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Juan Rada and Manuel Saorin

Abstract

In this paper we tackle the so-called FGF and CF problems, that are still open and, explicitly
or implicitly, have been aboarded several times in the area of Module and Ring Theory. We give
new partial affirinative answers to both problems.

.

1 Introduction and terminology

In this work we address two open questions in Module Theory to which we shall refer as the FGF
problem and the CF problem, respectively:

FGF problemn: Suppose R is a ring for which every finitely generated left R-module embeds in
a free module. Is R a Quasi-Frobenius (QF) ring?

CF problem: Suppose thiat, for R as above, every cyclic left R-module embeds in a free module.
Is R left Artinian?

The first problem has been explicitly aboarded many times (see [5] for a survey on the answers
obtained until that time). It seems that, after [5], that problem had been forgotten until very
recently in which, starting with [7], there has been a renewed interest in the subject (see [7], [12]
and [14]). On the contrary, the CF problem seems to have been only implicitly tackled in the
literature. However, it seems that this second problem might be a key question to ask in order to
understand the FGF problem. Indeed, since for left Artinian rings the answer to the FGF problem
is affirmative (see [5, Theorem 3.2]), an affirmative answer to the CF problem would automatically
imply the same answer to the FGF problem.

In our present notes, we take both problems at once for the class of semiregular rings and, more
restrictively, for semiperfect rings. In section 2, we prove that the answer to the FGF problem is ‘yes’
for semiregular rings with essential socle, whenever there is some sort of “two-sided property” on
the minimal left ideals (Corollaries 2.2 and 2.3). This “two-sided property” disappears completely
as an hypothesis when R is semiperfect, which entails in particular that the answer to the FGF
problem is ‘yes’ whenever R is right perfect (Theorem 2.5).

In section 3, we try to get as much information on semiregular CF rings as possible, obtaining a
list of properties under which those rings satisfy the property that every simple R-module embeds
essentially in a projective module (Proposition 3.2 and Corollary 3.3). That in turns gives us a new
list of affirmative answers to both proposed problems (Theorem 3.4). The most important result
of the section states that every semiperfect left CF ring which is left mininjective is necessarily QF
(Theorem 3.5). As a byproduct of this latter result, we get that the QF rings are precisely those
for which every cyclic left (or right) module has an essential projective (prejenvelope.

We have devoted the last section of our work to study the semiregular left CF rings with the
property that [ R is finitely generated as a left ideal, for every minimal left ideal I of R. It turns
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out that, when moreover / R has a maximal right subideal and in particular when IR is also finitely
generated on the right, the mentioned rings provide affirmative answers to both problems (Corollary
4.3). As an application of this latter fact, we see that semiperfect left CF K-algebras R for which
R/J(R) is a finitely generated K-module are already left Artinian if /R is finitely generated as a
left ideal (Theorem 4.4). Going through some cardinality arguments we then prove that a countable
semiperfect left CF (resp. FGF) ring is left Artinian (resp. Quasi-Frobenius) whenever one of the
following two properties occurs: (a) J.(R) = 0; (b) IR is finitely generated as a right ideal, for
every minimal left ideal / of R (Theorem 4.6). In particular, every countable semiperfect left CF
(resp. FGF) K-algebra R with the property that R/J is a finitely generated K-module is already
left Artinian (resp. Quasi-Frobenius) (Theorem 4.7).

Throughout this paper, all rings are associative with identity and all modules are unitary. We
will write gM (resp. MEg) to indicate that M is a left R-module (resp. right R-mqdule). In
particular, gR and Rgr will denote the canonical structures of left and right R-module in R. The
lattice of submodules of g M will be denoted by L(rM).

Let R be aring and X a subset of g M, the left annihilator of X in R will be denoted by Ir(X),
or simply [(X) if no confusion appears. We use the notation NV S M meaning that NV is an essential
submodule of gM. The left singular ideal of R is the two-sided ideal {r €R:Ir) i)RR} of R
and will be denoted by Z(rR).

A module M is called finite-dimensional when M contains no infinite independent family of
non-zero submodules.

