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1 Introduction

Iy

Let F:IR x IR = IR be a continuous function such that F(t, z) is T-periodic in t for some T > 0 and
F(t,z) > —o0 as |z| = 4+oo uniformlyin ¢t € IR. (L.Y)
In [1], Mawhin shows the existence of Ag € IR such that the equation
' =F(t,z)+ A (1.2)

has zero, at least one or at least two T-periodic solutions according to A < Ag, A = Ag or A > Ap; with “at
least” replaced by “exactly” when F(t,z) is strictly concave in z.

In this paper we replace the assumption about periodicity by:
”The restiction of F to IR x K is bounded for each compact subset K of IR.”
and we prove the existence of Ag € IR such that (1.2) has zero, at least one or at least two “separate”
solutions, with “at least” replaced by “exactly” when F(t, ) satisfies an additional assumption concerning

the concavity of F(t,z) with respect to z.
More precisely, we say that the solutions u, ..., un of (1.2} are separete if they are defined and bounded

in IR and
inf{|u;(t} — u;(t)| :t € R} >0 if i#j.

In this case, we say that (1.2) has at least N separate solutions. If in addition, (1.2) does not have N + 1
separate solutions, we say that (1.2) has exactly N separate solutions.
Finally, in section 4 we consider the periodic case and we complement the results in [1].

2 Coercive Systems

We begin with some notations. In the sequel, C denotes the space of all continuous functions F : RxIR - R
such that

C\) F(t,z) & —oo as |z| =& +oo uniformly on ¢ € R.
C;) F(t,z) is bounded on IR x K for each compact set K C IR.
In order to simplify our proofs we also assume that

C3) F(t, z) is locally Lipschitz continuous in z.

However, we can show that the main results of this section remain true even if C3) is not satisfied.

* This research was partially supported by CDCHT, Universidad de los Andes




2 First Order Ordinary Differential equations with Several Bounded Separate Solutions ‘

We denote by BC the space of all bounded continuous functions u : IR = IR provided with the usual
norm ||u|[o = sup{|u(t)| : t € IR}. Analogously we denote by BC* the space of all bounded and continuously
differentiable functions u : IR — IR such that the derivative v’ belongs to BC. Finally, we define BCy =

{u € BC : inf(u) > 0}.
In the following, F, G denote two points in C.

Proposition 2.1 Let Sp be the set of all solutions of
' = F(t, z) (2.1)
belonging to BC. Then Sf is a bounded subset of BC.

Proof. Let us fix R > 0 such that
F(t,z)< -1 if |z|>R (2.2)

and fix u € Sp. .By Lemma 2.3 of [2] there exists a sequence (¢,) in IR such that |u(t,)| — ||u|loc and
u'(tp) — 0 as n = +oo. From this and (2.1)-(2.2), there exists N > 1 such that |u(t,)| < Rforalln > N
and the proof follows easily.

Proposition 2.2 If (2.1) has a bounded solution then this equation has bounded solutions ©p,T'F such that
OrF <u < T for any bounded solution u of (2.1).

Proof. Let Sr be as above and define
zo = inf{u(0): u € Sr},  yo =sup{u(0) : u € Sr}.

Let ©p (resp. T'r) be the solution of (2.1) determined by the initial condition @f(0) = zo (resp.
T'r(0) = yo) and fix a sequence (u,) in Sf such that u,(0) = z¢ (resp. u,(0) = yo). Then u,(t) - OF(t)
(resp. ugn(t) = Tr(t)) for each t in the domain of OF (resp. T'r) and the proof follows easily from proposition
2.1.

If F does not satisfy C3) then the proof of Proposition 2.2 can be obtained by a suitable application of
Zorn’s Lemma and Ascoli’s Theorem.

Remark 2.3 If F(t,z) is T-periodic in t for some T > 0, then Op, T are T-periodic.
Proof. By Proposition 2.2 we have
Or(t) <Op(t+T) and Op(t) <Op(t-T);, teR.
From the last inequality we get Op(t+7") < OF(t) and so, O is T-periodic. The rest of the proof is similar.

