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ABSTRACT

The present paper and the succeeding one offer a unified
approach to the study of unitary invariants of (unbounded)

normal and self-adjoint operators to obtain not only the
inter-relations among various results known for operators
on separable and arbitrary Hilbert spaces, but also to
provide a comparative study of the varios = notions of
multiplicity employed in the literature. In this paper we
introduce the concept of CGS-property of a spectral measure
E(.) in a Hilbert space H and study the problem of deter
mining complete systems of unitary invariants for E(.)

when E(.) has the said property.



El. presente trabajo y el que sigue ofrecen un enfoque
unificado para el estudio de invariantes unitarias de
los operadores normales (no acotados) y auto-adjuntos,
con el fin de obtener no solamente las relaciones en-
tre varios resultados conocidos para operadores en es
pacios de Hilbert separables y arbitrarios, sino tam-
bién de dar un estudio comparativo de las varias nocio
nes de multiplicidad desempenadds en la literatura. En
este trabajo introducimos el concepto de CGS-property

de una medida espectral E(.) en un espacio de Hilbert
y estudiamos el problema de determinar sistemas comple
tos de invariantes unitarias para E(.) cuando E(.) tie

ne dicha propiedad.



UNITARY INVARIANTS OF SPECTRAL MEASURES-I
BY
T.V. PANCHAPAGESAN"

The results of Hellinger [6] and Hahn [4] on the problem
of determining a complete system of unitary invariants of her
mitian quadratic forms on g2 were generalized to thecgseof
self~adjoint operators on an abstract separable Hilbert space
in the treatise of Stone [12]. Ever since the oublication of
[12] many mathematicians worked on this problem and obtained
complete systems of unitary invariants for self-adjoint and
normal operators on arbitrary Hilbert spaces. Among them the
works of Wecken [13], Nakano [18], Yosida [14], Plessner and
Rohlin [10], Segal [11] and Halmos [5] are noteworthy. Besides
the results of Dunford and Schwartz [3] on this problem for
self-adjoint and bounded normal operators on separable Hilbert

spaces are closely related to those of [12].

The results for operators on separable Hilbert spaces as
treated in [12] and [3] and those for operators on arbitrary
Hilbert spaces as found in the said literature are ap;}arently

unrelated. Besides, various concepts of multiplicity and uni
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form multiplicity are employed in these works and an explicit
study of the inter-relations among them is absent in the 1i
terature up to the knowledge of the author. Under these cir
cumstances it is quite desirable to give a unified approach
to the study of this problem so as to obtain not only the
inter-relations among various results known for operators on
separable and arbitrary Hilbert spaces but also to provide a
comparative study of the various notions of multiplicity
.employea in the literature. The present paper and the sub

sequent one are devoted to such study.

In the present paper we introduce the concept of CGS-
property of a spectral measure E(.) in a Hilbert space.IIand
study the problem of unitary invariants for E(.) with the
CGS-property in H. We obtain results extending those of [12]
and [ 3] for such spectral measures and as a consequence, the
classical results of [12] and [3] get extended to (unbounded)
normal operators on separable Hilbert spaces.Also we introduce
various concepts of multiplicity for E(.) such as 0OSD-multi-
plicity, OSR-multiplicity and total multiplicity and show
that they all coincide. When E(.) is defined on the Borelsets
B(X) of a Hausdorff space X, we introduce the mulolicity
functions mp and m_ generalizing those in Chapter VII of
Stone [12] and the inter-relations between the total multipli

city and the functions mp and m. are studied.

In the subsequent paper [9] making use of the results of




Halmos [5] we study orthogonal representations of a Hilbert
space H relative to an arbitrary spectrél measure E(.) on H
and obtain various complete systems of unitary invariants:for
E(.). Many known results for self-adjoint and normal operators
on the problem of unitary invariants are extended to spectral
measures. Spectral measures E(.) with the CGS-property in H
are characterized in terms of the existence of a specialpype
of orthogonal representations (COBOTS-representations) of H
relative to E(.) and are obtained inter-relations between co
BOTS-representations and the resﬁlts,of the present paper .
Consequently, the inter-relations between the works of [12]
and [3] and those of [5],[10]1,[11],[13] and [14]get established
In [9] we introduce other notions of multiplicity too and

compare them with those given in this paper.

In the first section not only we fix the terminologies
and notations, but also give some lemmas that are basic in

the study of this paper. In Section 2 we introduce the notions

of CGS-property in H for a spectral measure E(.), ordered
spectral decompositions (OSDs) of H relative to E(.), equi-
valence of two 0OSDs, and the OSD—mulfiplicity of E(.) and

show that two spectral measures E;(.) and E,(.) with the CGS
property on H1 and H2 respectively are unitarily equivalent
if and only if any two OSDs of Hy and H, relative to. El(')
and E2(.) respectively are equivalent. Theorem 7.7 of Stone

[12] is generalized to such spectral measures in Section 3.




When E(.) has the CGS-property in H and is defined on: the Bo
rel sets B(X) of a Hausdorff space X, we introduce the multi
plicity functions mp and m, on X associated with E(.) and
study their properties in Section 4. While Section 5. deals
with the unitary invariants of spectral measures on -product
spaces, Section 6 obtains a generalization of Theorem 7.8 of
Stone [12] to certain class of normal operators on separable

Hilbert spaces.

In Section 7 we introduce the concept of total multipli
city of E(.) and show that the OSD-multiplicity and the to-
tal multiplicity of E(.) are the same. When E(.) is defined
on B(X), X a Hausdorff space, the inter-relation between the
total multiplicity of E(.) and the multiplicity functions mp
and m, on X is studied in Section 8. In the last section we
introduce the concepts of ordered spectral representations (O
SRs) and special OSRs of H relative to E(.) and obtain the
results in Chapters X.5 and XII.3 of [3] as very :particular
cases of those established here.Finally, we introduce the con
cept of OSR-multiplicity, generalizing that of [3] and show
that the OSR-multiplicity and OSD-multiplicity of E(.)are the

same.

1.~ PRELIMINARIES. H,Hl,H2 will denote (complex) Hilbert
spaces of arbitrary dimensions ( »0) unless otherwise
mentioned. Their inner-products and norms are denoted by

(.,.) and ||.|| respectively. An operator on H is a




linear transformation whose domain and range are contained
in H. If T is an operator on H, the domain p(T) of T is
a linear manifold. A normal operator TonH is either boun
ded or unbounded according as its domain is the whole of
H is a closed linear manifold in H. The subspace genera
ted by a subset Xof H is denoted by [X]. If U is an inner
product preserving linear transformation with domain Hy

and range H then we say that U is an isomorphismo from

2’

Hl onto - H2.

The g-algebras of the Borel subsets of €, IR and a topo
logical space X are denoted respectively by B(C), B(IR)

and B(X).

S will be a fixed o-algebra of subsets of a non-voidset
X. All spectral measures considered will have their do
main S unless otherwise stated. The word 'measure! always
signifies a finite positive measure. In the sequel E(.),
El(.), E2(.) will be spectral measures on S with values

in projections of H, H respectively. Z is the co-

1’I{2
llection of all measures on S. For Hir My in Z we write
My <<u2(or Hy<< “1) if u1(0)= o whenever u2(0)= o. If u
<<¥ and V <<y, then we write M=V and clearly, '=' |is

an equivalence relation on 2. If U<< %, then the Radon-

Nikodym derivative of j with respect to y is denoted by

Q-H [ ]
da




For a vector x in H, Z2(x)= [E(0)x:0 € S]. Similarly, we
L(x.), i= . . L. . e -

use the symbols Zl(xl), i=1,2 l€JGDMldenotesthe ort

hogonal direct sum of the subspaces M, of some Hilbert

space H. If K, are Hilbert spaces, then r Ki denotes

their external direct sum. For x ¢ H, ©f(x) denotes the

measure ||E(.)x||2 on S. Similarly, we use the symbols
2

p, (x;) to denote ||Ei(.)xi || “.

Other terminologies and notations will be introduced

later in appropriate places.

We state the following lemma to be referred to .later

guite often.

LEMMA 1.1. Let x be a fixed vector in H and . let u=
||E(.)x||2. Then there exists an isomorphism U  from
LZ(X,S, U) onto 2(x) such that U X; ;= E(0)x, o ¢ S and

U'lE(.)Uf= X £, f ¢ LZ(X,S, ).

(.)
Vide p.9%5 of [5] for the proof.

LEMMA 1.2. Let x and y be vectors in H, and H, respecti
vely. Then there exists an isomorphism V from Zl(x)onto

z,(y) such that VEl(.)v‘1= E,(.) if and only if g (x) =

oz(y)-

PROOF. Suppose V is an isomorphism from Zl(x) ontozzhﬂ
such that

1

VEl(.)V = EZ(-) (1)




g

If w= V-ly, then by (1) we have pl(w)= pz(y). Let U1 be
the isomorphism from LZ(X,S, pl(x)') onto Z, (x) asdescri
bed in Lemma 1.1. Then there exists f ¢ LZ(X,S, Pq (x))

such that U f= w and hence, 0, (y)= o, (w)= ||E1(.)Ulf||2

1
= |uyx, )f|(2= I )fllg from which it follows that
pz(y)<< pl(x). By symmetry, pl(x) <<p2(Y) and hence the

necessity of the condition.

Conversely, let pl(x)E pz(y). Then by Theorem 65.3 of
[5] there exists w;:Zl(x) such that pz(y)= pl(w) and

z,(x)= 2, (W). If U; and U, are the isomorphisms described

1 2
in Lemma 1.1 with respect to w and y respectively,then

clearly V= U2 o UIl is an isomorphism from Zl(x) onto

Zz(y) and satisfies (1).

LEMMA 1.3. Let T, be a normal operator on H, with the re
solution of the identity Ei(.), i=1,2. There exists an
isomorphism U from H, onto H, such thar U T; U-1=T2 if

and only if UEl(.)U-1= Ez(.).

PROOF. If F(.)= UEl(.)U'1

, then F(.)is a spectral measure
and D= (y: {Ix[? a [|FO)yl|? < »}= UD(T)).Besides, for

ye D, SAdF(A)y= uT Udly. By the uniquenen of the re-

1
solution of the identity of a normal operator we conclude
that F(.) is the resolution of the identity of UTlU-1

From this the lemma follows.