Let M be a left R-module. The transfinite socle series of M is defined as in [15, VIIL.2] and,
as there, Soc(M) denotes the largest term of that series.

A left R-module M is semiartinian if every non-zero quotient module of M has non-zero socle.
Thus, M is semiartinian if and only if Soc(M) = M. In that case the least ordinal v such that
M = Soc” (M) will be called the socle length of M and denoted by s.l.(M).

The Jacobson radical of a ring R will be denoted by J(R) (or simply J ). The right transfinite
sequence of powers of J is defined as follows: J! = J and, in case J# has been defined for every

ordinal 8 < a, we set J* = () J®, when ais limit, and J* = J*~1.J, when « is non-limit. There
B<a
exists a least ordinal v such that J” = J* for all ordinals « > v and we write J,(R) = J".

A ring R is semiregular when R/J is regular (in the sense of von Neumann) and idempotents
of R/J can be lifted to R [11]. This is equivalent to say that every finitely presented left (or right)
R -module has a projective cover.

A subset X of R is left (resp. right) T-nilpotent when, for every sequence z,,...,,,...of
elements of X there exists n € IN such that z;---2, = 0 (resp. z,, ---z; = 0).

A ring R is left mininjective [12], if every homomorphism f : I — gR, where I is a minimal
left ideal of R , extends to a homomorphism f : kR — pR. A projective preevelope of a
module g M is a homomorphism g : M — P, where P is a projective module, such that for every
homomorphisin h : M — P, where P’ is projective, there exists a homomorphism k : P —» P’
such that ko g = h . When, moreover, every endomorphism ¢ : P — P such that ¢pog =g is an
automorphism of P, we shall say that g is a projective envelope of M.

Following Faith’s terminology [5], a ring R is left FGF if every finitely generated left R-module
embeds in a free module. More generally, a ring R is left CF when every cyclic left R-module
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embeds in a free module.
Finally, we refer to [1] or [15] for all undefined notions used in this text.

2 Semiregular FGF rings with essential socle.

In this section we consider the FGF problem in the case that R is a semiregular ring with essential

socle.
Lemma 2.1 Let R be any ring.

(a) If M is a left R-module then J* - Soc*(M) = 0 for every ordinal o, where J* is the right

power of J (i.e., J*=J*"V. J if a is a non-limit ordinal).
(b) If R is a left semiartinian ring then J.(R) =0 and s.l.(J) < s.l.(R).
(c) If R is a left CF ring then R is left semiartinian if, and only if, Soc(rR) SRR,

Proof: (a) We use transfinite induction. The case o = 0 is trivial. Suppose it is true for every
ordinal less than «. We consider the two possible cases: .

(i) a = 3+1 (i.e. «is non-limit): then J*Soc*(M) = JPJSoc? T (M) C JPSoc? (M) = 0, since
J - (SocPt (M) /Soc” (M) = 0.

(ii) « is a limit ordinal: for every ordinal 8 < & we have J* - Soc®(M) C J? - Soc® (M) = 0,

consequently, J*Soc* (M) = J° - ( > Socﬁ(M)) =0.
B
(b) Since R is left semiartinian, R = Soc(grR) = Soc”(R) for an ordinal v = s.[.(gR). Hence
by part (a), 0 = J'Soc”(R) = J"R = J", and so, J.(R) = 0.
For the second part, we know that v is a non-limit ordinal, for otherwise R = Soc”(R) =

S Soc®(R) which implies that R = Soc®(R) for certain 3 < 7, a contradiction. So assume that
B<y
v =B+ 1. Then R/Soc?(R) is semisimple and so J C Soc?(R). Hence, s.l.(J) < s.L.(Soc®(R)) =

B<PB+1=sl(R).