Remark 2.4 Let u be a solution of (2.1) and assume that the hypothesis in Proposition 2.2 holds.

a) Ifu(te) > Lr(to) for some ty, then u is defined and bounded on [t, 00). Moreover, if F(t,z) is T-periodic
int, then u{t) —T'p(t) > 0 as t — +oo.

b) If u(te) < ©OF(to) for some ty, then u is defined and bounded on (—oo,tg]. Moreover, if F(t,z) is
T'-pertodic in t, then u(t) — Op(t) > 0 ast — —oo.
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Proof. We only prove a). To this end, let us fix R > u(to) such that F(¢, R) < 0, then the constant function
v(t) = R is a supersolution of (2.1) such that v(2p) > u(¢9). From this Tr(t) < u(t) < R for allt > o, ¢ in
the domain of u. In particular u is defined and bounded on [ty, 00) and

Tr(t) <u(t) forall t>t. (2.3)

Assume now that F(t,z) is T-periodic in ¢. Since u is defined and bounded on [tp, 00), there exists a
T-periodic solution ug of (2.1) such that

u(t) —uo(t) 5 0 as t— +oo. (2.4)
By (2.3), T'r < up and by Proposition 2.2, ug = I'r. The proof follows now from (2.4).
Proposition 2.5 If (2.1) has a bounded solution u and F < G then the equation
¢ = G(t,z) ) (2.5)
has a bounded solution v < u (resp. v > u). In particular, ¢ < O and T'r < T¢.
Proof. Let us fix R > 0 such that
G(t,R)<0 and R > u(t) forall t€R.

For each integer n > 1, let v,, be the solution of (2.5) determined by the initial condition v,(—n) = u(—n);
then u(t) < v,(¢) < Rif t > n belongs to the domain of v,. Note that u (resp. w(t) = R) is a subsolution
(resp. supersolution) of (2.5). From this v, is defined on [—n, 0o0) and

u(t) <va(t) <R forall t> —n.
Since {v,(0)} is bounded, we can assume without loss of generality, that v,(0) — zo for some zy € IR.

Now it is easy to show that the solution v of (2.5) determined by the initial condition v(0) = & is defined
on IR and u(t) < v(t) < R for all t € IR. That is, v is a bounded solution of (2.5) such that u < v. The rest

of the proof is similar.

Let u; < --- < un be bounded solutions of (2.1). We say that u,,...,un are separate if u;,, —u; € BC,
fori=1,...,N — 1. In this case, we say that (2.1) has (at least) N separate solutions. If in addition, (2.1)
does not have N + 1 separate solutions, we say that (2.1) has exactly N separate solutions.

Corollary 2.6 If F < G and (2.1) has two separate solutions then, the same holds for (2.5).

Proposition 2.7 There exists A € IR such thal the system
¢ =F(t,z)+ A (2.6)
has two separate solutions.
Proof. By our assumption C3), F is bounded on IR x [—1, 1] and hence, there exists A > 0 such that
Fit,z2)+A>0 if |2/<1 and t€IR.

Now, fix R > 1 such that
Fit,2)+A<0 if |zg/]> R and t€R,

and define for each integer n > 1, v, as the solution of (2.6) determined by the initial condition v,(—n) = 1.
By the argument in Proposition 2.5, v, is defined on [—-n, o0) and

1<va(t) <R forall ¢t>-n.

From this, (2.6) has a bounded solution v, such that v, > 1. Analogously, this equation has a bounded
solution v_ < —1 and the proof is complete.
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Proposition 2.8 There ezists A € IR such that (2.6) has no bounded solutions.

Proof. By C)), F(t,z) is bounded above and hence, there exists A < 0 such that F(¢,z) + A < -1 for all
t,z € IR. The proof follows now easily.

