Universidad de los Andes
 Facultad de Ciencias
 Departamento de Matemática

First Order Ordinary Differential equations with Several Bounded Separate Solutions

Antonio Tineo

Notas de Matemática

Serie: Pre-Print

No. 168

Mérida - Venezuela
1997

First Order Ordinary Differential Equations with Several Bounded Separate Solutions

Antonio Tineo*

1 Introduction

Let $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $F(t, x)$ is T-periodic in t for some $T>0$ and

$$
\begin{equation*}
F(t, x) \rightarrow-\infty \quad \text { as } \quad|x| \rightarrow+\infty \quad \text { uniformly in } \quad t \in \mathbb{R} . \tag{1.1}
\end{equation*}
$$

In [1], Mawhin shows the existence of $\lambda_{0} \in \mathbb{R}$ such that the equation

$$
\begin{equation*}
x^{\prime}=F(t, x)+\lambda \tag{1.2}
\end{equation*}
$$

has zero, at least one or at least two T-periodic solutions according to $\lambda<\lambda_{0}, \lambda=\lambda_{0}$ or $\lambda>\lambda_{0}$; with "at least" replaced by "exactly" when $F(t, x)$ is strictly concave in x.

In this paper we replace the assumption about periodicity by: "The restiction of F to $\mathbb{R} \times K$ is bounded for each compact subset K of \mathbb{R}." and we prove the existence of $\lambda_{0} \in \mathbb{R}$ such that (1.2) has zero, at least one or at least two "separate" solutions, with "at least" replaced by "exactly" when $F(t, x)$ satisfies an additional assumption concerning the concavity of $F(t, x)$ with respect to x.

More precisely, we say that the solutions u_{1}, \ldots, u_{N} of (1.2) are separte if they are defined and bounded in \mathbb{R} and

$$
\inf \left\{\left|u_{i}(t)-u_{j}(t)\right|: t \in \mathbb{R}\right\}>0 \quad \text { if } \quad i \neq j
$$

In this case, we say that (1.2) has at least N separate solutions. If in addition, (1.2) does not have $N+1$ separate solutions, we say that (1.2) has exactly N separate solutions.

Finally, in section 4 we consider the periodic case and we complement the results in [1].

2 Coercive Systems

We begin with some notations. In the sequel, \mathcal{C} denotes the space of all continuous functions $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that
C_{1}) $F(t, x) \rightarrow-\infty$ as $|x| \rightarrow+\infty$ uniformly on $t \in \mathbb{R}$.
$\left.C_{2}\right) F(\boldsymbol{t}, \boldsymbol{x})$ is bounded on $\mathbb{R} \times K$ for each compact set $K \subset \mathbb{R}$.
In order to simplify our proofs we also assume that
$\left.C_{3}\right) \quad F(t, x)$ is locally Lipschitz continuous in x.
However, we can show that the main results of this section remain true even if C_{3}) is not satisfied.

[^0]We denote by $B C$ the space of all bounded continuous functions $u: \mathbb{R} \rightarrow \mathbb{R}$ provided with the usual norm $\|u\|_{0}=\sup \{|u(t)|: t \in \mathbb{R}\}$. Analogously we denote by $B C^{1}$ the space of all bounded and continuously differentiable functions $u: \mathbb{R} \rightarrow \mathbb{R}$ such that the derivative u^{\prime} belongs to $B C$. Finally, we define $B C_{+}=$ $\{u \in B C: \inf (u)>0\}$.

In the following, F, G denote two points in \mathcal{C}.
Proposition 2.1 Let S_{F} be the set of all solutions of

$$
\begin{equation*}
x^{\prime}=F(t, x) \tag{2.1}
\end{equation*}
$$

belonging to $B C$. Then S_{F} is a bounded subset of $B C$.
Proof. Let us fix $R>0$ such that

$$
\begin{equation*}
F(t, x)<-1 \quad \text { if } \quad|x|>R \tag{2.2}
\end{equation*}
$$

and fix $u \in S_{F}$. By Lemma 2.3 of [2] there exists a sequence $\left(t_{n}\right)$ in \mathbb{R} such that $\mid u\left(t_{n}\right)\|\rightarrow\| u \|_{0}$ and $u^{\prime}\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. From this and (2.1)-(2.2), there exists $N \geq 1$ such that $\left|u\left(t_{n}\right)\right| \leq R$ for all $n \geq N$ and the proof follows easily.

Proposition 2.2 If (2.1) has a bounded solution then this equation has bounded solutions Θ_{F}, Γ_{F} such that $\Theta_{F} \leq u \leq \Gamma_{F}$ for any bounded solution u of (2.1).

Proof. Let S_{F} be as above and define

$$
x_{0}=\inf \left\{u(0): u \in S_{F}\right\}, \quad y_{0}=\sup \left\{u(0): u \in S_{F}\right\}
$$

Let Θ_{F} (resp. Γ_{F}) be the solution of (2.1) determined by the initial condition $\Theta_{F}(0)=x_{0}$ (resp. $\left.\Gamma_{F}(0)=y_{0}\right)$ and fix a sequence $\left(u_{n}\right)$ in S_{F} such that $u_{n}(0) \rightarrow x_{0}$ (resp. $\left.u_{n}(0) \rightarrow y_{0}\right)$. Then $u_{n}(t) \rightarrow \Theta_{F}(t)$ (resp. $\left.u_{n}(t) \rightarrow \Gamma_{F}(t)\right)$ for each t in the domain of Θ_{F} (resp. Γ_{F}) and the proof follows easily from proposition 2.1.