(c) We only need to show that if Soc(rR) < rR then R is left semiartinian or, equivalently,
that every cyclic left R-module has non-zero socle ([15, Proposition VIII.2.5]). Let C be a non-
zero cyclic left R-module. Since R is left CF we can assume that C' is a submodule of R(™) for a
positive integer m. Then Soc(C) = Soc(R™) N C and since Soc(R™) < R(™) we deduce that
Soc(C)#0.m

Corollary 2.2 Let R be a semiregularleft FGF ring. The following conditions are equivalent:

(a) Soc(rR) S rR and I C Iz R for every minimal left ideal I of R and every ¢ € R such that
[z #0;

(b) R is QF.
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Proof: (a)=>(b) By lemma 2.1, J,(R) = 0. Let I be a minimal left ideal of R and 0 # = € J(R)

If Iz # 0 then I C IzR C IJ and consequently I C J.(R) = 0, a contradiction. Hence
Soc(rR) - J = 0. But then [(J) is an essential left ideal of R, which implies that J C Z(grR). The
result now follows from [14, Corollary 6].

(b)=>(a) Let I be a minimal left ideal of R and z € R such that Iz # 0. Then right multiplication
by z yields an isomorphism [/ % Iz which has an inverse ¢~! : Iz — I. The fact that R is left
self-injective gives us an element y € R such that ¢~'(az) = azy, for every a € R. Hence
I =1Im¢™! = lzy C IzR as desired. ®

We shall now give some examples where the hypothesis “I C Iz R for every minimal left ideal
I of R and every = € R such that [z #% 0 ” in the previous corollary is verified.

Example 2.1 (a) If Trr(l) = IR for every minimal left ideal I of R. In particular, when R
contains exactly one isomorphic copy of each minimal left ideal. To see this, let I be a
minimal left ideal of R and 2 € R such that Iz # 0. Then f : Iz — I defined by f(az) =a
(ael) is an isomorphism. Hence, I C Trr(lz) = IzR.

If R contains exactly one isomorphic copy of each minimal left ideal then for each such ideal
I of R and homomorphism f: I — grR, we have that f(/) =1 and so Trg(I) =1 C IR.

(b) If R is left miuninjective then Trgr(I) = IR, for every minimal left ideal I, by the proof of
(b)=(a) in the above corollary.

(¢) When every minimal left ideal of R is a two-sided ideal and, in particular, when R is com-
mutative. Indeed, if Iz # 0 the fact that I is a two-sided ideal implies that 0 # Iz C [ and,
by the minimality of I, it follows that / = Iz and so I C [zR.

Corollary 2.3 Let R be a semiregular left FGF ring such that Soc(rR) < rR. FEach of the
following assumptions forces R to be QF:

(a) Trr(l) = IR, for every minimal left ideal 1of R;
(b) R s left mininjective;
(¢) Every minumnal left ideal of R is two-sided.

Example 2.2 As said above, every left mininjective ring satisfies that Trgr(l) = IR, for every
minimal left ideal I of R. The following example shows that the converse is false. Take an
infinite field K admitting a non-epic homomorphism ¢ : K — K and K [X, o] the associated
skew-polynomial ring (i.e., with right multiplication by scalars: X - A = A9 . X). By taking
R = K[X,0]/(X?) and denoting by z the class of X in this ring, one immediately sees that R
is a local ring whose unique proper left ideal is J = Kz. Consequently, Trgr(/) = IR, for every
minimal left ideal I of R. If now A € K and ¢, : J — J maps ¢ onto Az, we readily see that it is a
homomorphism of left B-modules that can be extended to gR only in case A € I'mo. So R is not
left mininjective.

If R is assumed to be semiperfect, then all hypothesis accompanying the assumption
“Soc(rR) < RR” can be omitted. We need first a lemma whose proof implicitly appears in
[13, Lemma 11]:
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Lemma 2.4 Let R be a ring and X a finite left or right T-nilpotent subset of R. Then there exists
a positive integer t such that every product of t elements of X is zero.

Now we can prove the main result of this section.
Theorem 2.5 Let R be a left FGF ring. The following conditions are equivalent:
(a) R/J is semisimple and Soc(gpR) < pR;
(b) R is right perfect:
(c) R is QF.