ORDERED SPECTRAL DECOMPOSITIONS (OSDs). In order to give
a unified approach tO'the study of unitaryinvariantsof_
normal and self-adjoint operators on separable Hilbert
spaces we introduce here the concept of ordered spectral
decomposition of a Hilbert svace relative to a spectral
measure E(.). We show that H admits such a decomposition
relative to E(.) if and only if E(.)has:the CGS-property
in H (vide Definition 2.3). Introducing the concept of
equivalence between two such decompositions we prove that
all such decompositions of H re;ative'u)thesamaspectral
measure are equivalent and that two such decompositions

of H, and H, relative to E,(.) and E,(.) respectively

1 2
are equivalent if and only if El(.) and E2(.) are unita

rily equivalent.

DEFINITION 2.1. Let {xi}lf, N e IN U {«}, be a countable

N
set of non-zero vectors in H such that (i) H= I (@ Z (%)
1

. N
and (ii) p(xl) >>p(x2)>>.... Then we say that H= ﬁ 635)

Z(Xi) is an ordered spectral decomposition (an OSD, in
abbreviation) of H relative to E(.). If E(.) is the re

solution of the identity of a normal operator T on H

'(necessarily separable), then it is said to be -an 0SD

relative to T.

The following proposition is immediate from .the above

definition.




PROPOSITION 2.2. If H has an 0OSD relative to E(.), then

there exists a countable set X in H such that [E(g)X : ©

€ 8] = H.

DEFINITION 2.3. E(.) is said to have the CGS-vproverty
(i.e.countable generating set-proverty) in H if there
exists a countable set X in H such that [E(c) X: o¢e 8]=

H.

In order to characterize the CGS-property of E(.) in H
in terms of the existence of 0SDs of H relative E(.) we

give the following

LEMMA 2.4. Suppose E(.) has the CGS-property in H. Then
given a vector Yo in H there exists a vector x in H such

that P (y) << o(x) for all y € H and Y, € z(x).
PROOF. We can suppose|lyoT!= 1.

AFFIRMATION 1. If n € IN is the minimum of the dimensions

of all generatining subspaces M of H (i.e.[E(0)M:0eS]=

{

H), then there exist non-zero elements Lgi}? in H such

n

that H= i@ Z(g;) -

In fact, let G be a generating subsvaces of dimension 1,
with {hi}? an orthonormal basis. Let 9,= hl. If n =1,
the affirmation is trivial. Let n > 1. By thedefinition

of n, Z(g,) # H and (I - pyp) h, # o where P, is the

orthogonal projection on Z(gl). Taking 9,= (I - pi) h2,




-10-

we have evidently Z(gl) .\.Z(gz) and Z(gl) ® Z(gz) # HAif
i-1

n>2. In the ith stage 9;= (r - I Pj)hi # o, if n>1i-1
1

i
where Pj is.the orthogonal projection-on Z(gj) and I CD

Z(gj) # H if n»i. Continuing this process, in the nth

stage we obtain non-zero vectors {gi}? in H such that
n

Z(g.) L Z(g!) for i # i' and h.e Z @ Z(g.) for i=1,2,.

i i n i i )
,n. Consequently, H= I @ z(g,) .

1

AFFIRMATION 2. Suppose for each subsvace M of finite di
mensidén in H, [E(0)M:0 € S] # H. Then there exists a

[oo]
countable infinite orthogonal set {gi}l of non-zero vec

tors -in H such that 0fC*—)Z(gi)= H.
1

In fact, let X be a countable set such that [E(0)X:0¢e§
= H. If G is the subspace svanned by X, then clearly G
is a generating subspace of H. Consequently,by hypothesis
G is infinite dimensional. Let {hi}? be an orthonormal

basis of G. Let 9,= h Since Z(gl) # H, for the ortho-

1°

gonal projection P1 on Z(gl), P1 # I. Let i1 > 1 be the

smallest integer such that hi ¢ Z(gl).By hyphotesis such
1

i1 exists. Let g,= (I - Pl) hii Then 9, £ o, Z(gl) L

z(g,) and Z(gl)(D z(g,) # H. In the K th stage  there
k
exists the least integer i, > i, _; such that hik# E: o

Z(gi). Let Pj be the orthogonal projection on Z(gj), j=
k
—_ - ]
1,..,k. Then gy .= (1 in)hik¢ o and Z(gi) A Z(g} )
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i#14i', i, i'=1,2,..., k + 1. Continuing this process
indefinitely, we obtain a segquence {gn}f of  non-zero

vectors in H such that his:'ZGB Z(gn) for all i eN. Thus
1

H= 1 QD z2(g ) -
1

By affirmations 1 and 2 there exists a countable set of

non-zero vectors {yi}i N € N U {o} or N ==, such that

=0’

N
H= I Z(y;). If N = o, then clearly x = y_ serves the
i=o

purpose. Therefore let N > o. Replacing the Borel sets

N
‘ - U
by members of g,oo by X and o ,j=nej, ne IN, n <Nand
ini _ 1 - |
defining x = n£0 o0 E(on)yn in the proof of Lemma X.5.7

of [3] it can be shown that the vector x satisfies the

properties mentioned in the lemma.

THEOREM 2.5. H has an OSD relative to E(.). if and only
if E(.) has the CGS-property in H. If H 1is separable,
then every spectral measure E{(.) in H has the CGS~-

property.

PROOF. By Proposition 2.2 the condition 1is necessary.
Conversely, let E(.) have the CGS~property in H. Then as

shown in the proof of Lemma 2.4 there exists a countable
N
set {yi}l, N ¢ N U {«}, of non-zero vectors in H such

N
that H = I @) Z(y;). By Lemma 2.4 and an argument si
1

milar to that in the first part of the proof of Lemma
-k

X.5.8 of [3] it can be shown that H has an 0SD H=I @
1
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Z(xi),k € N U {~}., Hence the condition is also sufficient

COROLLARY 2.6. Let S be the 0-algebra generated by a
countable family of sets. Then H has an OSD relative to
E(.) defined on § if and only if H is separable. Conse
quently, if T is a normal operator on H, then H has . an

OSD relative to T if and only if H is separable.

N .
(1)

z :

: J

DEFINITION 2.7. Let Hi= ). Ni e IN U {«} be

i
(:) Z(x
J=1

0SDs relative to Ei(.), i=1,2. We say that these:Q0SDs are

(1)) (2)

equivalent if N1= N, and pl(xj Epz(xj ) for all j.

2

N
LEMMA 2.8. Suppose H= ¢ (® Z(xk), N € INU {2, is an
1
0SD of H relative to E(.). Let {yi}j_sJ be a countable
set 0f non-zero vectors in H such that Z(yi) l,z(yi)for

i# 1i'. Let Yix be the orthogonal projection of v in

Z(xk); M= D(xk), T p(yi) and VK= p(yik). If Uk is

the isomorphism described in Lemma 1.1 with respect to
1

dv, N du
. 1 2 k )
_1i_ ¥ _
N d

. . T - _ . N |
(1i1) k=1fik fi'k o aﬁ; 0 Hy a.e. for i # i',i,i'e J.

2
PROOF. By Lemma 1.1. p(yik)=||E(')kaikl|=HUkXL)fﬂJ|2=
2
(’X(.)fik ||2 and hence
du
- 2 k
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dv.
. , 1k _
as uk <<ul by hypothesis. Therefore, vlk<< ul and - d 1_
2 duk . ' N .
= |fik| o EEI p, - a.e. Since y,= L ¥, and Z(xk)'L
: N
f ! i ] = BV RS
Z(xk,) or k # k', it follows that vi}‘p(yi) kélvik‘As

Vix <<Hy for all k, we conclude that yi§<’ul Then by
- N dv

the monotone convergence theorem Sé(kﬁl dul ) du,
N dvik g ; : .
657;— dlﬁ: K21 vik(6)= vi(é) for 6; S ;?d hence,
dv,’ N dv, N dy
TR ol P ol G, My ae
M1 =t 9 = Ha

Following an argument quite similar to that onAp.260 of

[12] we have

duk

§ 2 f, ¢
I £, T _k ‘\ |
s k21 fix firk © ) T kzl sfix fivk © &, IV fer

§ e S.
As Z(yi)J_ Z(yf) for i # i', it follows that

N
0= (E(8) yyr ¥3.)= Ly (EC)Y 0 Vi)
N
= I (E(O)U £ U E )
N
N du
= Z f _]S 1
kE1 3 FixcFiog © dy, M1
=g G Ly £ T o dul) vy

Since § is arbitrary in S, this proves (ii).
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THEOREM 2.9. Let E(.) have the CGS-property in H. Then
any two 0SDs of H relative to E(.i are equivalent.
N N

PROOF. Let H=Zl@ z(x,), H= 2103 Z(y;), N, N'e N U {=},
be 0SDs of H relative to E(.). We augment the sets {xi}
and {yi} by the introduction of countably infinite new
elements, each equal to the null element, if N or N' is
finite. Then it suffices to show that O(xi) = Nyi) for
all i € IN, since from the hypothesis that o(x1)>>o(x2)

>>... and p(y1)>> p(y2)>> ... it follows that N = N'.

Let uy = p(xk) and v = p(yk), k ¢ IN. By Lemma 2.8 My <<

k k
Vl and Vl <<ul so that Hy = Vl. Suppose we have known
that My = vk for k= 1,2,...,n. If possible, let un+1(o)
= o and vn+1(o) > o. Because of (i) and (ii) - of : Lemma

2.8 the argument on pp.261-262 of Stone [12] can be suit

ably modified to conclude that there exists s, ¢ ¢ such

that
dv. n d.
1] 2 Hk .
= 3 _"k -
(1) o < (g7 (so) WL UE 1T o ay, (S0} 1= 1.2,.,m41
and
rZ’ 3 duy
_ , s s .
(2) o = k=1(fik fi'k o a;;)(so), i#£4i', i,i'=1,2,.,n+l.
duk X n .
Then the vectors Xi— (fik(so)(azz(so)) )k=1,1=1,2,.,n+1

are n+l non-zero vectors in € by (1) and they are mutually

orthogonal by (2). This contradiction proves that vn+1«




-15=~
Hyag® By symmetry, u <<V . The proof is complete by

n+1l n+l

induction,

The above theorem justifies the following terminology.