If F does not satisfy C_{3}) then the proof of Proposition 2.2 can be obtained by a suitable application of Zorn's Lemma and Ascoli's Theorem.

Remark 2.3 If $F(t, x)$ is T-periodic in t for some $T>0$, then Θ_{F}, Γ_{F} are T-periodic.
Proof. By Proposition 2.2 we have

$$
\Theta_{F}(t) \leq \Theta_{F}(t+T) \quad \text { and } \quad \Theta_{F}(t) \leq \Theta_{F}(t-T) ; t \in \mathbb{R} .
$$

From the last inequality we get $\Theta_{F}(t+T) \leq \Theta_{F}(t)$ and so, Θ_{F} is T-periodic. The rest of the proof is similar.
Remark 2.4 Let u be a solution of (2.1) and assume that the hypothesis in Proposition 2.2 holds.
a) If $u\left(t_{0}\right)>\Gamma_{F}\left(t_{0}\right)$ for some t_{0}, then u is defined and bounded on $\left[t_{0}, \infty\right)$. Moreover, if $F(t, x)$ is T-periodic in t, then $u(t)-\Gamma_{F}(t) \rightarrow 0$ as $t \rightarrow+\infty$.
b) If $u\left(t_{0}\right)<\Theta_{F}\left(t_{0}\right)$ for some t_{0}, then u is defined and bounded on $\left(-\infty, t_{0}\right]$. Moreover, if $F(t, x)$ is T-periodic in t, then $u(t)-\Theta_{F}(t) \rightarrow 0$ as $t \rightarrow-\infty$.

Proof. We only prove $a)$. To this end, let us fix $R>u\left(t_{0}\right)$ such that $F(t, R)<0$, then the constant function $v(t)=R$ is a supersolution of (2.1) such that $v\left(t_{0}\right) \geq u\left(t_{0}\right)$. From this $\Gamma_{F}(t) \leq u(t) \leq R$ for all $t \geq t_{0}, t$ in the domain of u. In particular u is defined and bounded on $\left[t_{0}, \infty\right)$ and

$$
\begin{equation*}
\Gamma_{F}(t) \leq u(t) \quad \text { for all } t \geq t_{0} \tag{2.3}
\end{equation*}
$$

Assume now that $F(t, x)$ is T-periodic in t. Since u is defined and bounded on $\left[t_{0}, \infty\right)$, there exists a T-periodic solution u_{0} of (2.1) such that

$$
\begin{equation*}
u(t)-u_{0}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow+\infty \tag{2.4}
\end{equation*}
$$

By (2.3), $\Gamma_{F} \leq u_{0}$ and by Proposition 2.2, $u_{0}=\Gamma_{F}$. The proof follows now from (2.4).
Proposition 2.5 If (2.1) has a bounded solution u and $F \leq G$ then the equation

$$
\begin{equation*}
x^{\prime}=G(t, x) \tag{2.5}
\end{equation*}
$$

has a bounded solution $v \leq u$ (resp. $v \geq u$). In particular, $\Theta_{G} \leq \Theta_{F}$ and $\Gamma_{F} \leq \Gamma_{G}$.
Proof. Let us fix $R>0$ such that

$$
G(t, R)<0 \quad \text { and } \quad R>u(t) \text { for all } t \in \mathbb{R} .
$$

For each integer $n \geq 1$, let v_{n} be the solution of (2.5) determined by the initial condition $v_{n}(-n)=u(-n)$; then $u(t) \leq v_{n}(t) \leq R$ if $t \geq n$ belongs to the domain of v_{n}. Note that u (resp. $\left.w(t) \equiv R\right)$ is a subsolution (resp. supersolution) of (2.5). From this v_{n} is defined on $[-n, \infty)$ and

$$
u(t) \leq v_{n}(t) \leq R \quad \text { for all } \quad t \geq-n
$$

Since $\left\{v_{n}(0)\right\}$ is bounded, we can assume without loss of generality, that $v_{n}(0) \rightarrow x_{0}$ for some $x_{0} \in \mathbb{R}$. Now it is easy to show that the solution v of (2.5) determined by the initial condition $v(0)=x_{0}$ is defined on \mathbb{R} and $u(t) \leq v(t) \leq R$ for all $t \in \mathbb{R}$. That is, v is a bounded solution of (2.5) such that $u \leq v$. The rest of the proof is similar.