Proof: (a)<(b). A left FGF (more generally, CF) ring which satisfies Soc(rR) & RR is left
semiartinian (lemma 2.1 (c)). But it is well known that a ring is right perfect if and only if it is
left semiartinian and R/J is semisimple ([15, Proposition VIIL5.1]).

(c)=(a) is clear.

(a),(b)=(c). Since the conditions we are considering are Morita-invariant, we may assume that
R is basic. Let {e;,...,e,} be a basic set of primitive idempotents of R. If none of the Re;
(¢ = 1,...,n) is injective then, by [14, Proposition 4], R = é Re; embeds in a finite direct sum

=1

of copies of J and so s.d.(R) < s.l.(J). This contradicts lemma 2.1. Thus, we may assume that
{e1,...,e,} is ordered in such a way that for : = 1,...,7, Re; embeds in the radical of a finitely
generated free module while for ¢ = r + 1,...,n, Re; is injective. Set ¢ = €¢; + --- + e, and so
1—e=¢r41+ -+ €,. Then there exists a monomorphism ¢ : Re = Re®) @ R(1 — €)(¥) | where
k is a positive integer such that Imp C Je®) @ J(1 — e)(*). Suppose that the first component
Re = Re(® of ¢ takes ¢ onto the element (z1,...,zx) € Jel¥). Now we take the monomorphism
k) . Relk) — RelF) P R(1L-— e)(kz) (direct sum of k copies of ¢) and consider the composition

» (k)
Re % ReW A R(1 - )@ * 2O gty PR1-e)FIPR(L-e)®

This composition is a monomorphism whose first component Re — Re(F*) maps e onto the ele-

ment (z;, - T;,) JEN2 of Re(*"). By recursively continuing in this way we get for each t > 0 a

monomorphism
(50(1“!) @ 1o (c,o(kt_‘) EB 1)o--+0¢: Re — Re(¥") @ R(1 — e)(kt+k"1+"'+k)

whose first component Re — Re*") maps e onto the element (z;, - - 'wi:)(il,,..,it)eﬂ\l}" The previous

(t14t2

lemma ensures that for a large enough ¢, that component is zero. As a consequence, Re (and hence
rR = Re @ R(] — ¢)) embeds in a finite direct sum of copies of R(1 —e¢). Since R(1 — ¢€) is injective
it follows that F(gR) is projective. Thus by [10, Corollary 9], R is QF. m
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3 Semiregular CF rings.

In order to aboard the CF problem for semiregular rings, the following result is fundamental.

Lemma 3.1 Let R be a semiregular left CF ring. If Uy 4s a cyclic uniform left R-module then one
of the following conditions hold:

(a) Uy embeds essentially in a projective module;
(b) There exists a sequence zy,...,Tn,... of elements of J(R) and a left ideal Us of R such that
Us= Uy Cl(zy - 2,) =l(x1 - Tny1) for everyn > 1

Proof: If Uy does not embed essentially in a projective module, then we can easily adapt the
proof of Theorem 7 in [14] to get condition (b).m '

In the next proposition we give a list of conditions over a ring R for which part (b) of the
previous lemma fails when U is a minimal left ideal of R:

Proposition 3.2 Let R be a ring satisfying one of the following conditions:
(a) J is left T-uilpotent;
(b) R is left wnunjective;
(¢) J.(R) =0 and I C IzR for every minimal left ideal I of R and every z € R such that [z # 0;

(d) J.(R) =0 and IR is finitely generated as a left ideal of R, for every minimal left ideal I of
R;

(e) IR is semiartinian as a right R-module, for every minimal left ideal Iof R.

Then for every minimal left ideal I of R and every sequence z,,...,z,, ... of elements of J(R)
there exists a positive integer k such that Iz, - -z, = 0.

Proof: (a) is clear and (e) is an immediate consequence of [15, Proposition V111.2.6].

