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On two open problems ambout embedding of modules in free modules 

J u a n  Rada a n d  Manue l  Saor in  

Abs t rac t  

In this paper we t.ackle the so-called FGF and CF problems, that are still open and, explicitly 
or implicit,ly, have been aboarded several times in the area of Module and Ring Theory. We give 
new partial affil.~~~at,ive answers t,o b0t.h problems. 

1 Introduction and terminology 

In this work we address two open questions in Module Theory t o  which we shall refer as the  F G F  
problem and the  CF problem, respectively: 

F G F  proble~n:  Suppose R is a ring for which every finitely generated left R-module embeds in 
a free module. 1s R a Quasi-Frobenius (QF)  ring? 

CF problem: Suppose t ha t ,  for R a s  above, every cyclic left R-module embeds in a free module. 
Is R left Artinian'? 

The  first problen~ has been explicitly aboarded many times (see [5] for a survey on the  answers 
obtained until tha.t t ime).  It seenis t ha t ,  after [5], t h a t  problem had been forgotten until very 
recently in which, s tar t ing with [7], there has been a renewed interest in t he  subject (see [7], [12] 
and [14]). 011 the  cor~tra.ry, the CF problem seems t o  have been only implicitly tackled in the  
literature. However, i t  seems t h a t  this second problem might be a key question t o  ask in order t o  
understand the  F G F  problem. Indeed, since for left Artinian rings t he  answer t o  t h e  F G F  problem 
is affirmative (see [5 ,  Theorem 3.2]), an  affirmative answer t o  the  CF problem would automatically 
imply the same a,Ilswer t o  t h e  F G F  problem. 

In our p r e s e ~ ~ t  notes, we take both problems a t  once for t he  class of semiregular rings and,  more 
restrictively, for semiperfect rings. In section 2,  we prove t h a t  the answer t o  t h e  F G F  problem is 'yes' 
for semiregular rings with essential socle, whenever there is some sort  of "two-sided property" on 
the  minimal left ideals (Corollaries 2.2 and 2.3). This "two-sided property" disappears completely 
as  an hypothesis wl1e11 R is seniiperfect, which entails in particular t h a t  t he  answer t o  the  F G F  
problem is 'yes' whenever R is right perfect (Theorem 2.5). 

In section 3 .  we t ry  to  get as  much information on semiregular CF rings as possible, obtaining a 
list of properties under which those rings satisfy t he  property t h a t  every simple R-module embeds 
essentially in a, pro,jective module (Proposition 3.2 and Corollary 3.3). T h a t  in turns  gives us a new 
list of affirmative a.nswers t o  both proposed problems (Theorem 3.4).  T h e  most important result 
of t he  section stdates t h a t  every semiperfect left C F  ring which is left mininjective is necessarily Q F  
(Theorem 3.5).  As a. byproduct of this latter result, we get t h a t  the Q F  rings are precisely those 
for which every cyclic left (or right) module has an  essential projective (pre)envelope. 

We have devoted the  last section of our work t o  s tudy  the  semiregular left CF rings with the 
property tha t  I R is f i~~ i t e ly  get~era~ted a s  a left ideal, for every minimal left ideal I of R .  I t  turns 
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out that .  wherl rrloreover I R  has a maximal right subideal and in particular when I R  is also finitely 
generated or1 t t ~ e  right, the n~entioried rings provide affirmative answers t o  both problems (Corollary 
4.3). As arl application of this latter fact, we see that  semiperfect left C F  K-algebras R for which 
R/J(R)  is a finitely generated I<-module are already left Artinian if I R  is finitely generated as a 
left ideal (Theorern 4.4). Going through some cardinality arguments we then prove that  a countable 
semiperfect left C F  (resp. FGF) ring is left Artinian (resp. Quasi-Frobenius) whenever one of the 
following two properties occurs: (a)  A(R)  = 0; (b) I R  is finitely generated as a right ideal, for 
every minirrlal left ideal I of R (Theorem 4.6). In particular, every countable semiperfect left C F  
(resp. FGF) I<-algebra. R with the property that  R / J  is a finitely generated I{-module is already 
left Artinia.11 (resp. Quasi-Frobenius) (Theorem 4.7). 