DEFINITION 2.10. If E(.) has the CGS-property in H, let
N

H= I ® Z(x;) be an OSD of H relative to E(.). ThenN is
l R

referred to as the 0SD-multiplicity of E(.). When N= &,
we say the E(.) has the OSD-multiplicity SUO. If E(.)is
the resolution of the identity of a normal operator T on-
H (necessarily separable) then the 0SD-multiplicity of

T is defined as that of E(.).

The following proposition is obvious.

PROPOSITION 2.11. If El(.) and EZ(.) are unitarily
equivalent and if one of them has the CGS-property,then

the other too has the CGS-property.

THEOREM 2.12. Let El(.) and E2(.) have the CGS-property
in H, and H, respectively. Then E,(.) and E,(.) are uni
tarily equivalent if and only if any two OSDs of Hy and

H2 relative to El(.) and E2(.) respectively are equivalent.

PROOF. Suppose U is an isomorohism from H, onto H such

1 2
N
-1_ — Zl _
t;]hat UE, (.)U "= E,(.). Let Hj= 551 @zl(xj) (¢) and H, =
2
j£1CD Zz(yj) (8) be OSDs relative to E;(.) and E, (.)

N
1
1 — = Z
respectively. If wj ij then clearly H2 j=1€DZZ“%)(Y)




3.
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and pz(wj)= pl(xj) for all j. Consequently, (YY) is an
OSD of H, relative to'Ez(.). Then by Theorem 2.9,N;= N,
and p2(wj)5 pz(yj) for all j. From this it follows that

() and (B) are equivalent.

Conversely, suppose the 0SDs (a) and (B) given abve are

equivalent. Then N =N, and Dl(xj)E Dz(y ) for all j.Now

1
by Lemma 1.2 there exists an isomorphism Uj from Zl(xj)
N
- . -1
. = =12
onto 'z, (y4) such that UsBy (1)US7= Ep(.). IfU 1®Uj ,

then clearly U is an isomorphism from H1 onhto H2 such
_1_

COROLLARY 2.13. Let H,,H, be separable Hilbert spaces.

172
If T, i= 1,2 are normal overatorsonH;  then T, and T,

are unitarily equivalent if and only if any two OSDs of

H1 and H2 relative to T1

lent.

and T, resvectively are equiva

PROOF. This is immediate from the above theorem and Lem

ma 1.3.

A GENERALIZATION OF HELLINGER'S THEOREM. Making .use of
Theorem 2.12 we obtain an extension of Theorem 7.7 of
Stone [12] to spectral measures with the CGS-property
which are defined on the 0-algebra B(X) of a Hausdorff
topological space X. Since the original version of the
said theorem in [12] goes back to Hellinger, our exten-

sion is referred to as the generalized Hellinger's




-17-

theorem.

DEFINITION 3.1. Let X be a Hausdorff topological space.
Let E(.) be a spectral measure on B{X) with the CGS-proverty
in H. The discrete part p; of E(.) is the set {te X

E{t }) # o }and the contimuos part cp of E(.) is the
set X\ P M (E) denotes the subspace E(pg)H and ‘YUE)

denotes E(cE)H. For spectral measures Ei(') on B(X) the

corfesponding subsvaces will be denoted ubysnﬂEi) and

N, .

Unless otherwise stated all the spectral measures will
be assumed to have the CGS-property throughout the rest
of this article. In this section E(.), El(.), E2(.)will

have domain B(X), X a Hausdorff space.

PROPOSITION 3.2. If Pp # @, then there exists acounrtable

orthonormal set {yJ} _; such thatM(E)= , EJ@ zZ(y,) -

PROOF. If t ¢ P and x € E({t })H, clearly E(ag)x= o if
t ¢o and E(0)x= x if te 0. Therefore, [x]= 2(x). Since
E(.) has the CGS-property in H, it follows that for each
t e pg, E({t}] )H has at most dimension ﬂSo and further,
Pp is itself countable. From the countable additivity of

E(.) it follows that, I @ E({t} )H= E(p_)H=W(E). Fram
' EPE E

this the proposotion is immediate.

PROPOSITION 3.3. Let P # 0, E(cE) # 0. Then there exist
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countable orthonormal sets {xi}T and {yi}T r N, N' ¢ IN

U {o} , such that

N
(i) WE=I@®zx)
1

and
Nl
(ii) M(E)= I ® Z(yi) is an 0OSD of DUE) relative to
1
E(-)E(CE).
PROOF .
(i)  Is immediate from Proposition 3.2.

(ii) Follows from Theorem 2.5.

The following theorem is a generalization of Theorem 7.7

of [12].

THEOREM 3.4. (GENERALIZED HELLINGER'S THEOREM). For the
spectral measures El(.) and E2(.) on B(X) with the CGS-

property in H, and H, respectively, let {X;J)}i=% and

. N'!
{y{j)} ) be the orthonormal sets respect to Ej(.) as
i=1
described in Proposition 3.3, j= 1,2, where some of
these sets can be absent if QﬂjEj) or QQ(Ej)isthe null

vector, j= 1,2. Then El(.) and E2(.) are unitarily equi

valent if and only if all the following conditions hold

(1) p # § if and only if p_ # 8 and E, (c_.) # oif and
E, E, 1'7E,

only if E2(CE2) # 0.

N
(ii) There exists a biyective map ¢ from {xél)}ki onto

1

¢
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N
{XQZ)}IZ such that xél) and @(xél)) belong to

El({t} JH, and E2({t} JH, respectively for some t

1 1
(iii)If E,(c_. ) # o, then N!= N! and p (y(l))E o (v(2))
1 E; ! 1 2 14k 2k
for all k.
PROOF. If there exists an isomorphism U from H1 onto H2

such that UEl(.)U-1= E,(.) it is easy to verify (i) and

(ii). By Theorem 2.12 and by the fact that E, (.DE; (°g )
1

are unitarily equivalent spectral measures on Ei(c YH.,

E. 1
1 .

i= 1,2, the condition (iii) holds.

Conversely, let (i), (ii) and (iii) hold. IfM&(El) #£ o,
then by(i)ﬁ&(Ez) # o and by (ii) and Proposition 3.3
there exists an isomorphism Uy from ﬂﬁjEl) onto Wﬁ(Ez)

such that U x(1)= ¢ xéz). From the discrete nature of

17k
pEi it follows that U,E; (0)x= E,(0)U;x, X s:QﬂUEl). If
El(cE ) # o, then by (i) QQ(EZ) # o. Now by Theorem 2.12

1

and (iii) there exists an isomorphism, U2 from %Q(El)

onto "\ﬁ(Ez) such that.

UsEq (L) Ejleg )= E,(.)E, (cp U

1 2
If U= U1<:> U2, then U is an isomorphism from H1 onto

1 1'"E 2

H. such that UEl(.)U'1

> = E2(.).
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COROLLARY. 3.5. Let Ti be normal operators on Hi, Hi
separable, with the correspondin§ resolutions of the
identify Ei(.), i= 1,2. Then T1 and T2 are .. .unitarily
equivalent if and only if the conditions (i), (ii) and

(iii)of Theorem 3.4 hold for El(.) and E2(.).

NOTE: 3.6. Corollary 3.5. is the generalization of Theorem

7.7. of [12] to normal operators.

MULTIPLICITY FUNCTIONS. Because of the ' availablity of

Theorem 3.4 we are able to generalize Definition 5.2 of

Stone [12] to spectral measures E(.) on B(X). Also = we
o]

introduce multiplicity functions mp and m on X with

respect to Pg and c_, respectively and study some of their

E

elementary properties. X is again a Hausdorff space.

DEFINITION 4.1. The multiplicity function m on X relative
to Pg is defined by
{o if t ¢ pg

mp(t)=<

When E({t} )H is infinite dimensional we say mp(t)=§Uo.

When E(.) is the resolution of the identify of a normal

operator T on a sevarable Hilbert space H,the function

mp on ¢ is called the multiplicity function relative to

the point spectrum of T.

NOTE 4.2. Since E({t})H is of countable 'dimension for
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teEp o mp(t) cannot assume a value greater than NO
P X

Theorem 3.4 can be reformulated as follows for its sub

sequent apnlications.

THEOREM 4.3. Let méj) be the multiplicity function rela

(.) and E.(.) on B({X) are

tive to Py~ j= 1,2. Then E 5

J
unitarily equivalent if and only if

1

S (2)

(1

). p P

(ii) Any two OSDs of QQ(EI) and Qﬁ(Ez) relative to
El(.)E(cEl) and E2(.)E2(CE2) respectively are equi
valent.

DEFINITION 4.4. The element t= tO in X is called (i) a

point of constancy of E(.) 1f there exists an ovben set
U containing ts such that E(U) = o; (ii) a point of
continuity of E(.) if E({tof)= o and for every oven set

U containing tos E(U)# oand (iii) a noint of discontinuity of

E(.) if E({to? ) # o. The set of all points of continuity
of E(.) is denoted by CE;tiBt of all pointsof discontinuity
of E(.) by PE and that of all points of constancy bypE.
NOTE 4.5. If E(.) is the resolution of the the identity

of a self-adjoint operator T on a separable Hilbert space
H, then : =" o in IR 1s a point of oconstancy(resvectivively ,
a point of continuity, a point of discontinuity) of E(.)

1f and anly if it is so with respect to E.=E((->=,4])1in
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the sense of Definition 5.2 of [12].

PROPOSITION 4.6. Let X be a locally compact Hausdorff
space. If E(.) is a regular spectral measure on:B(X)with
its spectrum A(E) (see Definitions 15 and 17 of  [2]),

then

(1) pg= Pui
(ii) py= X \A(E);

(iii) CE= ME)\ Bg.

Consequently, when E(.) is the resolution of the identity
of a normal operator T on separable Hilbertrspace H, then

P=0 (T), P
p( )

. p(T) and CE= o, (T).

