contains no copy
of ¢, if and only if each continuous linear map u : Co(T) = X is weakly compact
for every locally compact Hausdorff space T

Proof. Suppose X contains no copy of ¢, and suppose v : Co{(T) = X is a
continuous linear map. Let m be the representing measure of u. Given an open
Baire set U in T, let (K,) and (gn) be chosen as in the proof of (i} = (ii) of
Theorem 12. Then by the Lebesgue dominated convergence theorem we have

£ m(U) = liPLgndz‘m = Z‘[r(g"“ —gn)dz'm+Lg1d:‘m
n=1




24 Characteriations of Weakly Compact Operators on (g @)

for each z* € X*. Since gny1 — gn > 0 for each n, it follows that

o o0
31 (gt = gnldz'ml < 3 [ (Gass = gu)dls"ml
n=l T n=1 T

= lim/gn+1d|z‘m|—/g1d|z‘ml
nJr T
< 2|2*m|(U) < .

On the other hand, by Theorem 1(iii), [.(gn+1 — gn)dz*m = z*t(gn41 ~ gn)
and hence it follows that Y oo, |z*(u(gn+1) — u(gn))| < oo for each z* € X*.
Since X contains no copy of ¢,, by Theorem 4 of Tumarkin [21] we conclude that
Yoo (u(gn+1) —u(gn)) is convergent in the topology of X and thus limy, u(gn) =
z exists in X. Then z*m(U) = lim,, [ gndz*m = lim, z*u(gs) = z*z for each
z* € X* and consequently, m(U) = z € X. Therefore, u is weakly compact by
Theorem 3(vii).

Suppose each continuous linear map u : C,(w) = X is weakly compact and
suppose T is the topology of X. Let (z,) be a sequence of vectors in X such that .
Yomey |2*(2a)] < 0o for each z* € X*. Let us define u(x(n}) = z for each n and ’
extend u linearly on the set S of all scalar functions of the form ZLI ®iX{n,}
where S is endowed with the supremum norm. By hypothesis on (z,), the set
{uf: f €S ||flin <1} is weakly bounded in X and hence is 7-bounded. Then
by Theorem 1.32 of Rudin {19], u is continuous on S. Since S = C¢(w) is norm
dense in C,(w} and X is quasicomplete, © admits a unique continuous linear
extension to the whole of C,(w) and let us denote the extension too by u. Then
by hypothesis u is weakly compact. Let m be the representing measure of u.
Since u**|c, () = u, it follows that m(F) = u(xr) = Y_, ¢F n, for each finite
set F C IN. Since u is weakly compact, by Theorem 2(ii) the range of m is
contained in X and by Theorem 6(xx),m is Borel regular. Thus, given a subset
UofIN, e > 0 and a T-continuous seminorm p on X, there exists a finite set

F C U such that
p(mU) =D z,) <&
neG

for all finite sets G with F C G C U. Therefore, m(U) = 3} .y, zn, where the

series is unconditionally r-convergent in X. In particular, Y " | z, is uncondi-

tionally T-convergent and thus by Theorem 4 of Tumarkin [21], X contains no ’
copy of ¢,.

This completes the proof of the theorem.

Remark 10. The first part of the above theorem was proved by Pelczyriski [18]
when T is compact and X is a Banch space and was later extended by Thomas
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{20] for the general case in an equivalent form. Both the proofs use the tech-
nique of reduction to compact metrizable case. Thanks to our Theorem 3(vii)
we are able to provide a direct proof without such a reduction. The second part
of the above theorem is essentially Theorem 5.3 (bounded Radon measure case)
of Thomas [20], where the proof is based on the theory of Radon vector measures.
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