Throughout this paper, all rings are associative with identity and all modules are unitary. We 
will write R M  (resp. AdR) to  indicate that  M is a left R-module (resp. right R-mqdule). In 
particular, R R  arid RR will denote the canonical structures of left and right R-module in R. The 
lattice of subrr~.odules of RM will be denoted by ~ ( R M ) .  

Let R be a ring and .Y a subset of RM,  the left annihilator of X in R will be denoted by lR(X) ,  

or simply 1(X) if no corlfusion a.ppears. We use the notation N 4 M meaning that  N is an essential 

submodule of R M .  The left singular ideal of R is the two-sided ideal {r E R : l ( r )  4 RR} of R 

and will be denoted by Z(RR) .  
A rnodule A4 is called finite-dimensional when M contains no infinite independent family of 

non-zero subn~odules. 
Let M be a left R-module. The transfinite socle series of M is defined as in [15, VIII.21 and, 

as there, =(Ad) denotes the largest term of that  series. 
A left R-nlodule Ad is semiartinian if every non-zero quotient module of M has non-zero socle. 

Thus, M is serniartiniar-I if a.nd only if G ( M )  = M .  In  tha t  case the least ordinal y such that  
M = Sot? (Ad) will t ~ e  called the socle length of M and denoted by s.1 . ( M )  . 

The Jacobsor~ radical of a, ring R will be denoted by J ( R )  (or simply J ). The right transfinite 
sequence of powers of J is defined as follows: J1 = J and, in case J O  has been defined for every 
ordinal /3 < cr: we set Ja = n J@ , when oi is limit, and J" = J"-' - J,  when cr is non-limit. There 

P < a  
exists a least ordinal y such that  J' = J", for all ordinals rw 2 y and we write J,(R) = JY. 

A ring R is semiregular when R / J  is regular (in the sense of von Neumann) and idempotents 
of R I J  can be lifted to  R [ll.]. This is equivalent to  say that  every finitely presented left (or right) 
R -module 11a,s a projective cover. 

A subset X of R is left (resp. right) T-nilpotent when, for every sequence X I , .  . . , x,, . . . of 
elements of X there exists 71 E IN such that  xl . . . x, = 0 (resp. x, . . . x l  = 0). 

A ring R is left mininjective [12], if every homomorphism f : I + R R ,  where I is a minimal 
left idea,l of R , exterlds to  a) homomorphism f : R R  + RR. A projective preevelope of a 
module is a I~orr~ornorphism g : M + P , where P is a projective module, such that  for every 
homomorphisln h : M + P', where P' is projective, there exists a homomorphism k : P + P' 
such that k o y = h . When, moreover, every endomorphism q : P + P such tha t  q o g = g is an 
automorpt~isni of P, we shall say that  g is a projective envelope of M. 

Following Fa.ith's termi~~ology [5], a ring R is left FGF if every finitely generated left R-module 
embeds in a free module. More generally, a ring R is left CF when every cyclic left R-module 
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embeds in a free n~odule. 
Finally, we refer to  [l] or [15] for all undefined notions used in this text. 

2 Semiregular FGF rings with essential socle. 

In this sectior~ we cor~sider the F G F  problem in the case that  R is a semiregular ring with essential 
socle. 

Lemma 2.1 Let R be any ring. 

(a) If M is a Iejl R-m,odule then J" . S o c a ( M )  = 0 for every ordinal a ,  where J" is the right 
power of J (i.c., J "  = Ja-' J if a is a non-limit ordinal). 

(6) If R is o. left semiartiwian ri71g then &(R)  = 0 and s. l . (J)  < s . l . (R) .  

(c) I f  R is a left CF ring then R is left semiartinian if, and only if, S O C ( R R )  & RR. 

Proof: (a)  We use transfinite induction. The case a = 0 is trivial. Suppose it is true for every 
ordinal less that1 rr. We cor~sider the two possible cases: 

(i) a = @+ 1 (i.e. (1 is non-limit): then J a S o c " ( M )  = J ~ J S O C ~ + ' ( M )  C J P S O @ ( M )  = 0 ,  since 
J . ( ~ o @ + ' ( n / l ) / ~ o c ' ? ( n / ~ ) )  = 0.  