(b) We will prove that Soc(grR)-J = 0. Let I be a minimal left ideal of R and 0 # z € J(R).
If Iz # 0 then f: Iz — I defined by f(az) = a (a € I) is an isomorphism. Then f extends to
a homomorphism f : R — R because R is left mininjective. Since f is right multiplication by an
element r € R. for every @ € I we have that a = f(az) = f(az) = azr and so a(l — zr) = 0.
But z € J(R), so that 1 — zr is invertible and consequently @ = 0. This shows that [ = 0, a
contradiction. Heuce Iz = 0 for every minimal left ideal I of R and z € J(R), which implies that
Soc(rR)-J = 0.

(¢) In this case we also have Soc(rR) -J = 0 (see proof of corollary 2.2).

(d) Suppose by contradiction that I is a minimal left ideal of R and z,,...,2,,...is a sequence
of elements of J({R) such that Iz, ---z, # 0 for every n > 1. Set I, = Iz,---z; for every
i € IN (Iy = I). Since IR finitely generated as a left ideal of R, there exists m > 1 such that
Ipnyr Clo+ -+ 1, If0+# a€ I,y then we can write @ = ag + -+ + a,, Where a; € [
(i=0,...,m). Let k =min{j €{0,...,m}:a; #0}. Then a = ar +---+ a,, and so 0 # a =
—Qgy1 — - — Ay +a € L+ + I+ Ty Thus Iy = Ray C Iy + -+ Iy + I;pp1 C Iid

which implies Iy C J,(R). This contradicts our assumption J,(R) = 0. ®
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Corollary 3.3 Let R be a semiregular left CF ring. If R satisfies one of the conditions in propo-
sition 3.2, then every simple left R -module embeds essentially in a projective module.

Proof: [t is an immediate consequence of lemma 3.1 and proposition 3.2.m

Example 3.1 Neither of the classes of rings satisfying (c) or (d) above is contained in the other.
Indeed, if K is a field and V is an infinite-dimensional K -vector space, then R = Endg (V) satisfies
(c) but not (d) (see example 2.1 (b)). On the contrary, if R is the K-algebra with basis {e;, ez, z},
whose multiplication extends by linearity the rules

€ &5 = 05€;
zey =0 = eqx

Tey =1 = €12
then I = Re, is a minimal (projective) left ideal, z € J(R) and Iz # 0, thus implying that I € Iz R.

Last corollary vields some new partial affirmative answers to the CF problem and so to the
FGF problein.

Theorem 3.4 Let R be a semiperfect left CF (resp. FGF) ring satisfying one of the conditions
(a)-(e) of proposition 3.2. Then R is left artinian (resp. QF). In particular, every left perfect left
CF ring 1s left artinian.

Proof: By corollary 3.3, every simple left R -module embeds essentially in a projective module.
Now the proof of Lemma 3.1 in [9] tells us that R is left finitely cogenerated. But, when R is left
CF (resp. FGF'), the latter condition is equivalent to R being left artinian (resp. QF).m

The part of the above theorem concerning condition (b) in Proposition 3.2 can be considerably
improved via the next result, which extends Corollary 2.2 of [6]:

Theorem 3.5 A ring R is QF if, and only if, it is semiperfect left CF and left mininjective.

Proof: By Theorem 3.4, R is left artinian. Let {e;,...,€,} be a basic set of primitive idem-
potents of [2. Since each simple embeds essentially in a projective module, S; = Soc(Re;) < Re;
(t=1,...,m), where {S51,...,5,.} is a representative set of simple left R-modules ([9, proof of
Lemma 3.1]). ‘

Suppose that B = Re(lk‘) @ Re¥™) and so Soc(rR) = S}k‘) @@ SE) . Since R is left
mininjective, for each i, S; < Re, is a projective preenvelope of S;. It follows from [17, Proposition
1.2.16] that Soc(pR) < rR or, more generally, that Soc(P) — P is a projective preenvelope for
every projective module pP.

We will show that if L is a cyclic left R-module and K is a submodule of L, then every
homomorphism f: K — R extends to a homomorphism f : L — R. If K is semisimple, bearing in
mind that R is left. CF, we coustruct a diagram as follows:
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K — L — F
s NNop 7
Il Soc(F)
R
where F'is free, pos = idy and j is the canonical inclusion. Then, by our above remark, f extends

to a homomorphisin f : F — R which induces by restriction a homomorphism f : L — R that
extends f.