E=
PROOF. Since E({t} ) # o if and only if te pgs (1) holds

By Theorem 2.3 of [2], E(X \A(E))= o. As A(E) is closed

it follows that X \A(E)Cp On the other hand, if t ¢

E°
PE then there exists an open neighbourhood U of t such that
E(U)= o. Thus by Definition 17 of [2], U< X \ A(E) and
hence (ii) hods. By the definition of Ciland Theorem?2.3

of [2], C « A(E). But, for t ¢ (%, E({f} ) = o and hence
S

Cg < ME)\ pg. Conversely, if t e A(E)\ pgthen E({t})
= o0 and for every open neighbourhood U of t, E(U) # o

by the definition of A(E). Hence t € CE'

Clearly, Pp= op(T) and E(.) is regular. As cr(T)=ﬂ and

A(E)= o (T), the second part follows from the firsst.
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Motivated by Definition 7.1. of [12] we give the following

N

DEFINITION 4.7. If WWE)= Z@ 2(y;) is an 0SD of WR(E)
1

relative to E(.)E(cE), then the multiplicityfunctionn%

relative to g is defined on X as follows:

mc(t)= o it YWE) = o or if YYE) # o, and there exists
an open neighbourhood U of t such that E(U)y1= 0; mc(tk
=ne€¢ IN if Yy exists for k= 1,2,...,n and for every
open neighbourhood U of t, E(U)yk #;o for k= 1,2,..,n

while N= n or vy exists and E(U)y = o for some open

n+1 n+l

neighbourhood U of t; mc(t)=fU6 if N= » and for every

open neighbourhood U of t, E(U)yk # o for all k € IN.

since WE) is invariant with respect to E(.), by Theorem
2.9 any two 0SDs of WYE) relative to E(.)E(cg) are equi
valent and hence m, is well-defined. When E(.) is the
resolution of the identity of a self-adjoint operator-T
on a separable Hilbert space H, clearly m, coincides with
the multiplicity function given in Definition 7.1 ~ of

(12].

DEFINITION 4.8, If E(.) is the resolution of theidentity
of a normal overator T on a separable Hilbert space H,
then m, is called the multiplicity function of T relative

to its continuous spectrum.

By Proposition 4.6, E(cE)= E(OC(T)) and hence we are

justified in using -the above terminolooy.Clearly, the
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multiplicity functions mp and m_ are unitarily invariant.

PROPOSITION 4.9. Let X be a locally compact Hausdorff
space. For a regular spectral measure E{(.) on B(X) the

)
following assertions hold:

(i) pE={ te X:m (t)> o} .
(ii) {t e x: m, ()= o and m, (t) >0} € A (E) \ »pg.

(iii)X N\ ME)<! t: mp(t)= o = mc(t) 1< (X\NA(E)) U (f»E

\Fﬁﬁ (In the above, A(E) 1is the spectrum of E(.)).

Consequently, if E(.) is the resolution of the identity

of a normal operator T on a separable Hilbert space H,

then (i), (ii} and (iii) hold if we replace Pp A(E) and
X \A (E) by op(TL o(T) and p(T) respectively.

N
PROOF, Let WhE)= @ Z(yi) be an 0SD of YWE) relative
1

to E(.)E(CE). (i) is obvious. If mp(t)= o and mc(t)> o
then there exists an open neighbourhood U of t such that
E(U)y1 # o and hence by Theorem 2.3. of [2], t € A(E)and
t ¢ pg. Thus (ii) holds. Since /L (E) is closed, X\A(E)
is open. By Theorem 23 of [2], E(X N\ A(E))= o and hence,

X \ AME)<{ t:mp(t)= o = mc(t)} . If mp(t)= o = mc(t),ﬂ%m

clearly te X \ A (E) whenever Y}(E)= o. Suppose M{E) # o.
Then there exists an open neighbourhood U of t such that
E(U)y1= 0. If there exists an open neighbourhood V of t

such that E(V)=o,then t< X\ . (E)by Proposition 4.6. On the other
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hand, if, for every open neighbourhood V of t, E(V N U)
# 0o, then as E(VA U)y,;= o it follows that E(VA U)YYE)
= o and therefore, E(V N U)R(E) # o. This proves that

vaun P # @ so that t ¢ §E\ P -

The last part is obvious from the first and Proposition

4.6.

UNITARY INVARIANTS OF SPECTRAL MEASURES . ON PRODUCT
SPAéES. Suppose X, and X, are Hausdorff topological
spaces and E(.) is a spectral measures on B(xl) X B(xz)
with the CGS-property in H. When E(.) satisfies some
additional properties, we obtain a complete set of
unitary invariants of E(.) in terms of the induced spec
tral measures EX{') and Exé.) on B(Xl) and B(XZ) res-
pectively. As a consequence of this study we obtain a

complete set of unitary invariantes for certain class of

normal operators on separable Hilbert spaces.

Let Si be a o-algebra of subsets of X, ,i=1,2. E(.) will
be assumed to be defined on the o-algebra Sl X Sé. No
topological properties on Xi are assumed unless other-

wise stated.

NOTATIONS 5.1. EX(.): Sl“> B (H) is defined by EX(O)=E(0 X
1 1

X5)o Egll): 32+B(H)isdefinedbyEX2(o)= E(X; x0).

%

Clearly, E_,(.) is a spectral measure on Si. When E(.)

1

X
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is the resolution of the identity of a normal operator
T on H then as B(Hg )= B(IR) x B(IR), we define the
spectral measure E(.) on B(IRZ) by é(a)z E({u + iv :

(u,v) € o}) and the spectral measures ER(.) and EI(.)

" as below.

Eg(0) = E(c x IR)

E_(0) E(IR x o), o €B(R).

I

Then ReT and ImT have their resultions of the identity

ER(.) and EI(.) respectively.

For a spectral measure E(.) on S1 x S, and for a vector

w £ H we define

w
R‘X.= {e ¢ Si: Exfe)w =0 !}, i=1,2.
i i
In the case of two spectral measures E;l)(.) and E§2)0=
S S : . W, . = (3) _
;¥ , we define similarly RX},j { engi. EX‘(e)wi

1 1

o}, i= 1,2, j=1,2. By the countable additivity of EX(J
i
evidently RV;( are o -rings.
i

DEFINITION 5.2. A vector w in H is said to be Well-bg
having with respect to E(.) on Sl X 82 if, given O ¢

Sl X .S2 with E(0)w= o, there exists 8 ¢ Zw= S(Cw) such

£ =1 . < w
that ¢ € ¢, where Cw {a CXl X X2. Ac Rxl

} and S(G;) is the c-ring generated by CW

X 32 or

W
X,

When E(.) is the resolution of the identity of a normal

A € S1 x R
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operator T on a separable Hilbert space H, tehn  w 1is
said to be well-behaving relative to T if it is so rela

tive to ﬁ(.).

PROPOSITION 5.3. Let E(l)t) and E(zh.) be spectral measures

on Sl XSZ-If U is an isomorphism from H, onto H., such that

2

is well-be

1
UE(l)(.)U—1= E(z)(.), then a vector w in H
(1)

1
having relative to E if and only if UWw is so: re

(2) (y.

lative to E

, from which

PROOF. It is easy to verify that c(1) C(i)

w U
the result follows.

PROPOSITION 5.4, If E(.) is a spectral measure on Sl X

32 and if for 0y € Sl X 32 there exist a vector w in

H and a set 6 ¢ Z such that 0c_ <« & then E(c_)w = o.
o \ o o o

PROOF . R; are g-rings contained in Si,i=1,2. Besides ,

i
for eER; and 0 ¢ S

1 ' 2
E(le x og)w= EX(o)EX (e)w= o.
2 1
Then by the additivity of E(.) we have E(o)w=o for ¢ in
the ring Rl generated by the semi-ring/ e x §: e ERXW ,
1
§ € S}. Let M={o ¢ Rxwx 52: E(0)w= o -. Then Rlc MC

1

’R; XSZ' If {%]}is a monotone sequence in M with 0o =
1

= lin 5_, then|| E(o)w [|°= 1im | E(c_)w!'®= o so that
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Let E(l)(.) and E(2)( ) be well-behaving in H, and H,

respectively. Let ZJ(D Z (y(J))'be an OSD of9YUE(J)),

relative to E(j%.) E(j%c j), j= 1,2. Then E(l%.) and
E

E(Z%.) are unitarily equivalent if and only if

. (1) _ _(2), (1) _ _(2) (3) (3)
(i) mp = mp jomgTT=mg where mp ;Mg are the
multiplicity functions of E(j)(.), j=1,2.
. (1), - (2), . (1), = (2)
(ii) » (1)(y ) (2§Y ); P (1)(y )= P (2)(Y )
"Xy X1 Xz "X,

for all those k for which they are significant.

Consequently, if E(j%.) is the resolution of the identity
of the well-behaving normal operator Tj in Hj(separablé

j=1,2 then Tl and T, are unitarily equivalent if andonly

if (i)and(ii) hold,where E(J% ) and E(]% ) are revlaced
l 2
by E(J% ) and E(j% ) respectively and E(]k ) by E(])( )

for j= 1,2.

PROOF. From the proof of Theorem 3.4 it is clear that

from YWXE (1) ) onto%(E (2))
(2)

there exists an isomorphism Uy
such that U E(l)(.)U_l= E2(.) if and only if m(l)=

1 1 jo) D
In the light of 2.12 there exists an isomorphism U

(l)) onto%&(E( )) such that U L(l)(.)U—l=E(2)

2
(1), - (2)
V=P (2 )

2

from YYE (.)

if and only if N;= N, and p (1§Y

1 for

all k. Thus it suffices to show that Nl N2 and p Uj(y(l)

(2), (1)_ (2)Eand(1l,

)

=p (2)(y for all k if and only if m,
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(1) _ m(z) implies that N

C C
(1) _ (1)

k

holds. Clearly, m = N,. If (ii)

1 2
(.) is well-behaving,

holds, let E(l)(o)y o. As E

by Proposition 5.6 yél) are well-behaving relative to
E(l)(.) and hence there exists 6 € Z1) such that o < 6.
y (1)
k
On the other hand,asr(ii)holds,Eél)(e) yé1)=o<:=>E;2)(e)
1
(1) (2) 1 0*
Y = O and hence X 1 =%x o - Similarly, X 1 =
1’ 1’ 2’
y 2 SORNEY W@
RX2,2' Consequently, C(1)= C(2) and hence (1Y~ (2)
Y Yk Yy Yk
Thus 6 ¢ Z(%é) and therefore, by Proposition 5.4.
Yk
(2) (2) _ (2) (1)
E (o)yk = o0 so that pE(z)(yk ) <<pE(1)(yk ). By
symmetr ( (1)) << ( (2)) Hence ( (1))=
Yo L@ ¥k 2y k) Pp ¥k T
o) (2)(yé2)) for all k. The converse is easy to prove and
E

the details are omitted.