Let $u_{1}<\cdots<u_{N}$ be bounded solutions of (2.1). We say that u_{1}, \ldots, u_{N} are separate if $u_{i+1}-u_{i} \in B C_{+}$ for $i=1, \ldots, N-1$. In this case, we say that (2.1) has (at least) N separate solutions. If in addition, (2.1) does not have $N+1$ separate solutions, we say that (2.1) has exactly N separate solutions.
Corollary 2.6 If $F \leq G$ and (2.1) has two separate solutions then, the same holds for (2.5).
Proposition 2.7 There exists $\lambda \in \mathbb{R}$ such that the system

$$
\begin{equation*}
x^{\prime}=F(t, x)+\lambda \tag{2.6}
\end{equation*}
$$

has two separate solutions.
Proof. By our assumption C_{2}), F is bounded on $\mathbb{R} \times[-1,1]$ and hence, there exists $\lambda>0$ such that

$$
F(t, x)+\lambda>0 \quad \text { if } \quad|x| \leq 1 \quad \text { and } \quad t \in \mathbb{R} .
$$

Now, fix $R>1$ such that

$$
F(t, x)+\lambda<0 \quad \text { if } \quad|x| \geq R \quad \text { and } \quad t \in \mathbb{R}
$$

and define for each integer $n \geq 1, v_{n}$ as the solution of (2.6) determined by the initial condition $v_{n}(-n)=1$. By the argument in Proposition 2.5, v_{n} is defined on $[-n, \infty)$ and

$$
1 \leq v_{n}(t) \leq R \quad \text { for all } \quad t \geq-n
$$

From this, (2.6) has a bounded solution v_{+}such that $v_{+} \geq 1$. Analogously, this equation has a bounded solution $v_{-} \leq-1$ and the proof is complete.

Proposition 2.8 There exists $\lambda \in \mathbb{R}$ such that (2.6) has no bounded solutions.
Proof. By $\left.C_{1}\right), F(t, x)$ is bounded above and hence, there exists $\lambda<0$ such that $F(t, x)+\lambda \leq-1$ for all $t, x \in \mathbb{R}$. The proof follows now easily.

Suppose that the partial derivative $F_{x}(t, x)$ is defined and continuous on $\mathbb{R} \times \mathbb{R}$. We say that a bounded solution u of (2.1) is singular if the linear map

$$
B C^{1} \rightarrow B C ; \quad x \rightarrow x^{\prime}-F_{x}(t, u(t)) x
$$

is not a homeomorphism onto $B C$.
We say that $F(t, x)$ is locally equicontinuous in x, if for each compact set $K \subset \mathbb{R}$ and any $\epsilon>0$ there exists $\delta>0$ such that

$$
|F(t, x)-F(t, y)| \leq \epsilon \quad \text { if } \quad t \in \mathbb{R} ; \quad x, y \in K, \quad|x-y| \leq \delta
$$

Examples.

a) If $F(t, x)$ is T-periodic in t, for same $T>0$ then F is locally equicontinuous in x.
b) If $F(t, x)=a(t) x^{N}$ for same integer $N \geq 0$ and $a \in B C$, then F is locally equicontinuous in x.
c) If F, G are locally equicontinuous in x then the same holds for $F+G$.

Remark 2.9 Suppose that $F \in \mathcal{C}$ is locally equicontinuous in x. Given a compact set K of \mathbb{R} and a sequence (t_{n}) in \mathbb{R} it is easy to show (Using C_{2}) and Ascoli's Theorem) the existence of a subsequence (s_{n}) of $\left(t_{n}\right)$ and a continuous function $\varphi: K \rightarrow \mathbb{R}$ such that

$$
F\left(s_{n}, x\right) \rightarrow \varphi(x) \quad \text { as } \quad n \rightarrow \infty \quad \text { uniformly in } \quad K
$$

Theorem 2.10 Let $F \in \mathcal{C}$. Then there exists $\lambda_{0}=\lambda_{0}(F)$ in \mathbb{R} with the following properties:
a) If $\lambda \geq \lambda_{0}$, equation (2.6) has at least a bounded solution.
b) If $\lambda>\lambda_{0}$ and $F(t, x)$ is locally equicontinuous in x, then (2.6) has at least two separate solutions.
c) If $\lambda=\lambda_{0}$ and the partial derivative $F_{x}(t, x)$ is defined and continuous on $\mathbb{R} \times \mathbb{R}$, then each solution of (2.6) is singular.
e) If $\lambda<\lambda_{0}$, equation (2.6) has no bounded solutions.

Proof. Let us define Λ as the subset of \mathbb{R} consisting of all points λ such that (2.6) has a bounded solution. By Proposition 2.7, Λ is nonempty and by Propositions 2.8 and 2.5 , there exists $\lambda_{1} \in \mathbb{R}$ such that (2.6) has no bounded solutions if $\lambda \leq \lambda_{1}$. Thus, λ_{1} is an upper bound for Λ and we can define

$$
\lambda_{0}=\inf (\Lambda)
$$

Note that, by Proposition 2.5, $\left(\lambda_{0}, \infty\right) \subset \Lambda \subset\left[\lambda_{0}, \infty\right)$.
Let us fix a sequence $\lambda_{1}>\lambda_{2}>\ldots$ in $\left(\lambda_{0}, \infty\right)$ converging to λ_{0} and define $F_{n}(t, x)=\lambda_{n}+F(t, x)$, $u_{n}=\Theta_{F_{n}}, v_{n}=\Gamma_{F_{n}}$. By Proposition 2.5, $u_{1} \leq \cdots \leq u_{n} \leq v_{n} \leq \cdots \leq v_{1}$ and hence, (2.6) has a bounded solution for $\lambda=\lambda_{0}$. Thus, $\Lambda=\left[\lambda_{0}, \infty\right)$.