In the general case in which K is an arbitrary submodule of L, we use induction on ¢(L) (the
composition length of L). This is obvious if ¢(L) = 1 since L is simple. Assume it *holds for
every cyclic left R -module of composition length less than ¢(L) and let px : K — K/SocK and
pr : L — L/SocL be the canonical projections. We first consider the case f(SocK) = 0. Then
there exist a homomorphism f : K/Sock — R completing the diagram

7

K < L
\‘f
PK i R J(PL
a5 ) N
K/SocK < L/SocL

Since L/SocL is cyclic of composition length less than ¢(L), by induction, f extends to a homo-
morphism 4 : L/SocL — R. Hence hoppoj=hojopy = fopk = fandsohopr:L — Risan
extension of f.

If f(Sock’) # 0 then, since Soc(K) is a semisimple submodule of L, the homomorphism f |geck:
SocK — R extends to a homomorphism w : L — R. Consequently, (w |g —f)(SocK) =0 and, as
we have just seen, w | —f can be extended to a homomorphism u : L — R. Thus, u |[g=w |g —f
and so f = (w — u) |i.

It follows that R is left self-injective and hence, by [2] or [16], R is QF m

In recent years, after the appearance of [4], it has been a very usual task to identify the rings
for which a wide class of modules have an envelope in a significative class of modules (e.g. flat,
projectives, etc.). By [7, Corollary 3.5], the rings for which every finitely generated left R-module
has an essential projective envelope (i.e. a projective envelope that is an essential monomorphism)
are precisely the QF. The following result tells us that it is enough to have that condition only for
the cyclic modules.

Corollary 3.6 Lel R be any ring. R is QF if, and only if, every cyclic left (resp. right) R-module
has an essential projective (pre)envelope.

Proof: If every cyclic left R-module has an essential projective preenvelope then, by [7, Corol-
lary 3.3]), R is left artinian and, by [9, proof of Lemma 3.1], Soc(Re;) <y Re; is a projective
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preenvelope for every i = 1,...,m, where {e),...,€e,} is a basic set of primitive idempotents of

R. Thus by [17, Proposition 1.2.16], Soc(rR) < RR is a projective preenvelope. Hence for every
semisimple left ideal I of R and homomorphism f: [ — gR, it follows from the diagram

1 5 R
s N \p e
Iy Soc(R)
R

where po s = idj and j is the canonical inclusion, that f extends to a homomorphism f : R — R.
In particular, R is left mininjective and, by theorem 3.5, R is QF.m

4 Semiperfect CF rings with /R finitely generated on the left, for
every minimal left ideal I.

Theorem 3.4 tells us that the rings of the title of this section are left artinian whenever J,.(R) = 0.
We shall see that this second hypothesis can be sometimes omitted or replaced by another one in
order to get artinianity. First of all, we shall see that the class of rings in question contains all the
semiregular left C'F rings with socle finitely generated on the left.

Proposition 4.1 [f R is a semireqular left CF ring such that Soc(rR) is finitely generated as a
left ideal, then R is semiperfect.

Proof: First of all observe that, since R is left CF, Soc(grR) is finitely generated if and only if
Soc(R/1) is finitely generated, for every left ideal I of R. By [3, Lemmal, that means that R/[ is
finite-dimensional, for every left ideal I of R. In particular, R/J is finite-dimensional as a left R-
or R/J -module. But it is well-known that a regular left finite-dimensional ring is semisimple (see,
e.g., [8, 3.B, exercise 14]). m

Next we see what the precise obstacle is for our class of rings not to be included in that of the
left artinian ones.

Proposition 4.2 Let R be a semiperfect left CF ring such that IR is finitely generated as a left
ideal, for every ranonal left ideal I of R. If R is not left artinian, then there is a minimal left ideal
I' of R such that 'R =1'J.