NOTE 5.8. If Ti are self-adjoint in the above Theorem ,
clearly they are well-behaving and condition (ii) is the

(1) (2))
k

same as 0 (1)(yk )= o (2)(y for those k for which
E E

they are significant.

UNITARY INVARIANTS OF SPECTRAL MEASURES WITH PROPERLY
INTERTWINED DISCRETE PARTS. The object of this section

is to give a generalization of Theorem 7.8 of [12] to

¢
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suitably restricted spectral measures on B(IRZ) and con
sequently, to certain class of normal operatorson sepa-

rable Hilbert spaces.

DEFINITION 6.1. Let E(.) be a spectral measure on BURZ)
with the CGS-property in H. Let E(l)(o)= E(ocx IR) and
E(z)(6)= E(IR x §), 0, § ¢ B(IR). We say that E(.) has

properly intertwined discrete part if E(.) is well-be-

having in H and

WHE) = [ME 1)), BE ) ],

If T is normal on H, H separable, with the resolution of
the identity E(.) and is well-behaving in H then we say

that T has properly intertwines point spvectrum if

WHE) = [ WU(EL) , WE,)].
EXAMPLES 6. 2.

(i)  Every self-adjoint operator on a separable Hilbert

space has properly intertwined point spectrum.

(ii) If X is locally compact, Hausrdorff and second coun
table, then for a finite measure u on B (X) such
that u({t} )= o for all t = X, the multiplication

2

has properly intertuined point spectrum in case

operator Mg on L,(X,B(X),u ) for g € Lg(X, B(X),n)

Mg is well-behaving.
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PROPOSITION 6.3. A well-behaving spectral measure E(.)
on B(IRZ) with Pg # ® has properly intertwined point

spectrum if and only if

(1) E(l)({t} )= E{(t,w): (t,ule py for te pE(1)
and

(i1) E 5 (tul )= E{(t,u): (t,u)e pp} for u EpE(z)
hold.

PROOF. The conditions are necessary. In fact, because
of symmetry, it suffices to verify(i). As Pp £ 0 and

E(.) has the CGS-property in H, let Pp = {(tj,uj): j €

J} ,J countable. For t ¢ PE , by hypovhesis, E(lf{t})H
(1)
< E(pg)H. Therefore, E(l)({t})= ;&g E(l)({t} )E{(tj /
)}l= . I E .,u.)} = E L,u.): t.= .
uj) j £3 (t x J:R)E{(tJ ujn {(tj uj) tj t}

Conversely, suppose (i) and (ii) hold. If (u,v)epE,then

E{(u,v)}JH€ E(u x IR)H= E ({u})H. Thus uep Simi

(1) E(l) =

larly, V e Pg and E{(u,v) } H C E(Z)( {v)H. Consequen-
(2) i

tly, WA(E) CZ[@M(E(I)),%M(E(z))] since P is countable.

On the other hand, by (i)

NS =
”&(E(l)) “

(HeA

‘@CD E(qy ({ul JHCE (pp)H.
(1) '

Similarly, by (11)
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%(E(z)) C E(pp)H.

Hence the conditions are also sufficient.

COROLLARY 6.4. If T is a well-behaving normal operator
on a separable Hilbert space with op(T) # ¢ and with the
resolution of the identity E(.), then T has vproperly in

tertwined point spectrum if and only if

(1) Eg({t})s= E(Aaop(T): Re)= t) for te o_(ReT); and

h

(ii) EI({u})= E()x eop(T): Imi= 1) for uce op(ImT)

PROPOSITION 6.5. For a spectral measure E(.) on B(IR)
with the CGS-property in H, the function \\EA X ||2 is
continuous and non-decreacing in IR for x eﬁUE).

PROOF. We shall prove only the continuity of||EA X |(2.

Since ||E(.)x ||2 is countably additive on B(IR),clearly

E, x is continuos on the right. For x ¢ YY(E) if \\Exxlf

is nor continuos at A then E({} } )x= Ex - E X # o
© © Ao o

so that A ¢ pp and x tMYE). This contradiction proves

the continuity of (’EAX \!2.

(1 (2)

THEOREM 6.6. Suppose E and E (.) are sepectral

measures on B(IR?) with properly intertwined discrete
(3) (3)

parts. Let my~ e Mg be the associated multiplicity
. N. .
functions of E1) (1), 3= 1,2. Let I3 @2(y{?) pe an
k=1 A
0OSD of %Q(E(j)) relative to E(j)(.)E(c ), j=1,2.

g ()
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Then:

el (3). (3) o
: [1° ana P ()M ElE )=

(=

, (]) _ (3)
(1) Py W=,

A Dyé])||2 are continuos non-decreasing real functions
on IR for j= 1,2 and for those k for which they are

significant.

.. (3) (3) - ]
(1i) Let fk,(l) and fk (2) be the real non-=decreasing.

functions on [o0,1] given by

(3) _ (3 _ (]') .
,(1)(x)— Fk,(l)(k) for x= ,(1)(X) ;

£(3) _ =(3) - pli")
£, (2) )= Py o) (M For x= Fyg) (A)
for j,j'e { 1,2}, 3 # 3' whenever k is the value

(1) (2)

for which they are significant. ThenE "'(.)andE"™ (.)

are unitarily eguivalent if and only if

(1) _ (2 (1 (2)

(a) mp = mp ; c = M. ;
(b) é?ll)’ fé 1 2) are continuos such that
1 . 1 .
(3) _ _ (3) .
S g0y ax= 1= §0 £,70,) ax, 3= 1,2

PROOF. By the hypothesis that E(]k.) have properly inter
twined discrete parts and by Proposition 6.5, evidently

(i) holds. The necessity of (a) and (b) can be proved as

on p.273 of [12]| once we note that (1) = (2), .
p [12] g(l)(yk ) QE(Z)(Yk )im

plies that p (1) (1} pE(m(yéz)) - 3= 1,2. The arguﬁent on

(J) J
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p.274 of [12] can be used to prove that (a) and (b)implv

(1), - (2)
pEgl)(yk )—oE_(z)(yk ),

J J

j= 1,2

for all k. This together with Theorem 5.7 shows that the

conditions are also sufficient.

COROLLARY 6.7. Let Ti be normal operators on separable
Hilbert spaces Hi with properly intertwined pointspaﬁia,
and the corresponding resolutions of the identity E(iRJ,
i= 1,2. Then T1 and T2 are unitarily equivalent if and
only if conditions (a) and (b) of Theorem 6.6 (ii)hold when

we replace EE%;(.) by Eéj) and EE%;.) bv Eéj)(-)-

TOTAL MULTIPLICITY OF SPECTRAL MEASURES. The concepts of
total multiplicity given for self-adjiont operators in
[1] is extended to spectral measures and is shown that
for a spectral measure E(.) with the CGS-property in H
its OSD-multiplicity given in Section 2 coincides with

its total multiplicity.

DEFINITION 7.1. A subspace G of H is called a generating
subspace of E(.) if[E(c)g:0 ¢ S, g € G]l= H. If E(.) has
a finite dimensional generating subspace in H, then the
minimum dimension of all the generating subspace of E(.)
is called the total multiplicity of E(.). If E(.)has no
generating subspace of finite dimension and 1if there
exists a generating subspace of dimension “%, then the
total multiplicity of E(.) is said to be 960. In all

¢




-36-

other cases the total multiplicity of E(.) is said to be
uncountably infinite. If E(.) is the resolution of the
identity of a normal operator T, then the total multipli

city of T is defined as that of E(.).

The following proposition is immediate from Affirmations

1 and 2 in the proof of Lemma 2.4.

PROPOSITION 7.2. The total multiplicity of E(.) is less
than or equaLtoﬂ% if and only if E(.)has the CGS-property
in H. Then a normal operator on H has total multiplicity

N < hjo if and only if H is separable.

THEOREM 7.3. 1If E(.) has the CGS-property in H, then its
total multiplicity and OSD-multiplicity are the same.
Consequently, for a normal operator T on a separable
Hilbert space its OSD-multiplicity and total multiplicity

coincide.

PROOF. Suppose the total multiplicity of E(.) is n ¢ IN.
Then by Affirmation 1 in the proof of Lemma 2.4 there
n
exists an orthonormal set {g.}n such that H= I (@& 2Z(g.).
i1 1 1
Then following an argument similar to that in the first

part of the prcof of Lemma X.5.8 of [3] we obtain a finite

set {yi}T of orthonormal vectors such that k < n, H=
k
E'CD Z(yi) and p(yi) > :(y2) >> 000 W>> p(yk). On the

other hand, from Definiton 7.1 it follows that the 0SD-
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multiplicity of E(.)= k »n. Thus in this case both the
multiplicities coincide. If the total multiplicity ofE(.)
is QUO, then as E(.) has the CGS-property in H, E(.) has
the OSD-multiplicity, which can not be finite by Definition

7.1. Thus its OSD~multiplicity is also MO.

Theorem 2.5 establishes the existence of an OSD of . H
relative to E(.) if E(.) has the CGS-property inH. If
the total multiplicity of E(.) 1is finite, starting with
a generating subspace of minimum dimension it is possible

to construct an 0OSD of H as is discussed below.

n

Let the total multiplicity of E(.) be n,ne IN. Let {qi} 1

be an orthonormal basis of a generating subspace G. Then

by Affirmation 1 in the vproof of Lemma 2.4 there exist
n
r s N _ 5T
orthonormal vectors lgifl such that H= 1 C) Z(gi). Let
n
Y= Zgi. It is easy to verify that o (y)<< p(yl) for all
1

y &€ H. If n=1, H= Z(yl) is an 0OSD of H. If n > 1, let

us suppose we have constructed a set of non-zero orthogonal

vectors {yi}T 1 < m < n such that

(i) p(yl) >> g(y2)>>-..*> _-a(ym)',

(11) Z(yi)_LZ(yi) for 1 # 1i'; and

(1i1) Ply) < oly ) fory: HOC @ 2zly;)).
1

If Pj is the perpendicular projection<muZ(yiLbyDefinitﬂmu
m m

7.1 # I and hence (I - ZPj g, # 6 for some k.