Let us fix $\lambda>\lambda_{0}$ and a bounded solution u_{0} of

$$
\begin{equation*}
x^{\prime}=F(t, x)+\lambda_{0} . \tag{2.7}
\end{equation*}
$$

By Proposition 2.5, (2.6) has a bounded solution $v_{1} \geq u_{0}$. If $v_{1}\left(t_{0}\right)=u_{0}\left(t_{0}\right)$ for some to then $u^{\prime}\left(t_{0}\right)<v_{1}^{\prime}\left(t_{0}\right)$ and hence $v_{1}<u$ on $\left(t_{0}-\epsilon, t_{0}\right)$ for some $\epsilon>0$. This contradiction proves that $v_{1}-u_{0}>0$.

Claim If F is locally equicontinuous in x, then $v_{1}-u_{0} \in B C_{+}$. To show this define $\omega=v_{1}-u_{0}$ and suppose on the contrary that $\inf (\omega)=0$. By Lemma 2.3 of [2] there exists a sequence $\left\{t_{n}\right\}$ in \mathbb{R} such that $\omega\left(t_{n}\right) \rightarrow 0$ and $\omega^{\prime}\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. Now, let us fix a compact set K of \mathbb{R} contraining $v_{1}(\mathbb{R})$ and $u_{0}(\mathbb{R})$. By Remark 2.9, we can assume the existence of a continuous function $\varphi: K \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
F\left(t_{n}, x\right) \rightarrow \varphi(x) \text { as } n \rightarrow+\infty \quad \text { uniformly on } K \tag{2.8}
\end{equation*}
$$

On the other hand, since u_{0}, v_{1} are bounded and $\omega\left(t_{n}\right) \rightarrow 0$, we can assume without lass of generality the existence of a $x_{0} \in \mathbb{R}$ such that

$$
u_{0}\left(t_{n}\right) \rightarrow x_{0}, \quad v_{1}\left(t_{n}\right) \rightarrow x_{0} \quad \text { as } \quad N \rightarrow+\infty
$$

From this and (2.8),

$$
F\left(t_{n}, u_{0}\left(t_{n}\right)\right)-F\left(t_{n}, v_{1}\left(t_{n}\right)\right) \rightarrow \varphi\left(x_{0}\right)-\varphi\left(x_{0}\right)=0
$$

and hence $\lambda=\lambda_{0}$, since $\omega^{\prime}\left(t_{n}\right) \rightarrow 0$. This contradiction proves the claim:
Similarly, if $\lambda>\lambda_{0}$ and $F(t, x)$ is locally equicontinuous in x, then (2.6) has a bounded solution v_{0} such that $u_{0}-v_{0} \in B C_{+}$. Thus, v_{1}, v_{0} are separate solutions of (2.6).

Finally, assume that $F_{x}(t, x)$ is defined and continuous in $\mathbb{R} \times \mathbb{R}$ and suppose that u_{0} is a bounded solution of (2.7) which is not singular. If we define $\mathcal{F}: B C^{1} \rightarrow B C, \mathcal{F}(x)=x^{\prime}-F(t, x)-\lambda_{0}$; then the Frechet derivative $\mathcal{F}^{\prime}\left(u_{0}\right): B C^{1} \rightarrow B C$, is a linear homeomorphism into $B C$, and by the Inverse Function Theorem there exists $\epsilon>0$ such that the equation

$$
x^{\prime}=F(t, x)+\lambda_{0}-\epsilon
$$

has a bounded solution. Therefore, $\lambda_{0}-\epsilon \in \Lambda$ and this contradiction ends the proof.
Theorem 2.10 improves theorem 1 of [1].
In the next result we study the continuity of the number $\lambda_{0}(F)$ (given by Theorem 2.10) with respect to F.

Theorem 2.11 Let $\left\{F_{n}\right\}$ be a sequence on \mathcal{C} and let $F \in \mathcal{C}$. If

$$
F_{n}(t, x) \rightarrow F(t, x) \quad \text { as } \quad n \rightarrow \infty \quad \text { uniformly on } \quad R \times K
$$

for each compact subset K of \mathbb{R} then, given $\epsilon>0$ there exists an integer $N \geq 1$ such that

$$
\lambda_{0}\left(F_{n}\right)-\lambda_{0}(F) \leq \epsilon \quad \text { for all } \quad n \geq N
$$

Further, if there exist positive real numbers δ, R such that

$$
\begin{equation*}
F_{n}(t, x) \leq-\delta \quad \text { for } \quad|x|>R, \quad n \in N, \quad t \in \mathbb{R} \tag{2.9}
\end{equation*}
$$

then $\lambda_{0}\left(F_{n}\right) \rightarrow \lambda_{0}(F)$.
Proof. Let us fix a bounded solution u_{0} of (2.7). Given $\epsilon>0$ we define $\lambda=\lambda_{0}(F)+\epsilon$ and we fix $R_{0}>\sup \left\{u_{0}(t): t \in \mathbb{R}\right\}$ such that

$$
\begin{equation*}
F\left(t, R_{0}\right)+\lambda \leq-1 \quad \text { for all } \quad t \in \mathbb{R} \tag{2.10}
\end{equation*}
$$