(ii) ru is a lirrlit ordinal: for every ordinal P < a we have J" . S O @ ( M )  s J P  . S O @ ( M )  = 0, 

consequently, JUSoc" ( P I )  = JU . C s ~ @ ( M )  = 0.  
( P C a  ) 

(b) Since R is left serniartinian, R = ~ ( R R )  = Socr (R)  for an ordinal y = s . l . ( ~ R ) .  Hence 
by part (a) ,  O=JYSocY(R)  = J r R =  J Y ,  and so, J,(R) = O .  

For the secorlcl part, we know that  y is a non-limit ordinal, for otherwise R = SocY(R) = 
C s o c P ( R )  which irr~plies that  R = s ~ @ ( R )  for certain ,J < y ,  a contradiction. So assume that  

4<r 
y = p + 1. Then H/SOC'(R) is semisimple and so <I s S O ~ ~ ( R ) .  Hence, s . l . (J)  5 s . l . ( so@(R))  = 
p < p + 1 = s . l . (K) .  

(c) We only need to show that  if S ~ C ( R R )  4 RR then R is left semiartinian or, equivalently, 
that  every cyclic left R-module has non-zero socle ([15, Proposition VIII.2.51). Let C be a non- 
zero cyclic left R-rr~odule. Since R is left CF we can assume that  C is a subrnodule of R ( ~ )  for a 

positive integer m. Then Soc(C)  = S ~ C ( R ( " ) )  n C and since S O C ( R ( " ) )  & ~ ( ~ 1 ,  we deduce that  
Soc(C)  # 0.. 

Corollary 2.2 Let R be a semiregularleft FGF ring. The following conditions are equivalent: 

(a) S O C ( R R )  & R R  and I C_ I x R  for every minimal left ideal I of R and every x E R such that 
I x  # 0; 

(6) R is QF.  
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P r o o f :  (a)=+(b)  By lemma 2.1, & ( R )  = 0. Let I be a miriimal left ideal of R and 0 # x E J ( R )  
. If Ix # 0 then I C IxR C I.J and consequently I C J , (R )  = 0, a contradiction. Hence 
SOC(RR) . J = 0. But then l ( J )  is an essential left ideal of R, which implies t h a t  J C Z(RR) .  T h e  
result now follows from [14, Corollary 61. 

(b)=+(a) Let I be a rriir~irr~al left ideal of R and x E R such t h a t  Ix # 0. Then right multiplication 
4 by x yields an isomorphism I + Ix which has an  inverse 4-' : Ix + I .  T h e  fact t ha t  R is left 

self-injective gives u s  an elenierit y E R such t h a t  4-'(ax) = axy, for every a E R. Hence 
I = Im4-' = I x ~ j  C - IxR as  desired. 

We shall now give some examples where t he  hypothesis "I C IxR  for every minimal left ideal 
I of R and every x E R such tha t  Ix # 0 " in the previous corollary is verified. 

E x a m p l e  2.1 ( u )  If T r R ( I )  = I R  for every minimal left ideal I of R. In particularl when R 
contains exact l l  one isomorphic copy of each minimal left ideal. To see this, let I be a 
mininial left ideal of R and x E R such tha t  Ix # 0. Then f : Ix + I defined by f (ax)  = a 
( a  E I )  is'an isomorphism. Hence, I C TrR( I x )  = IxR. 

If R contai t~s exactly one isornorphic copy of each minimal left ideal then for each such ideal 
I of R arid holriornorphisrn f : I +RR,  we have t h a t  f ( I )  = I and so T r R ( I )  = I C IR. 

( 6 )  If R is left rnir~inje~tive then T r R ( I )  = IR ,  for every minimal left ideal I ,  by the  proof of 
(b)=+(a,) in the  a,bove corolla,ry. 

(c) When every iriir~ima'l left ideal of R is a two-sided ideal and ,  in particular, when R is com- 
mutative. Illdeed, if Ix # 0 the  fact t ha t  I is a two-sided ideal implies t h a t  0 # Ix C I and,  
by the n~iriilnality of I ,  i t  follows tha t  1 = Ix and so  I C - IxR.  

C o r o l l a r y  2.3 Let R be a semiregular left FGF ring such that SOC(RR) 4 RR. Each of the 
following ussurnpt%on,.s forces R to be QF: 

(a )  T r R ( I )  = IR .  for. euery minim,ul left ideal l o f  R; 

( b )  R is left i;~i.irrir~'jtct%ut: 

(c) Every rnininacl,l left ideal of R is two-sided. 