1 k

) 35173
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. m
Let hém)= (I -1 Pj)gk, k= 1,2,...,n. Then by Affimation
1

1 of Lemma 2.4 we can construct the orthogonal vectors
n

n m
ihk }k=1 such that H © K= lz@ z(hk ) ,where K= _-ZL ) Z(yi)'
T (m)
If yp41™ g=1hx - then vy # o, Zly ,,)L2ly,) for i=
1,2,...,m and ply) <<ply_,,) for all ye H & K. Thus

m+1

continuing this process, in the nth step we obtain non-*

zero orthogonal vectors {yi}? such that (i), (ii)and
’ n

(iii) remain valid for m=n. If H # X @ Z(y;), then by
1

Theorem 2.5 E(.) will have its OSD-multiplicity greater

than its total multiplicity. This contradiction. shows

n
that H= 2 @ Z(y;) is an OSD relative to E(.).
1

DEFINITION 7.4. If E(.) is a spectral measure on S, the
total multiplicity relative to E(.) of a projection p
commuting with E(.) is defined as that of E(.)P in PH.
If S= B(X), X a Hausdorff space then the limiting total
multiolicity of E(.) at a point t € X 1is defined as
lim m(U), where m{U) is the total multiplicity of E(U)

0 open

relative to E(.). Similarly are defined theixmalfmﬂxipli
city of a projection P and the limiting total multilvlicity

at t ¢ € relative to a normal operator T whenever P com

mutes with T.

TOTAL MULTIPLICITY AND MULTIPLICITY FUNCTIONS. In . this

section E(.) denotes a spectral measure on Bi{X), X a
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Hausdorff space, with the CGS-property in H. We study the
inter-relation between the total multiplicity of E(.)and

the associated multiplicity functions mp and m, of E(.).

LEMMA 8.1. If the total multiplicity of E(.)isnOEIDNJN%

then sup(m_(t), m_(t)) 2 n
tex P ¢ ©

PROOF. As E(.) has the CGS-property in H, the discrete
part P is countable. Without loss of generality,let pE#

#. Let pE={ ti}T, N € IN U {®} . For each t; there exists
(i)"p (84 (1) _

an orthonormal basis {xj %El 1. We define Xy o if

mp(ti) <3 <k, J & IN, where k= iiPX(mp(t),mc(t)).Slnce
p

m.(t) < k for all t € X, if WY(E)#o and YY(E)= I@ay;) is
i=1

an 0SD of YYE) then o < p= sup mc(t) <k. If QQ(E)= o,

teX
m, = O in which case we take y;= o. For p <j <k, j €

N we define yj= o. Let

1 _{n)
= x4 v,
ln xj y]

for 3 <k, j € IN. Then X3 # o for all j and clearly H=

C) Z(xj). Hence k 2 n

j=1 °
LEMMA 8.2. If E(.) has the total multiplicity no'i IN ,
then m_(t) - n_ for all t =« X.

P - o

PROOF. Suppose for some t = X, mp(t) > n,- By hypothesis
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and Affirmation 1 in the proof of Lemma 2.4 there exists
n, n_
an orthonormal set {gi}1 in H such that H= °@® z(g;)
1

Since mp(t) > ng there exists X # o in E({t})H such

that (x/ E({t})gi)= o for i=l,2,...,no. Then for 0 €

B(X) we have

(E(c)g;,x )= (gi,E(o)xo) (9 E(on{ t})xo)

(E(on{t} )g,,x )= o

for all i. Hence Xq L H. This contradiction proves that

mp(t) < ng

THEOREM 8.3. If E(.) isa spectral measure on B(X) and has
the CGS-pronerty in H, then the total multiplicity of

E(.) is equal to sup(m_(t), mc(t)). Consequently, if T
tex P
is normal in a separable Hilbert space H then its total

multiplicity coincides with sup(m_(%), m_(A))=sup (m_(}),
c
e € e o(T)

mc())).
PROOF. Suppose the total multiplicity of E(.) is n £ IN.
By Lemma 8.1 k= sup(m_(t),m(t) > n.By Lemma 2.2 sup m_(t) < n.
tex P c te X
Thus it sufficies to show that sup mc(t] < n. If M=
tecX

sup mc(t), then clearly E(.)E(CE) has OSD-multiplicity M
teX

and hence by Theorem 7.3 and Definition 7.4 E(CE)has to
tal multiplicity M. Obviously, the total multirlicity of

E(CE) is less than or equal to that of E(.) and hence
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M<n.

Conversely, if sup(mp(t), mc(t))= k € IN, then by Lemma
8.1 the total multiplicity n of E(.) is finite and from
the above it is immediate that k=n. Consequently,the to

tal multiplicity of E(.) is ‘“o if and only if k=f&o.

The last part is a trivial conseguence of the first if
one observes that mp(A)= o = mC(A) for A € p(T)by Proposition

4.9.

The following theorem gives a tonstruction of an OSD of
H relative to E(.), from the subspace ‘M(E) and the given

0sD of YA(E).

THEOREM 8.4. If E(.) has the CGS-property in H and is

1N

i1’
P

ME)= T © Z(yk) be an 0SD of (’)"((E) . Then for the vectors
1

k
{x.} defined in the proof of Lemma 8.1

j i=1
1 <:) Z(Xj)

is an 0OSD of H relative to E(.), where k= sur (m_(%t) ,
te X

defined on B(X), then let pE={t N ¢ IN U{»} and let

k
H= C

mc(t))= igpx(mp(t), p).

PROOF. It sufficies to verify

o(x1)>> “(xz)\>

Let E(c)xj= o, 1 <3 < k. Then
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1 (n)
1 o E(O)X;

o122

+ ¥y,= 0.
n E(o.yj o

(n)

Since E(o)xj
N

= E(o n{t })x(n) fn) or o it follows

J

that I % E(o)xén)e Wi (E), whereas 'E(s)yj e MM (E)The
n=1 N . )
refore, E(O)yj= o =n21 = E(O)xj . Then, E(o)yj+1 = 0
N 2
. N (n) | _ 1 (n) | 2
since |2y 5 E(O)xgqll = I, 2 HE‘U)Xj+1 e s
N N
~ 1 |2
nE 1 2HE(O) (n)" "nél = E(o)§?)|( = o, we " have
P 2
]|E(0)xj+1}: = o. Thus p(xj+1) <<p(Xj).

The following theorem deals with the 1limiting  total

multiplicity at a point t in a locally compact Hausdorff

space.

THEOREM 8.5. Let E(.) be a reqular spectral measure on
B(X), X locally compact and Hausdorff. If E(.) has the

CGS-property in H then the following assertions hold.

(1) Let t, be an isolated point of the spectrum .. (E) of

(.). Then the limiting total multiplicity ﬁ(to)

max(m (t , mc(to)). If to £ g then m(toJ = o =
mc(to)= mp(to).
(ii) For to e X \AI(E), m(to)= max(mp(to), mc(to)) =0.
(i1i)If £t - . (E) such that m (t )= sup (m_(t),m_(t)),
© P tex P ¢

then m(t )= m_(t ).
o p ©
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(iv) If t, € A (E) such that mc(to)= sup (mp(t),mc(t)) ,

t eX

then m(to)= mc(to).

PROOF. Since E(.) is regular, [ (E) is compact and by

Theorem 23 of [2] E(X N A(E))= o.

(1)

(ii)

Case 1. t

Let tO be an isolated voint of A(E).

o ° Pg-
Then there exists an open neighbourhood U of ts in

X such that UNA(E)= {to}. As E(U \NA(E))= o, we
m (t )

have E(U)= E( {t } ). If {x.}.g © is an orthonor
o 37 3=1 =
' m (to)
mal basis of E({t_})H, then E(U)H= jgl D 2 (%)

is an 0SD of E(U)H and hence by Theorem 6.3 the to

tal multiplicity of E(U) is mp(to). Consequently,
m(t_ )= lim m(V)= m_(t_). As E(U) YUE}E(t HWE)=
o Tty p © o
of
V open

= 0, mc(to)= o.

Case 2. to 3 cE.

Let us take U as in case 1. Then E(U)= E({tO} ) =o.
= = i

Therefore, mc(to) o. Also, mp(to) o. Further, for

every oven neighbourhood V of t such that Vv <« U ,

E(V)H= o and hence ﬁ(to)= o.

This is immediate from Proposition 4.9 and the fact

that X \ A(E) is open and E(X \ A(E))= o.
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(iii) Let t, € A (E) such that mp(to)= sup(mp(t),mc(t)).

(iv)

te X
Case 1. t_ ¢ Pg-

If U is an open neighbourhood of to’ then E(U)H=E (U
Apg) H @ E(UAN cp)H. Then by Theorem 8.4 the OSD-

multiplicity of E(.)E(U) is equal to mp(to) since

t, € Un Pp and mp(to)= igfém (t),mc(t)). There-

fore, E(U) has total multiplicity mp(to)by Theorem
7.3. Since U is arbitrary, it follows that ﬁ(to) =

mp(to).

Case 2. tO e M(E) N\ Pg -

Then by hypothesis m, =m, = O and hence H= {o!}.
Since H # o, this case is impossible.

Let tO ¢ A(E) such that mc(to)= i%?émp(t),mc(t))=

k (say). Then let g\ﬂ(E)= Z@Z(yi) be an 0SD of
1 :

M (E) relative to E(.)E(cE). By hypothesis for every
open neighbourhood U of tor E(U)yi # o for alli so

k
that E(U) VE)= 1 ® Z(E(U)y,) is an OSD of.E (U)Y(E).
1

Since mp(t) < k for all t ¢ X, by Theorem 8.4 it
follows that E(U)H= E(UNp I @ E(U) YR(E) has an
k

OSD of the form (@@ Z(x,) so that the OSD-multipIi
1

city of E(.)E(U) is k. Now by Theorem 7.3 we conclude

that fm(t )= k.
o]
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‘NOTE 8.6. In [9] we introduce the concept of total H-

multiplicity of E(.) and show that the totalmultilplicity
and the total H-multipvlicity of E(.) coincide when E{(.)

has the CGS-property.