Now, we fix a compact subset K of \mathbb{R} such that $R_{0}, u_{0}(t) \in \operatorname{int}(K)$ for all $t \in \mathbb{R}$. By our assumption, there exists an integer $N \geq 1$ such that

$$
F_{n}(t, x)+\lambda \geq F(t, x)+\lambda_{0} \quad \text { if } \quad|x| \leq R_{0}, \quad n \geq N, \quad t \in \mathbb{R}
$$

and by (2.10), we can suppose that

$$
F_{n}\left(t, R_{0}\right)+\lambda<0 \quad \text { for all } n \geq N \quad \text { and } \quad t \in \mathbb{R} .
$$

Using the argument in Proposition 2.5 we show that the equation

$$
\begin{equation*}
x^{\prime}=F_{n}(t, x)+\lambda \tag{2.11}
\end{equation*}
$$

has a bounded solution for $n \geq N$, and hence $\lambda \geq \lambda_{0}\left(F_{n}\right)$ for all $n \geq N$. Thus, the proof of our first assertion is complete.

Assume now that (2.9) holds. Fix $\epsilon>0$ and define $\lambda=\lambda_{0}(F)-\epsilon$.
Claim There exists an integer $N \geq 1$ such that (2.11) has no bounded solutions for all $n \geq N$. To show this, assume on the contrary, that there exists a subsequence $\left\{G_{k}\right\}$ of $\left\{F_{n}\right\}$ such that the equation

$$
x^{\prime}=G_{k}(t, x)+\lambda
$$

has a bounded solution u_{k} for all $k \in \mathbb{N}$. Using (2.9) and the argument in Proposition 2.1, we get

$$
\left\|u_{k}\right\|_{0} \leq R \quad \text { for all } \quad k \in \mathbb{N}
$$

On the other hand,

$$
G_{k}(t, x) \rightarrow F(t, x) \quad \text { as } \quad k \rightarrow \infty \quad \text { uniformly in } \quad \mathbb{R} \times[-R-1, R+1]
$$

and now it is easy to show that (2.6) has a bounded solution. This contradicts Theorem 2.10 and the proof of the claim is complete.

By the above claim, there exists $N \geq 1$ such that $\lambda_{0}\left(F_{n}\right) \geq \lambda$ for $n \geq N$ and so, $\lambda_{0}\left(F_{n}\right)-\lambda_{0}(F) \geq-\epsilon$ for $n \geq N$. Thus, the proof is complete.

3 Concave Systems

In this section we give a version of Theorem 2 of [1] for non periodic systems.
Theorem 3.1 Suppose that for each $R, \epsilon>0$ there exists a continuous function $b: \mathbb{R} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
F(t,(1-\mu) x+\mu y) \geq(1-\mu) F(t, x)+\mu F(t, y)+b(t) \mu(1-\mu) \quad \text { if } \\
|x-y| \geq \epsilon, \quad|x| \leq R, \quad|y| \leq R, \quad \mu \in[0,1], \quad t \in \mathbb{R} . \tag{3.1}\\
\int_{0}^{\infty} b(t) d t=\int_{-\infty}^{0} b(t) d t=+\infty \tag{3.2}
\end{gather*}
$$

If $u_{0}<u<u_{1}$ are bounded solutions of (2.1) and u_{0}, u_{1} are separate then

$$
\begin{array}{llll}
u_{1}(t)-u(t) \rightarrow 0 & \text { as } & t \rightarrow+\infty & \text { and } \\
u(t)-u_{0}(t) \rightarrow 0 & \text { as } & t \rightarrow-\infty .
\end{array}
$$

Proof. Let us define $\epsilon=\inf \left\{u_{1}(t)-u_{0}(t): t \in \mathbb{R}\right\}$ and fix $R>0$ such that $\left|u_{i}(t)\right| \leq R$ for $t \in \mathbb{R}$ and $i=0,1$. Take a continuous function $b: \mathbb{R} \rightarrow[0, \infty)$ satisfying (3.1)-(3.2) and define

$$
v(t)=\frac{u(t)-u_{0}(t)}{u_{1}(t)-u_{0}(t)}
$$

It is easy to show that $v(t) \in(0,1), u=(1-v) u_{0}+v u_{1}$, and

$$
v^{\prime}=\left[\frac{F(t, u)-F\left(t, u_{0}\right)}{u-u_{0}}-\frac{F\left(t, u_{1}\right)-F\left(t, u_{0}\right)}{u_{1}-u_{0}}\right]
$$

from this and (3.1)

$$
\begin{equation*}
v^{\prime} \geq a(t) v(1-v) \tag{3.3}
\end{equation*}
$$

where $a=\left(u_{1}-u_{0}\right) b$. Note that

$$
\int_{0}^{\infty} a(t) d t=\int_{-\infty}^{0} a(t) d t=+\infty
$$

since (3.2) holds and $u_{1}-u_{0} \in B C_{+}$.
Integrating (3.3) over $[0, t]$, for $t>0$, we obtain,

$$
1>v(t)>\frac{v(0) e^{\int_{0}^{t} a(s) d s}}{1-v(0)+v(0) e^{\int_{0}^{t} a(s) d s}} \rightarrow 1 \text { as } \dot{t} \rightarrow+\infty
$$

Thus, $v(t) \rightarrow 1$ as $t \rightarrow+\infty$ and hence, $u_{1}(t)-u(t) \rightarrow 0$ as $t \rightarrow+\infty$. The rest of the proof is similar.
Corollary 3.2 Under the assumptions in Theorem 3.1, equation (2.1) has at most two separate solutions. Moreover if $u_{0}<u_{1}$ are separate solutions of (2.1) and $u \neq u_{0}, u_{1}$ is a bounded solution of this equation, then $u_{0}<u<u_{1}$.