E x a m p l e  2.2 As said above, every left miriinjective ring satisfies t ha t  T r R ( I )  = IR ,  for every 
minimal left idedl I of K. The  following example shows t h a t  the  converse is false. Take an  
infinite field K adll~i t t ing a t~on-epic homomorphism u : K -+ K and [ X ,  u] the  associated 
skew-polynomial ring (i.e., with right multiplication by scalars: X . X = X u  . X ) .  By taking 
R = I i  [ X ,  a ] / ( X L )  arid denoting by x the  class of X in this  ring, one immediately sees t h a t  R 
is a local ring wl~ose  unique proper left ideal is J = Iix. Consequently, T r R ( I )  = IR ,  for every 
minimal left ideal I of R. If now X E K and 4x : J + J maps x onto Ax, we readily see t ha t  i t  is a 
homomorpl~islr~ of left K-r~iotlules t ha t  can be extended t o  RR only in case X E Imu. So R is not 
left mininjective. 

If R is assu~rled t o  be semiperfect, then a.ll hypothesis accompanying the  assumption 

" S O C ( ~ R )  ; RR'' cam be omitted. We need first a lemma whose proof implicitly appears in 
[13, Lemrna 111: 
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Lemma 2.4 Let R be a ring arrd .Y a finite left or  right T-nilpotent subset of R. Then there exists 
a positive integer t such that euery product o f t  elements of X is zero. 

Now we can prove the nia,in result of this section. 

Theorem 2.5 Let R be a, left FGF ring. The following conditions are equivalent: 

(a) R I J  i s  .serraisimple a r ~ d  SOC(RR) ; RR; 

(c) R i s  QF. 

Proof: (a )@(b) .  A left FGF (more generally, C F )  ring which sa.tisfies SOC(RR) Cf) RR is left 
semiartinia.11 (lenirna. 2.1 (c)) .  But it is well known that  a ring is right perfect if and only if it is 
left semiartinian a,t~d R I J  is semisirriple ([15, Proposition VIII.5.11). 

(c)+ (a) is clea,r. 
(a) , (b)+(c).  Sit~ce the conditions we are considering are Morita-invariant, we may assume that  

R is basic. Let { e l l  . . . , en) be a basic set of primitive idempotents of R. If none of the Re; 
n 

(i = 1:. . . :  . r ~ )  is ii~jective then, by [14, Proposition 41, R = $ Re; embeds in a finite direct sum 
i = l  

of copies of' J and so s . l . (R) < s . l . ( J ) .  This contradicts lemma 2.1. Thus, we may assume that  
{ e l l . .  . , e n )  is ordered in such a way that  for i = 1 , .  . ., r ,  Re; embeds in the radical of a finitely 
generated free rriodule while for i = r + 1 , .  . . , n, Re; is injective. Set e = el + . . . + e, and so 
1 - e = e,+l + . . . + en. The11 there exists a monomorphism y : Re -+ ~ e ( ~ )  $ R ( l  - e)(k),  where 
k is a positive integer such that  I m y  ~ e ( ~ )  $ J(l  - e) (k ) .  Suppose that  the first component 
Re -+ ~ e ( " )  of p ta.l<es cr ont,o the element ( z l , .  . . , xk)  E J d k ) .  Now we take the monomorphisrn 
y(k) : + ~ e ( ~ ' )  $ R,(1 - c ) ( ~ ' )  (direct sum of k copies of y) and consider the composition 

This composition is a mononiorphisrn whose first component Re -+ ~ e ( " )  maps e onto the ele- 
ment (x,, . x , , ) ( , , , ~ , , ~ ~ ~  of ~ e ( " ) .  By recursively continuing in this way we get for each t 2 0 a 

k 
monornorphisnl 

whose first, cornponer~t Re -+ ~ e ( " )  maps e onto the element (xi, . . . z;t)(il,,,,,it)EN;. The previous 
lemma ensures t,lla,t for a. la,rge enough t ,  tha,t component is zero. As a consequence, Re (and hence 
R R  = Re $ R(1 - c r ) )  ernbeds in a finite direct sum of copies of R ( l  - e).  Since R ( l  - e) is injective 
it follows that  E ( R R )  is projective. Thus by [lo,  Corollary 91, R is QF. 
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3 Semiregular CF rings. 

In order t,o aboard the CF problem for serniregular rings, the following result is fundamental. 