ORDERED SPECTRAL REPRESENTATIONS (OSRs).An allied concept
of 0SDs, known as ordered spectral representations (OSRs
in abbreviation) of a Hilbert space H relative to é
spectfal measure E(.) 1is introduced and results analogous
to Theorem 2.5, 2.9, 2.12 are obtained for them. Also

we develop some auxiliary results to show that our concept
of OSRs subsumes that of Dunford and Schwartz [3] and

consequently, Theorems X.5.10, X.5.12 and X.II.3.16 of

[3] are particular cases of our results in this section

NOTATION 9.1. Let {uj} be a non-void family of non-

jed
. T T y
zero finite measures on S. If H jenIC) I?(X,S,uthhen

we denote by E(.) the set function on S defined by

N
DEFINITION 9.2. Let {u _},, Ne IN U {«=}, be non-zero
measures of o such that B> W22 e An isomorphism U

N
from H onto K= - @ L2(X,S,;h) is said to be an ordered
1

spectral reoresentation (an OSR, in abbreviation) of H

relative to E{(.) if

E(U Y = B,
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Besides, if E(.) is the resolution of the identity of a
normal operator T on-H.then we say that U is an OSR of

H relative to T. The sequence (un)N is called the measure
1

sequence of the OSR U.

PROPOSITION 9.3. If H has an OSR U relative to E(.)then

E(.) has the CGS-property in H.

1

PROOF. If (un)N is the measure sequence of U, let 'U; =

1
-1 . _ -1 R 1 . -1 =
U |L2 (X,S,W).By hypothesis, x = Un*1# orand UE@U" 1 =
Xg, 0 € S. In other words, UnE(O)xn= Xg from which it

N
follows that UZ(x )= L2(X,S,un).0xmemxx¢iyﬁk=%(DrZ(gn)

and hence the proposition.

THEOREM 9.4. H has an OSR relative to E(.) if and only

if E(.) has the CGS-property in H.

PROOF. The condition is necessary by Proposition 9.3.If

E(.) has the CGS-property in H, then by Theorem 2.5
N

there exists an OSD H==§3C)Z(xi) relative to E(.). If
1
p(xi)= My Ui the isomorphism from Z(xi) onto L2 x,S,
N -
W) given in Lemma 1.1. and U= z (3 Uss then evidently
1

N

U: H~> 2 ()I?(X,S, ui) is an OSR of H relative to E(.).
1

Thus the condition is also sufficient.

The following proposition is almost immediate.

PROPOSITION 9.5. If S is the o¢g—algebra generated by a

¢
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countable family of sets then for the spectral measure
E(.) on §S, H has an OSR relative to E{(.}) if and only if
H is separable. Consequently, H has an OSR relative toa
normal operator defined on it if and only if H .is

separable.

The next theorem deals with the inter-relation between

1

OSDs and OSRs.

N
THEOREM 9.6. Given an OSD H= I ® Z(x;) relative to E(.)
1 N
then there exists an OSR U: H. -~ i C) L2(X,S, ui)relative
to E(.) where u= p(xi). Conversely, given an OSR U: H -
N
z () LZ(X,S, ui) relative to E(.) there exists an O0SD
N -1 -1 -1
H= = @Z(xi), where x.= U,"1, U, = U | L,(X,$, u.).The

1
OSD thus obtained will be called the OSD induced by the

given OSR U.

PROOF. The first part is immediate from the proof of
sufficiency of Theorem 9.4. Conversely, if U is an OSR
of H with the measure sequence (un)?, by the proof of
Proposition 9.3, H= §® Z(xn) . Besides, p(xn)='| lE(.)xn{ (2=

2
-1 12 -1 42
HE(.)Un 1 ] _}\UnE(.)Un 111 —||x(.)||2 and hence

x ) )= ! = ), = =S (1)

9!
J

Then by hypothesis and (1) evidently p(x1)>> o(x2)>>...
N

and hence H= _ C) z(xn) is an OSD relative to E{(.).
1

¢




-48-

DEFINITION 9.7. Let Ui be OSRs of Hi relative to Ei(.)
. N.
(l)} 1

n n=1’' i=1,2,

(1)
n

with the corresponding measure sequences {u

We say that Ul and U2 are equivalent if Nl= N2 and
- 2
- U( )

= for all n.
n

THEOREM 9.8. Any two OSRs of H relative to a spectral

measure E(.) with the CGS-property in H are equivalent,
Consequently, any two OSRs of a separable Hilbert space
H relative to a normal operator T defined on it are

equivalent.

PROOF. If U, are OSRs of H relative E(.)with the corresponding
. N. N. .
measure sequences{uél)%il, let E= 3t @ Z(xél)) be the
B n=1

OSD induced by Us o i= 1,2. Then by Theorem 2.9, N.= N

1 2
(1) (2)

and O(xn ) = p(xn ) for all n. But, as in the proof of

Theorem 9.6, we have D(xél))= u;l) for all n,i=1,2.Hence

the result.

THEOREM 9.9. Let E,(.)and E,(.) have the CGS-property in

1 2

Hl and H, respectively. Then El(.) andEz(.)areuniUnjly

equivalent if and only if any two OSRs of Hl ‘and H2

(.) and E,(.) resvectively are equivalent.

relative to E 2

1

PROOF. Let U be an isomorphism from H, onto H, such that

. N.
-1_ (1), 1
= Ez(.). Let {Un .

1 2

UE, (.)U be the measure seguence

1 1
of the OSR U, of H. relative to E.(.), i=1,2. Let H.=
N, i i i i
ot @ Z(xél)) be the 0SD induced by U, i=1,2. Then by
n=1

’
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él)}i pz(xéz)) for all n. On

Theorem 2.12, N1=N2 andpltx
. ’ *

the other hand, by (1) in the proof of Theorem 9.6 we

(i), _ (1)

n )= Hh

have p; (x , for all n, i= 1,2. Hence U, and U

2

are equivalent.

Conversely, let Uy and U, be given -~as in the -above.

2

Suppose U, and U2 are equivalent. Thenxmiﬁfyhn;slightl&

the above argument it can be shown that the 0SDs induced

by U1 and U2 are equivalent. Consequently, by Theorem 2.12

El(.) and Ez(.) are unitarily equivalent.

COROLLARY 9.10. If T1 and T2 are normal operators on

separable Hilbert spaces H1 and H., respectively, then

2

T, and T, are unitarily equivalent if and only if any

two OSRs of H1 and H2 relative to T1 and T2 respectively

are equivalent.

In order to compare our concept of OSRs of a separable
Hilbert space H relative to a normal operator T defined
on it with that of [3] in Chapters X and XII we develop

some results below.

N
LEMMA 9.11. Let H= 1@ Z(z ) be an 0SD of H relative to
1

N
E(.). Then there exist non-zero vectors {xn}l in H and
; N .
a decreasing sequence {en}1 in §, e1 = X such that

(1) Z(zn)= Z(xn)

(11) p(zn)E p(xn)
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and

(1i1) p(x) (e)= o(x)) (e ), e €S

PROOF. Let u = p(z ). Modifying the notations and arguments
on pp.915-916 of [3] suitably, we can define the vectors

X, = lim xnk, n > 1 and X% 24 as in [3] and show that

(iii) holds for them, where {en}T is a suitably chosen

decreasing sequence in S .,

Since X € Z(zn), evidently Z(xn) C.Z(zn) and p(xn) <<
p(zn). Now, let p(xn)(0)= o. Then by (iii) O(xl)(O P\en)
= o. S;nce p(zn) <<p(zl), we have p(zn)(Or\en)= o. On

the other hand, from the definition of e, it follows that
p(zn)(X \en)= o and hence o(zn)(0)= o. Thus p(xn)= O(zn).

(i) es immediate from Theorem 65.3 of [5].

PROPOSITION 9.12. Let U be an OSR of H relative to E(.)
with the measure segquence {un}T‘ Then there exist a
decreasing sequence {en}§ in § with e;= X and a non-zero

finite measure von S such that

(1) \Ken)> o for all n;
(ii) v = u  for all n, where v_(e)= Ve r\en), e € S;
and

N
(iii)H is isomorphic with I (@ 1,(X,S,v)) under an
] ,

isomorphism V such that VE(.)V-1= E(.) and V is an
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OSR of H relative to E(.).

Conversely, letv be a non-zero finite measure on S and

let {en}N be a decreasing sequence in $ with e;= X and
1

v(en) > o for all n. If there exists ‘:an isomorphism U
N -1 -

from H onto K= 12 C)Lz(en,v) such that UE(.)U ~ = E(.),
1 _

where Lz(en,v)= Lz(en,S(\en, v), then U is an OSR of H

relative to E(.) with the measure sequence {vn}N , where

1
Vn(e)= V(e f\en), e S

PROOF. Let U be an OSR of H relative ‘to E{(.) with the

N
measure sequence (un)T. If H= I Q@ zZ(x ) is the OSD of H
1

induced by U, then by Lemma 9.11 there exits a decreasing

N . 1N -
sequence {en}l in S§ and vectors {yn}l such that z(x ) =
Z(yn), p(xn)E p(yn) and p(yn)(e)= p(yl)(e F\en),e e S.

Consequently, by Lemma 1.2 there exists an isomorphism V
N ~

from HentoL= I @ L2 (en, v) such that VE({. )V_1=E(-.«) , where
n=1

V=O(yl). Since (en) es decreasing, it follows that v >>

Viy 22 vy >>,..,where V= p(yn) and hence V is an OSR

of H onto L.

N
Conversely, if U is an isomorphism from H onto K= ZCI?(e,
1 - n

1

v) such that UE(.)U = E(.), then on defining vn(e)=v(eﬁ

en), e €8 it follows that Lz(en,v)= L2(X,S, vn)apd that

U is an OSR of H onto K with the measure sequence (un)N.
1
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DEFPINITION 9.13. If v, {en }ﬁ, and U are as inthe second
part of Proposition 9.12, then we‘say that U is a special
OSR of H relative to E(.) (respectively, relative to T

if E(.) is the resolution of the identity of" a normal

operator T on H, H separable).