Proof. The first assertion is clear. Assume now that u is a bounded solution of (2.1) such that $u<u_{0}<u_{1}$, then u_{1}, u are separate and by Theorem $3.1, u_{1}(t)-u_{0}(t) \rightarrow 0$ as $t \rightarrow+\infty$. Similarly, we get a contradiction if we assume the existence of a bounded solution of (2.1) such that $u_{0}<u_{1}<u$. Thus, the proof is complete.

Remark 3.3 Suppose that $F(t, x)$ is T-periodic in t and that the partial derivative $F_{x}(t, x)$ is defined and continuous in $\mathbb{R} \times \mathbb{R}$. If $F(t, x)$ is strictly concave in x then, for each $R, \epsilon>0$ there exists a positive constant function b satisfying (3.1).

Proof. Assume on the contrary the existence of $R, \epsilon>0$ and sequences $\mu_{n} \in(0,1), t_{n} \in[0, T],\left|x_{n}\right| \leq R$, $\left|y_{n}\right| \leq R,\left|x_{n}-y_{n}\right| \geq \epsilon$ such that

$$
\begin{equation*}
F\left(t_{n},\left(1-\mu_{n}\right) x_{n}+\mu_{n} y_{n}\right)<\left(1-\mu_{n}\right) F\left(t_{n}, x_{n}\right)+\mu_{n} F\left(t_{n}, y_{n}\right)+\frac{1}{n} \mu_{n}\left(1-\mu_{n}\right) \tag{3.4}
\end{equation*}
$$

Without lost of generality we can suppose that

$$
\mu_{n} \rightarrow \mu, \quad t_{n} \rightarrow \tau, \quad x_{n} \rightarrow x \quad \text { and } \quad y_{n} \rightarrow y
$$

Note that $x \neq y$ since $|x-y| \geq \epsilon$.
If $\mu \in(0,1)$, then by (3.5),

$$
F(\tau,(1-\mu) x+\mu y) \leq(1-\mu) F(\tau, x)+\mu F(\tau, y)
$$

which contradicts the fact that $F(t, x)$ is structly concave in x. Thus $\mu \in\{0,1\}$.
Assume $\mu=0$. By the Mean Value Theorem, there exists $\xi_{n} \in\left(x_{n},\left(1-\mu_{n}\right) x_{n}+\mu_{n} y_{n}\right)$ such that

$$
F\left(t_{n},\left(1-\mu_{n}\right) x_{n}+\mu_{n} y_{n}\right)-F\left(t_{n}, x_{n}\right)=\mu_{n}\left(y_{n}-x_{n}\right) F_{x}\left(t_{n}, \xi_{n}\right)
$$

and by (3.5),

$$
\left(y_{n}-x_{n}\right) F_{x}\left(t_{n}, \xi_{n}\right)<F\left(t_{n}, y_{n}\right)-F\left(t_{n}, x_{n}\right)+\frac{1}{n}\left(1-\mu_{n}\right)
$$

Letting $n \rightarrow+\infty$ we obtain

$$
(y-x) F_{x}(\tau, x) \leq F(\tau, y)-F(\tau, x)
$$

(Note that $\xi_{n} \rightarrow x$ since $\mu_{n} \rightarrow 0$), which contradicts the fact that $F(\tau, x)$ is strictly concave in x.
Analogously, we obtain a contradiction if $\mu=1$, and the proof is complete.
Let $a \in B C$. As in [3], we define the lower average of a by

$$
A_{L}(a)=\lim _{r \rightarrow+\infty} \inf _{t-s \geq r} \frac{1}{t-s} \int_{s}^{t} a(\tau) d \tau
$$

Remark 3.4 Let $a \in B C$ be nonnegative. It is easy to show that the linear operators $L_{ \pm}: B C^{1} \rightarrow B C$; $L_{ \pm}(x)=x^{\prime} \pm a_{x}$; are homeomorphisms onto $B C$ if and only if $A_{L}(a)>0$. In this case, for each $b \in B C$ we have,

$$
\begin{aligned}
& L_{+}^{-1}(b)=-\int_{t}^{\infty} b(s) \exp \left(-\int_{t}^{s} a(\tau) d \tau\right) d s \\
& L_{-}^{-1}(b)=\int_{-\infty}^{t} b(s) \exp \left(-\int_{s}^{t} a(\tau) d \tau\right) d s
\end{aligned}
$$

Proposition 3.5 If $a \in B C$ is nonnegative and $A_{L}(a)>0$, then there exists $\delta>0$ such that the equation

$$
\begin{equation*}
y^{\prime}=a(t) y(1-y)-\delta \tag{3.5}
\end{equation*}
$$

has two separate solutions.
Proof. Let us define $\mathcal{F}: B C^{1} \rightarrow B C$ by $\mathcal{F}(y)=a y(1-y)-y^{\prime}$. Then, the Frechet derivatives $\mathcal{F}^{\prime}(0), \mathcal{F}^{\prime}(1)$ are linear homeomorphisms onto $B C$ and by the Inverse Function Theorem there exists $\delta>0$ such that (3.5) has bounded solutions v_{0}, v_{1} such that $\left\|v_{0}\right\|<\frac{1}{4}$ and $\left\|1-v_{1}\right\|_{0}<\frac{1}{4}$. It is clear that v_{0}, v_{1} are separate and the proof is complete.