Lemma 3.1 Let R be a semiregular left CF ring. If IJo is a cyclic uniform left R-module then one 
of the following conditions hold: 

(a) Uu ernbeds essentially in u projective module; 

(b) There exists o sequence x l ,  . . . , x,, . . . of elements of J ( R )  and a left ideal of R such that 

Proof :  I f  Uu does not embed essentially in a projective module, then we can easily adapt the 
proof of Theorerr) 7 ill [14] to  get condition (b) .. 

I n  the next proposit io~~ we give a list of conditions over a ring R for which part (b) of the 
previous lenlrni fails wher) U is a rninimal left ideal of R: 

P ropos i t ion  3.2 Let R bfr a. ring su~tisfying one of the following conditions: 

(a) J is left T-,iilpotent: 

(b) R is left fi~%f~iri,jective: 

(c) J,.(R) = O u,nd 1 C 1x13 for every minimal left ideal I of R and every x E R such that I x  # 0;  

(d) J,.(R) = 0 clurd 1 R  is finitely generated as a left ideal of R ,  for every minimal left ideal I of 
R: 

(e) I R  is .semlortir~?a.n as a. righ,t R-module, for every minimal left ideal Iof R.  

Then for. ewry riiinimal left ideal I of R and every sequence X I ,  . . . , x,, . . . of elements of J ( R )  
there exist.. a positi,ut integer k such that Isl . . .xk = 0 .  

Proof :  (a)  is c1ea.r a.nd (e) is an immedia'te consequence of [15, Proposition V111.2.61. 
(b)  We will prove tha t  SOC(RR) . J = 0.  Let I be a minimal left ideal of R and 0 # x E J ( R ) .  

If I x  # 0 then f : l z  + I defined by f (ax)  = a (a  E I) is an isomorphism. Then f extends t o  
a homo~r~orphisni f : R + K beca.use R is left mininjective. Since - f is right multiplication by an 
elemer~t r. E R. fo r  every a E I we ha.ve that  a = f ( a x )  = f ( a x )  = a x r  and so a ( 1  - xr )  = 0 .  
But x E J ( K ) ,  so that  1 - x r  is ir~vertible and consequently a = 0 .  This shows that  I = 0 ,  a 
contradiction. H e ~ ~ c e  1s = O for every minimal left ideal I of R and x E J ( R ) ,  which implies that  
S O C ( R R ) .  J = 0 .  

(c) I n  this ca,se we also have SOC(RR) . J = 0 (see proof of corollary 2.2). 
(d)  S u p p o s ~  bv col~tra.diction tha t  1 is a rninimal left ideal of R and X I , .  . . , x,, . . . is a sequence 

of elernents of J(12) such that  I x l  . . .x, # 0 for every n 2 1. Set I; = Isl . - ex; for every 
i E IN (lu = I ) .  Sillce I R  finitely generated as a left ideal of R ,  there exists m > 1 such that  

C lU + . . . + I,. If O # a E then we can write a = a0 + . - .  + a, where a; E I; 
( i  = 0, . . . , ~ n ) .  Let k = ~ n i n  { j  E ( 0 ,  . . . , m )  : a j  # 0 ) .  Then a = ar, + . . - + a, and so 0 # ar, = 
-ak+l - . . . - a,", + n E lx.+l + . . . + I, + Im+l .  Thus 11, = Bar, C_ Ik+i + . . . + I, + IkJ 
which implies lk C . j , .(R). This contradicts our assumption J,.(R) = 0.  . 
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Corollary 3.3 L f t  R be a serrt.iregular left C F  ring. If R satisfies one of the conditions in propo- 
sition 3.8, th,er/, tueiy sirrt,ple left R -module errt.beds essentially in a projective module. 

Proof: It is an irriniediate consequence of lemma 3.1 and proposition 3.2.. 

Example 3.1 Neither of the classes of rings satisfying (c) or (d) above is contained in the other. 
Indeed, if K is a field a ~ ~ d  V is an infinite-dimensional It'-vector space, then R = EndK(V)  satisfies 
(c) but not (d) (see exarrlple 2.1 (b)) .  On the contrary, if R is the K-algebra with basis {el ,  e2, x), 
whose rnultiplicatio~~ extends by linearity the rules 

then I = R t l  is a ltiiriirr~al (projective) left ideal, x E J ( R )  and I x  # 0, thus implying that  I IxR.  