Proof: If R is not left artinian then, by [9, proof of Lemma 3.1], there exists a minimal
left ideal [ of R that does not embed essentially in a projective module. Hence, by lemma
3.1, there exists a sequence zy,...,Zp,... in J(R) such that [zy---2z, # 0 for all n > 1. But
then, since /1 is linitely generated as a left ideal of R, we can find, as in the proof of propo-
sition 3.2 part (d), a minimal left ideal I' = Izy---zx of R such that I' C I'J. Consequently,
I'R=1J. m

As a consequence, we immediately get a new partial affirmative answer to the CF (resp. FGF)
problem.
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Corollary 4.3 Let R be a semiperfect left CF (resp. FGF) ring such that IR s finitely generated
as a left ideal, for every minimal left vdeal I of R. If, in addition, IR contains a mazimal right
subideal, for every such I, then R is left artinian (resp. QF). In particular, every semiperfect left
CF (resp. FGF) ring such that IR is finitely generated as a left and as a right ideal, for every
minimal left ideal I of R, is left artinian (resp. QF).

There is a particular instance in which the conditions of the above corollary hold that is very
interesting in itself.

Theorem 4.4 Let I\ be a commutative ring and R be a I -algebra such that R/J(R) is finitely
generated as a K -module. If R is semiperfect left CF (resp. FGF) and IR is finitely generated as a
left ideal, for every minimal left ideal I of R, then R s left artinian (resp. QF). In the partzcular
case when K is a field, R is moreover finite-dimensional.

Proof: We-shall see that if I is a minimal left ideal then IR is also finitely generated on the
right and so Corollary 4.3 will apply. For every minimal left ideal [ of R we know that IR is
finitely generated as a left ideal of R. But then IR is a finitely generated left R/J-module and,
since R/.J is a finitely generated IX-module, [ R is also finitely generated as a {-module. But every
K-generating set of IR is also a generating set of IR as a right E-module and so, /R is a finitely

n—1
generated right R-module. In case K is a field, if J* = 0 then dimgR = Z dimp (Jk/Jk‘H) and,
k=0
since each J*/J*+1 is a finitely generated left R/J-module, it is also of finite dimension over K.
Consequently, R is finite-dimensional over K.l
The final part will be devoted to apply the results of the first part of the section to the CF
(resp. FGF) problem for countable rings and algebras.

Lemma 4.5 Lel R be a left CF ring. Then |L(rR)| < |R|.

Proof: Since R is left CI, given any left ideal [ of R there exists a finite subset X of R such
that 7 = [(X). Thus we can define an injective map ® : L(r R} — FP(R), where FP(R) is the
set of finite parts of R, by ®(I) = X and consequently, |L(zR)| < |[FP(R)| = |R| =

Remark 4.1 Although we ve not been able to use it in order to get new answers to the CF (resp.
FGF) problem, as an extra information for the reader, we have proved (with considerably more
difficulties than the above lemma) that if R is a semiperfect left CF ring such that J¥ = 0, then
only one of the following conditions can occur:

(a) |R/J| <Ny and |R| < 2%¢;

(b) R = |R/J| > Ro.

Our two main results concerniug the CF (resp. FGF) problem for countable rings and algebras
are now available.

Theorem 4.6 Let R be a semiregular countable left CF (resp. FGF) ring. Each of the following
assumptions forces R to be left artinian (resp. QF):
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(a) J,(R) =

(b) IR contains a maximal right subideal, for every minimal left ideal I of R. In particular, when
such an IR is finitely generated on the right.

Proof: By lemma 4.5, L{rR) is a countable set and so the lattice of left subideals of /R is also
countable. But. since I R is semisimple as a left module, the latter implies that IR is a direct sum
of finitely many minimal left ideals. Hence IR is finitely generated as a left ideal and the result
follows from Theorem 3.4 and Corollary 4.3. m

Theorem 4.7 Lei K be a commutative ring and R a countable K -algebra such that R/J(R)
finitely generated as a I-module. If R is semiperfect left CF (resp. FGF), then R is left artzman
(resp. QF). In case K is a field, R is moreover finite-dimensional.

Proof: Straightforward consequence of Theorem 4.4 and the proof of Theorem 4.6.m
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