Remark 3.6 Let v be a bounded solution of (3.5) where $\delta>0, a \in B C, a \geq 0$ and $A_{L}(a)>0$. Then, $0<\inf (v) \leq \sup (v)<1$.

Proof. By Lemma 2.3 of [2] there exists a sequence $\left(t_{n}\right)$ in \mathbb{R} such that

$$
v\left(t_{n}\right) \rightarrow \inf (v) \quad \text { and } \quad v^{\prime}\left(t_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
$$

On the other hand $\left\{a\left(t_{n}\right)\right\}$ is bounded and so we can assume that $a\left(t_{n}\right) \rightarrow \alpha$ for some $\alpha \geq 0$. Form this

$$
\alpha \inf (v)(1-\inf (v))=\delta>0
$$

and hence $\alpha>0$. Consequently, $\inf (v)>0$.
Analogously, $\sup (v)<1$ and the proof is complete.

Theorem 3.7 Let $F \in \mathcal{C}$ and suppose that:

i) $F(t, x)$ is locally equicontinuous in x.
ii) For each $R, \epsilon>0$ there exists $b \in B C$ nonnegative satisfying (3.1) such that $A_{L}(b)>0$.

Then there exists $\lambda_{0}=\lambda_{0}(F)$ with the following properties:
a) If $\lambda<\lambda_{0}$, then (2.6) has no bounded solutions.
b) if $\lambda>\lambda_{0}$, then (2.6) has exactly two separate solutions.
c) If $\lambda=\lambda_{0}$ and the partial derivative $F_{x}(t, x)$ is defined and continuous in \mathbb{R}, then (2.6) has exactly a separate solution.

Proof. Let λ_{0} be given by Theorem 2.10. Obviously, a) is satisfied and by Corollary 3.2, b) is also satisfied. Thos show c), assume in the contrary that (2.7) has two separate solutions $u_{0}<u_{1}$ and fix $R, \epsilon>0$ such that $u_{1}(t)-u_{0}(t) \geq \epsilon,\left|u_{0}(t)\right| \leq R,\left|u_{1}(t)\right| \leq R$ for all $t \in \mathbb{R}$. Fix also $b \in B C$ nonnegative satisfying (3.1) such that $A_{L}(b)>0$ and define $a=b\left(u_{1}-u_{0}\right)$. Since $u_{1}-u_{0} \in B C_{+}$, then $a \in B C$ is nonnegative and $A_{L}(a)>0$. Thus, by Proposition 3.4 and Remark 3.5, there exists $\delta>0$ such that (3.5) has separate solutions v_{0}, v_{1} and $0<v_{0}<v_{1}<1$.

Let us define

$$
\omega_{i}=\left(1-v_{i}\right) u_{0}+v_{i} u_{1}=u_{0}+v_{i}\left(u_{1}-u_{0}\right)
$$

then, using (3.1) we obtain

$$
\omega_{i}^{\prime} \leq F_{i}\left(t, \omega_{i}\right)+\lambda_{0}-\eta
$$

where $\eta=\delta \inf \left(u_{1}-u_{0}\right)$. Note also that

$$
u_{i}^{\prime} F_{i}\left(t, u_{i}\right)+\lambda_{0}>F_{i}\left(t, u_{i}\right)+\lambda_{0}-\eta
$$

and that $u_{0}<\omega_{0}<\omega_{1}<u_{1}$. Thus, the equation

$$
x^{\prime}=F(t, x)+\lambda_{0}-\eta
$$

has bounded solutions u_{0}^{*}, u_{1}^{*} such that $u_{0} \leq u_{0}^{*} \leq \omega_{0}$ and $\omega_{1} \leq u_{1}^{*} \leq u_{1}$. This contradicts part a) and the proof is complete.

Remark 3.8 Theorem 2 of [1] and Theorem 3.7 above agree on the class of all $F \in \mathcal{C}$ such that

1) $F(t, x)$ is T-periodic in t for some $T>0$.
2) $F(t, x)$ is strictly concave in x.
3) The partial derivative $F_{x}(t, x)$ is defined and continuous in $\mathbb{R} \times \mathbb{R}$.

4 Periodic Case

In this section we assume that $F(t, x)$ is T-periodic in the time t for some $T>0$, and we complement the results in [1].

Given $x, \lambda \in \mathbb{R}$ we denote by $u(t, x, \lambda)$ the solution of (2.6) determined by the initial condition $u(0, x, \lambda)=$ x. We define

$$
\mathcal{D}=\{(x, \lambda) \in \mathbb{R} \times \mathbb{R}: u(\cdot, x, \lambda) \text { is defined in }[0, T]\} \quad \text { and } \pi: \mathcal{D} \rightarrow \mathbb{R}
$$

by $\pi(x, \lambda)=u(T, x, \lambda)$.