Last corollary yields so11lt. new partial affirmative answers to  the C F  problem and so to  the 
FGF probleiri. 

Theorem 3.4 Let R be a. serniperfect left C F  (resp. FGF) ring satisfying one of the conditions 
(a)-(e) of propositiort. 3.2.  Th.en R i s  left artinian (resp. QF). In  particular, every left perfect left 
C F  ring i s  left art%rt,%u~rt,. 

Proof: By corollary 3.3, every sirriple left R -module embeds essentially in a projective module. 
Now the proof of Lerlirna 3.1 in [9] tells us that  R is left finitely cogenerated. But, when R is left 
C F  (resp. FGF).  the latter condition is equivalent to  R being left artinian (resp. QF).. 

The part of the above theore111 concerning condition (b) in Proposition 3.2 can be considerably 
improved via t,he 11ext result,, which extends Corollary 2.2 of [6]: 

Theorem 3.5 '4 r.irrg K is Q F  if. and only if, it is semiperfect left C F  and left mininjective. 

Proof: By Theorerri 3.4, R is left artinian. Let {e l , .  . . , e m )  be a basic set of primitive idem- 

potents of I?. Siiicr each sirnple embeds essentially in a projective module, S; = Soc(Re;) ; Re; 
(i = 1 , . . . , I ~ L ) :  where {S1, . . . , S,) is a representative set of simple left R-modules ([9, proof of 
Lemma 3.11). 

Suppose flia,t R % Re!"' 3 .fi . . fb Re(Xm) and so S O C ( ~ R )  E s!") @ . . . @ 5'2"). Since R is left 
mininjectivr. for ea.cl~ 2 ,  S;  c, Re, is a projective preenvelope of S;. I t  follows from [17, Proposition 
1.2.161 that . S O C ( ~ ~ R )  C )  RR or, rnore generally, that  Soc(P)  c, P is a projective preenvelope for 
every projective ~liodule R P .  

We will s11ow that  if L is a. cyclic left R-module and K is a submodule of L, then every 
homomorphislr~ f : Ii + R extends to a homomorphism f : L + R. If K is semisimple, bearing in 
mind that  R is lefl. C F ,  we coristruct a diagram as follows: 
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where F is free, y o  s = / d l ;  a r ~ d  j is the canonical inclusion. Then, by our above remark, f extends 
t o  a homorr~orphisll~ f : F -+ R which induces by restriction a homomorphism f : L -+ R that  
extends j . 

In the general case in which K is an arbitrary submodule of L,  we use induction on c(L) (the 
composition length of L) .  This is obvious if c(L) = 1 since L is simple. Assume it *holds for 
every cyclic left R -module of composition length less than c(L) and Iet p~ : K -+ KISocK and 
p~ : L -+ LISocL be the canonical projections. We first consider the case f (SocK) = 0. Then 
there exist a I ~ o r n o r n o r p l ~ i ~ ~ ~ ~  f : Ii7/SocK -+ R completing the diagram 

Since LISocL is cyclic of composition length less than c(L) ,  by induction, j extends to  a homo- 
morphisril h :  L/SocL+ R.  Her~ce h o p L o j =  h o j o p K  = f o p K =  f a n d s o  h o p L :  L-+ R i s a n  
extensiorl of f .  

I f f  (SocK) # O t ,her~, since Soc(K)  is a semisimple submodule of L,  the homomorphism f I s o c K :  
SOCK -+ R exterlds to a homornorphism w : L -+ R. Consequently, (w l K  - f ) (SocK)  = 0 and, as 
we have just seert, 111 I I i  - f ca.n be extended t o  a homomorphism u : L -+ R. Thus, u I K =  w I K  - f 
and so f = (ul - 11) IIi. 

It follows that. K is left self-injective and hence, by [2] or [16], R is QF.. 
I n  r e c e ~ ~ t  yea.rs, a,fter the appea.rance of [4], it has been a very usual task t o  identify the rings 

for which a wide cla,ss of  nodules have an er~velope in a significative class of modules (e.g. flat, 
projectives: etc.) .  By [7: Corollary 3.51, the rings for which every finitely generated left R-module 
has an essential projective envelope (i.e. a projective envelope that  is an essential monomorphism) 
are precisely t , l~r  OF. The followir~g result tells us tha t  it is enough t o  have that  condition only for 
the cyclic rnodules. 