THEOREM 9.14. Let E(.) have the CGS-property in H. Ther

(i) Every special OSR of H relative to E(.) is, in par

ticular, an OSR.
(ii) H has special 0OSRs relative to E(.).

(iii)If U and V are two special OSRs of H relative to

E(.) then U and V are equivalent as OSRs.

PROOF. The results are immediate from Theorems 2.5 and

2.9 and Proposition 9.12.

PROPOSITION 9.15. Let Ui be special OSRs of H relative
to Ei(.) with the corresponding measures uianidaﬂsting
(1)y Ny

n=]1

sequences {e , i= 1,2. Then the following state-

ments are equivalent.

(i) U, and U, are equivalent as OSRs.

1 2

(i1) N,= N, and ul(eél)A eéz))= o = uz(eél)A eéz)) for

all n and My = Mo

s _ - te) _
(111)N1 = N2 and (ul)n = (uz)n for all n, where (”i)n
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= ui(e (\ergl)): ec Sl i=1,2.

PROOF. The easy proof is left to the reader.

We give the following lemma for an arbitrary family of
measures on S, even though a countable family would . suffice
for the purpose of the present section. This we do for
our later need in the study of orthogonal spectral re-

presentations in [9].

LEMMA 9.16. Let {uj} be a non-void family of non-

jed
zero members of $. Let H= . L _@L,(X,S, u.). Then:
Jed 2 J

(i) E(.) is a spectral measure on S.

(ii) If g is an S-measurable function, let e = {t e X:
lg(t)| < n}, ne WN.
Then the operator T(g) defined by

T(g)£= 1fm Seng dEE

is normal, has its domain D (T (qg))={ f=(fj)j€ I

> 2 2

H: . I f.
J€J$X|g| £5 |

the identity Eg(.) is given by

d uj < w»}land its resolution of
B (9)= E(g71(0)), o € B(O).

(iii) T(qg) £= (gfj)js:J' f=_(fj)f e J € D(T(9)).

PROOF .

(i) By the Lebesgue dominated convergence theorem one

can easily prove that E(.) is countably additive in
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the strong operator topology.

By Theorem XVIII.2.17 of [3] and observing that the
projections are hermitian, we conclude that T(g) is

normal and has its resolution of the identity Eg(.L

Then the domain ?(T(g)) is given by

D(T(g))= (£ ¢ H: S|A|2d|Eg(A)f|lz < =}
S 2
=(ge B lam)] allE®IE]|? < ).

2
Let D= (£=(£;) (e 2l @ ? a0 <

jeJ‘ngS j

o } , Let f= (fj)j eJ be a’fixed vector inH. Clearly,
. 5 2 2
. = . = ., I . =
[ |E(.)£]] ; %J||X(.)fj||2 5 Ig (.)Ifj| d uy

Let vj e I be given by

2

vj(.)= S(.)lfj| d My

Then EXi: |£.12%. since . I v.(x)=||E(X)f||2=||f||2 <
duj 7 Jed 3]

© Jf: {§ ¢ J: vj(X) # o} is countable. Consequently,

2 ~ 2 2
Sx|g<t)| a ||E@E]|*= 1 W] av, (¢)

Je

2 -
= .z )
jia gx|g(t)| dvj(t)

5 2 o 2
5 Ls Sx|g(t)| Ifj<t)l A (£).

<

Thus £ --D(T(g)) if and only if £ ¢ D. This proves

(ii).

(iii)Let f be a fixed vector in D (T(g)). Given € > .o,
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k
there exists an S-simple function s= I kj Xg ¢ a0
: 1 j

]
oj.=¢forj¢j', GjCenandOjES for ‘all j
such that
[1£ Ilsup |s(t)- g(v)] <5 . (1)
tee
n
Obviously,

Se s(t)d E(t)f= (sf;), (2)

n eJ

Then by (1) and (2) we have

1§ gage —igx £0. . - (1<l gape - § samg |+
Sen )%n S Sen ®n

e ) oyt 2 2] B el 208
| |§ensdEf (%, £ ol (SeILg(t) st % al Ewel%)+

_ _ 2 2 5
+ ELJSX|S Xeng | |fj | du* < e

Thus

s f= £.). ¢ -
Senngf (5% £3)5¢ (3)

By the definition of T(g)f there exists n e IN such
that

j'\sxgdﬁf - Se gdE £ |l< (4)

n

wlm

for n > ng. Then by (3) and (4) we have

~

Pl -
1§y gaEs (9£) 5, 511< § +||((l—xer3gfj)

; g |l

(5)
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for n > ng - Since £ ¢ D(T(g))= D, by the conver-

gence of . 3 EJ&{9|2 lfjlz duj, there exists a

finite subset L of J such that

2, 2 2
. Z - i 0 .
TR xe ) a I a5l 2 an, .
2
¢ b 2 2 g
5 SX-IgI |fj| dus < § (6) |

Now, by the Lebesgue dominated convergence theorem

there exists n, > n, such that

2

) 2 2 2 <€
: Sx(l X, ) | g | |fj| aus < § (M

n

for n > n;. Then by (5), (6) and (7)

nggdﬁf—(gf.) | < e.

j"jed

Thus (iii) holds.

THEOREM 9.17. Suppose T is a normal operator on a se

parable Hilbert space H with the resolution of the

N
ll

decreasing sequence of sets in B (¢ ) with e

identity E(.). Let p ¢ Zand (en) Ne IN U{~}, be a

1=C and u(e)

> o for all n. Then an isomorphism U from H onto K =
N

: @ Ly(e /) is a special OSR of H relative to T  if
1

and only if the following two conditions are satisfied:

(i) wu(o)= o foro ¢ B(€) with o Ao (T)= @.

(1i) If v= UTU Y, let g(v)f= 1m fc gdF £, where F(.)
n

4
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is the resolution of the identity of V, o = {1 ¢

o(T):|g(A) | ¢<n{, and g is a - Borel measurable

function on 0 (T). Then for all such g the domain
D(g(V)) of g(V) is given by

N NS 2
Dlg(v))= {(£ ), €K: >i en| gl \fn

2 qu < =}

and

N _ N N
gV (£)7 = (gf) T, (£)] € Dlg(V)).

PROOF. By Lemma 1.3 V is a normal operator on K with the

resolution of the identity F(.)= UE(.)U™L. Besides, by

Lemma 9.16(i) E(.) is a spectral measure on B(f).

Suppose U is a special OSR of H relative to T. Then
UE(.)U-1= ﬁ(.) and hence E(.) is the resolution of the
identity F(.) of V. Since E(P(T))= o we can extend g to
the whole of € such’that g remains Borel measurable. Then
clearly, g(V)= T(g) andDlg(V))= D(T(g)), where T(g) is
as given in Lemma 9.16 with S being replaced by B (().

Hence by Lemma 9.16, (ii) holds. For ¢ e€B (f), with on

0 (T)= ® we have E(0)= o and hence (Xofn)N = o for all
1

(fn)T € K. In particular, for f1= 1, fn= o n > 2, we
have

2 2
N € du = (o).

N
o= (X4 £ 117 = So|f1

Thus (i) holds.

Conversely, if (i) and (ii) hold, let wus show - that

1 ~

UE(.)U "= E(.). If 0 € B (0(T)), then X5 is Borel measurable

¢
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and if g= Xy then
g(v)= S dr(.)= SOdUE(.)U—1= VE(©)U"L.
o
Then by (ii) D0(g(V))= K and for (fn)? e K we have

UE@)UTH(£)Y= 9V (£)) = (ef Y= (XEDT L (D)

For 0 € B(€), by (i) U(0ONO(T))=0 and hence by - (1)

. N _ N_ N _ -1 N _
EOVE )] = (XF)7= X (q)Ep) ] VE(OAODMUT ()] =

UE (0) U2 (fn)N

1 since E(p(T))= o.

This complete the proof.

NOTE 9.18. In the lightof Theorem 9.17, Definitions X.5.9.
and XII.3.4 of Dunford and Schwartz [3] are implied by
our Definition 9.13 for a bounded normal operator or
an (unbounded) self-adjoint operator on a separable Hil
bert space. Then by Theorem 9.14 and Proposition 9.15 ,
it 1is obvious that Theorems X.5.10, X.5.12 and XII.3.16
of [3] are particular cases of Theorem 9.8 and Cdrollary

9.10.

Due to Theorem 9.8 we are justified in introducing the

following concept.

DEFINITION 9.19. If E(.) has the CGS-property in H and
(un)? is the measure sequence of an OSR of H relative to
E(.) then N is called the OSR-multiplicity of E(.) .When

N=», we say that the OSR-multiplicity of E(.) is NB.The

¢
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ORS-multiplicity relative to E(.) ~~“of -a "projection P
commuting with E(.) is defined as‘that of E{.)P on PH.
If T is normal on H, H separable, then the OSR—multipli
city of T is defined as that of its resolution of the
identity. Similarly is defined the OSR-multiplicity of

a projection P relative to T if P commutes with T.

THEOREM 9.20. If E(.) has the CGS-property in H then its
OSR-multiplicity, OSD-multiplicity, and the total multiplicity

are the same.
PROOF. Follows from Theorems 9.6, 9.8 and 7.3.

NOTE 9.21. The concept of multiplicity given in Chapters
X an XII of [3] coincides with that of Definition 9.19
if T is a bounded normal operator or a self-adjoint

operator on a separable Hilbert space.

THEOREM 9.22. Let T be a normal operator on a separable
Hilbert space H. If the OSD-multiplicity of T is N ¢ IN
U “So’ then there exists an OSR U of H relative to Twith

N
N ; ; =
the measure sequence {un}l' Besides, if K= f CDI?(C '

B(C),un) then

-1 _
UuT U = MA

N

where D(Mk)= {f= (fn)1

N S 2 2 |
€ K: i Cll' lfn(l)| dun(l) < ®}
and

N N N
My (£ )= (A£_ )" , (£)° € D(My).
A'Tn 1 n’ n’, A
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The operator M is called the canonical ordered represen

tation of T on K.

PROOF . The result is immediate from Theorem 9.20 and

9.17 if we take g(A)= A, Xeo(T).

NOTE 9.23. Further discussion of spectral measures with

the OSR—multiplicityNO will be given in [9].
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