Theorem 4.1 Let $\lambda_{0}=\lambda_{0}(F)$ be given by Theorem 2.10, then $\pi\left(x, \lambda_{0}\right)-x \leq 0$ if $\left(x, \lambda_{0}\right) \in \mathcal{D}$.
Proof. Let $\Theta_{F+\lambda_{0}}, \Gamma_{F+\lambda_{0}}$ be given by Proposition 2.2. By Remark 2.3, we know that $\Theta_{F+\lambda_{0}}, \Gamma_{F+\lambda_{0}}$ are T-periodic. Define $\underline{x}=\Theta_{F+\lambda_{0}}(0)$ and $\bar{x}=\Gamma_{F+\lambda_{0}}(0)$, by Remark 2.4 we know that

$$
\pi\left(x, \lambda_{0}\right)<x \quad \text { if either } x<\underline{x} \text { or } x>\bar{x}
$$

Assume now that our result is false, then there exist $y_{0}<z_{0}$ such that

$$
\pi\left(y_{0}, \lambda_{0}\right)=y_{0}, \quad \pi\left(x, \lambda_{0}\right)>x \quad \text { if } \quad x \in\left(y_{0}, z_{0}\right), \quad \pi\left(z_{0}, \lambda_{0}\right)=z_{0}
$$

Fix $x_{*} \in\left(y_{0}, z_{0}\right)$. Since $\pi\left(x_{*}, \lambda_{0}\right)>x_{*}$ there exists $\delta>0$ such that

$$
\pi\left(x_{*}, \lambda\right)>x_{*} \quad \text { if } \quad\left(\lambda-\lambda_{0}\right)<\delta
$$

Without loos of generality, we can assume that $\left(y_{0}, \lambda\right),\left(z_{0}, \lambda\right) \in \mathcal{D}$ if $\left|\lambda-\lambda_{0}\right|<\delta$. On the other'hand, if $\lambda \in\left(\lambda_{0}-\delta, \lambda_{0}\right)$ we have $\pi\left(y_{0}, \lambda\right)<\pi\left(y_{0}, \lambda_{0}\right)=y_{0}$, and hence, $\pi\left(x_{\lambda}, \lambda\right)=x_{\lambda}$, for some $x_{\lambda} \in\left(y_{0}, x_{*}\right)$. That is, (2.6) has a T-periodic solution if $\lambda \in\left(\lambda_{0}-\delta, \lambda_{0}\right)$. This contradicts the definition of λ_{0} and the proof is complete.

Corollary 4.2 Suppose that the partial derivatives $F_{x}(t, x), F_{x x}(t, x)$ are defined and continuous in $\mathbb{R} \times \mathbb{R}$. If λ_{0} is given by Theorem 2.10 and u is a bounded solution of (2.6) then

$$
\int_{0}^{T} F_{x}(t, u(t)) d t=0
$$

and

$$
\int_{0}^{T} F_{x x}(t, u(t)) \exp \left(\int_{0}^{t} F_{x}(s, u(s) d s) d t \leq 0\right.
$$

Proof. Let us write $x_{0}=u(0)$. By Theorem 4.1 we have $\pi_{x}\left(x_{0}, \lambda_{0}\right)=1$ and $\pi_{x x}\left(x_{0}, \lambda_{0}\right) \leq 0$, and the proof follows easily.

Corollary 4.3 Let λ_{0} be given by Theorem 2.10 and suppose that (2.7) only has a finite number N of T-periodic solutions, then there exists $\delta>0$ such that (2.6) has at least $2 N T$-periodic solutions for all $\lambda \in\left(\lambda_{0}, \lambda_{0}+\delta\right)$.

Proof. Let x_{1}, \ldots, x_{N} be the fixed points of $\pi\left(\cdot, \lambda_{0}\right)$ and fix and open interval U_{i} of \mathbb{R} containing x_{i} such that $U_{i} \cap U_{j}=0$ for $i \neq j$. Since $\pi(x, \lambda)>\pi\left(x, \lambda_{0}\right)$ if $(x, \lambda),\left(x, \lambda_{0}\right) \in \mathcal{D}$ and $\lambda>\lambda_{0}$, it is easy to show that hence exists $\delta>0$ such that $\pi(\cdot, \lambda)$ has two fixed points in U_{i} for all $\lambda \in\left(\lambda_{0}, \lambda_{0}+\delta\right), i=1, \ldots, N$. So, the proof is complete.

References

[1] J. Mawhin, First Order Ordinary Differential Equations with Several Periodic Solutions. J. of Applied Math. and Physics (ZAMP) Vol. 38, (1987), 257-265.
[2] A. Tineo, Asymptotic behaviour of positive solutions of the nonautonomous Lotka-Volterra competitions equations. Differential and Integral Equations, Vol. 6, No. 2 (1993), 449-457.
[3] -_, An Iterative Scheme for the N-Competing Species Problem. J. of Diff. Equations, Vol. 116, No. 1 (1995), 1-15.

Departamento de Matemáticas. Facultad de Ciencias. Universidad de Los Andes. Mérida 5101. Venezuela. e-mail address atineo@ciens.ula.ve

[^0]: - This research was partially supported by CDCHT, Universidad de los Andes