CorolIary 3.6 Lei l? be cimy I-iny. R is QF :f; and only iA every cyclic left (resp. right) R-module 
ha.s an esserrt inl yr.o.jecti.ut (pre)en,velope. 

Proof: If everv cyclic left R-module has an essential projective preenvelope then, by [7, Corol- 

lary 3.31, K is left artir~ian and, by [9, proof of Lemma 3.11, Soc(Re,) Re, is a projective 
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preenvelope for every i = 1,  . . . , r r ~ ,  where { e l , .  . . , en,) is a basic set of primitive idempotents of 

R. Thus b" [17. 13ropositiot~ 1.2.161, S O ~ ( R R )  C j R ~  is a projective preenvelope. Hence for every 
semisirnple left idral I of R and ~~omomorphism f : I + R R ,  it follows from the diagram 

where p o  s = ,d l ,  a i ~ d  j is the canor~ical inclusion, that  f extends t o  a homomorphism f : R + R. 
In particular, R is left nli~~injective and,  by theorem 3 . 5 ,  R is QF.. 

4 Semiperfect CF rings with I R  finitely generated on the left, for 
every minimal left ideal I. 

Theorern 3.4 t,ells us that  the rings of the title of this section are left a.rtinian whenever &(R) = 0. 
We sha,ll see t . l~at t,l~is s e c o ~ ~ d  hypothesis car1 be sometimes omitted or replaced by another one in 
order to get a r t i i ~ i a ~ ~ i t y .  First of all, we shall see that  the class of rings in question contains all the 
semiregular left ('F rings with socle finitely generated or1 the left. 

P ropos i t ion  4.1 If' t? i s  a .serniregula.r left CF ring such that SOC(RR) is finitely generated as a 
left idea.1, ther, R is ..;tr~r,iptrf'ect. 

Proof :  First o f i~ l l  observe tha t ,  since R is left CF ,  SOC(RR) is finitely generated if and only if 
Soc(R/I )  is fiilitcly generated, for every left ideal I of R. By [3, Lemma], tha t  means tha t  R / I  is 
finite-dirrlensional. for every left ideal I of R.  In particular, R / J  is finite-dimensional as a left R- 
or R / J  -n~odule. But it is well-kr~own that  a regular left finite-dimensional ring is semisimple (see, 
e.g., [8.  3.B. exrrcise 141). rn 

Next we see what the precise obstacle is for our class of rings not t o  be included in tha t  of the 
left artinian oires. 

P ropos i t ion  4.2 L e t  R he u, sern,iperfect left CF ring such that I R  is finitely generated as a left 
ideal, f i r .  f i:rrr.y nrirrirlrc1,l left ideal I ( J R .  If R is not left artinian, then there is a minimal left ideal 
I' of Fil sur.11, tho,!. l ' t? = I!,/. 

P roof :  If R is 11ot left artir~iarl then, by [9, proof of Lemma 3.11, there exists a minimal 
left ideal I of 11' t11at does not embed esser~tially in a projective module. Hence, by lemma 
3.1, there rxisls a sequence x l ,  . . . , x,, . . . in J ( R )  such tha t  I x l  . . .x, # 0 for all n 2 1. But 
then, since llr' is f i~~itely generated as a left ideal of R ,  we can find, as in the proof of propo- 
sition 3.2 pnrt ( d ) ,  n n ~ i ~ ~ i l l ~ a l  left ideal I' = I x l  . . .xk of R such tha t  I' I'J. Consequently, 
I'R = I'J. rn 

As d co1lsequeIlc.e. we in~rr~ediately get a new partial affirmative answer t o  the C F  (resp. FGF)  
problen~. 
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Corollary 4.3 Let I?, be 0, serraiperfect lef't C F  (resp. FGF) ring such that I R  i s  finitely generated 
as a left idtu,l, fbi. e.ue7.y rrrirlirnal left ideal I of R .  I f ,  i n  addition, I R  contains a maximal right 
subideal, fijr evei.:y such I ,  then R is left arti~aian (resp. QF).  In particular, every semiperfect left 
CF (resp. FGF) iirrg such thmt I R is finite1:y generated as a left and as a right ideal, for every 
minimal left idetrl I of' R? is left a.rtinian (resp. QF).  

There is a parlicular irrstal~ce i n  which the conditions of the above corollary hold that  is very 
interest i~~g in it,self. 

Theorem 4.4 Let l i  be (I  c.orrrrn,vtatiut. ring and R. be a K-algebra such that R / J ( R )  is finitely 
generated as o Ii-rnodule. If' R i.s semiperfect left C F  (resp. FGF)  and I R  i s  finitely generated as a 
left ideal: f i r  cvery .rrlinirrl,al lejt ideal I of K ,  then R. i s  left artinian (resp. QF).  In the particular 
case wh,err. K i . ~  a. field: R is nroreouer finite-di,mensional. 

Proof: Wc.sliall see that  if I is a minimal left ideal then I R  is also finitely generated on the 
right and so Corollary 3.3 will a,pply. For every minimal left ideal I of R we know that I R  is 
finitely generated a s  a. left ideal of R. But then I R  is a finitely generated left RIJ-module and, 
since R/J  is a firtit,elv genera.ted K-rnodule, IR  is also finitely generated as a I<-module. But every 
K-generatir~g set of' I R  is also a generati~lg set of IR.  as a right R-module and so, I R  is a finitely 

n- 1 

generated right Kl~lo(lule.  I n  case K is a field, if J" = 0 then d i m K R  = d i m K  ( J ~ / J ~ + ' )  and, 
k=0 

since each . lk ' /~' . '+'  is a fir~itely generated left R/J-module, it is also of finite dimension over K. 
Consequently, R is fillite-di~nensional over K.. 

The fi~la~l part will be devoted to apply the results of the first part of the section to the C F  
(resp. FGF) pl.ob1er11 for cou11ta.ble rings and algebras. 

Lemma 4.5 Lel H Lt o lef? CF ring. Th,en IL(RR)I 5 JRI 

Proof: Sii~ce E? is left CF, given any left ideal I of R there exists a finite subset X of R such 
that I = l ( X ) .  l ' l ~ ~ l s  we define an injective ma,p @ : L ( R R )  + FP(R) ,  where 3P(R)  is the 
set of finite parts of' If.: by @ ( I )  = X and consequently, IL(RR)I 5 IFP(R)I = 1RJ.u 

Remark 4.1 Alth,ouyh 'iue not been able to use it i n  order to get new answers to  the C F  (resp. 
FGF) problem, as ar~, extra i r ~ ~ o ~ m , a t i o n  for the reader, we have proved (with considerably more 
dificu1tie.s. t/l.u,r~, the obo~ue lernrna) thmt if R is a serniperfect left C F  ring such that Jw = 0, then 
only one of' tht  fi)ltc-,,ivir~g cor~ditiorls cum occur: 

(a)  IR/JI 5 NU crrrld 1121 5 z N 0 :  

Our t,wo I I I ~ ~ I I  results col~cer~liilg the C F  (resp. FGF) problem for countable rings and algebras 
are now available. 

Theorem 4.6 Let H be a s e ~ ~ ~ i r e g u l a r  countable left C F  (lesp. FGF) ring. Each of the following 
assvnrptiorrs for.c.e.s. R to be lej? artinian (resp. QF):  
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(a)  J,(R) = 0: 

(b) I R  contairr.s. a, ~r~razirna~l righ,t subideal, for every minimal left ideal I of R. I n  particular, when 
slich a,r1 1 R I.9 firbitely gerzera,ted o n  the r%ght. 

Proof: By l e l l ~ ~ r ~ a  4..5, ,C(RR) is a countable set and so the lattice of left subideals of I R  is also 
countable. B u t ,  sir~ce I R is serr~isin~ple as a left module, the latter implies tha t  I R  is a direct sum 
of finitely Irla.ny ~l~ir~irrial left ideals. H e ~ ~ c e  I R  is finitely generated as a left ideal and the result 
follows frorn Theorern 3.3 a11d Corollary 4.3. 

Theorem 4.7 Let I i  bt a corn,r~rutative ring and R a countable K-algebra such that R / J ( R )  is 
finitely gener.n2ed (1s n I<-rr1,odule. If  R is semiperfect left C F  (resp. FGF), then R is  left artinian 
(resp. QF).  ht, cuss.( I i  i s  a, field! R Is moreover finite-dimensional. 

Proof: Stra,ig11t,forward consequence of Theorem 4.3 and the proof of Theorem 4.6.. 
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