Suppose that the partial derivative F;(t, z) is defined and continuous on IR x IR. We say that a bounded
solution u of (2.1) is singular if the linear map

BC! - BC; z -1 — Fo(t,u(t))z

is not a homeomorphism onto BC.
We say that F(t,z) is locally equicontinuous in z, if for each compact set K C IR and any € > 0 there

exists d > 0 such that .
|[Fit,z)- F(t,y)|<e if teR,; z,ye K, |t—y| <4

Examples.

a) If F(t,z) is T-periodic in t, for same T > 0 then F is locally equicontinuous in z.

b) If F(t,z) = a(t)z" for same integer N > 0 and a € BC, then F is locally equicontinuous in z.

¢} If F,G are locally equicontinuous in = then the same holds for F + G.

Remark 2.9 Suppose that F € C is locally equicontinuous in z. Given a compact set K of IR and a sequence
(ta) in IR it ts easy to show (Using C3) and Ascoli’s Theorem) the ezistence of a subsequence (sp) of (tn)
and a continuous function ¢ : K = IR such that

F(sn,z) 2 p(z) as n—o o0 uniformlyin K.

Theorem 2.10 Let F € C. Then there exists Ag = Ao(F) in IR with the following properties:
a) If A > Ao, equation (2.6) has at least a bounded solution.
b) If A > Ao and F(t,z) is locally equicontinuous in z, then (2.6) has at least two separate solutions.

¢} If A = Ao and the partial derivative F,(t,z) is defined and continuous on IR x IR, then each solution of
(2.6) is singular.

e) If A < Ao, equation (2.6) has no bounded solutions.

Proof. Let us define A as the subset of IR consisting of all points A such that (2.6) has a bounded solution.
By Proposition 2.7, A is nonempty and by Propositions 2.8 and 2.5, there exists A; € IR such that (2.6) has
no bounded solutions if A < A;. Thus, A; is an upper bound for A and we can define

Ao = inf(A).

Note that, by Proposition 2.5, (Ag,00) C A C [Ag, 00).

Let us fix a sequence A; > Az > ... in (Ag, 00) converging to Ay and define F,(t,z) = A, + F(t,z),
up = OF,, vy = ['r,. By Proposition 2.5, uy < --- < u, < v, < --- < vy and hence, (2.6) has a bounded
solution for A = Aq. Thus, A = [Ag, 00).

Let us fix A > Ay and a bounded solution ug of

' = F(t,z) + Xo. (2.7
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By Proposition 2.5, (2.6) has a bounded solution v; > ug. If v1(¢s) = uo(to) for some to then u'(¢o) < v}(to)
and hence v4 < u on (tg — €,10) for some ¢ > 0. This contradiction proves that vy — ug > 0.

Claim If F is locally equicontinuous in z, then vy — ugp € BC,. To show this define w = v; — ug and
suppose on the contrary that inf(w) = 0. By Lemma 2.3 of [2] there exists a sequence {t,} in IR such that
w(tn) — 0 and w'(tn) — 0 as n = +00. Now, let us fix a compact set K of IR contraining v; (IR) and ug(IR).
By Remark 2.9, we can assume the existence of a continuous function ¢ : K — IR such that

F(tn,z) & ¢(z) as n— +oo uniformlyon K. (2.8)

On thé other hand, since ug,v; are bounded and w(t,) — 0, we can assume without lass of generality
the existence of a o € IR such that

uo(tn) = 2o, vi(tp) 2 2z0 as N — +oo.

From this and (2.8),
F(tn, uo(tn)) — F(tn, v1(tn)) = #(20) — ¢(z0) =0

and hence A = A, since w’(t,) — 0. This contradiction proves the claim:

Similarly, if A > A¢ and F(¢, z) is locally equicontinuous in z, then (2.6) has a bounded solution v such
that ug — vo € BCy. Thus, vy, vy are separate solutions of (2.6).

Finally, assume that F_(¢,z) is defined and continuous in IR x IR and suppose that ug is a bounded
solution of (2.7) which is not singular. If we define ¥ : BC' -+ BC, F(z) = ¢’ — F(t,z) — Ao; then the
Frechet derivative '(ug) : BC! = BC, is a linear homeomorphism into BC, and by the Inverse Function
Theorem there exists ¢ > 0 such that the equation

= F(t,z)+ X —¢

has a bounded solution. Therefore, A — € € A and this contradiction ends the proof.

Theorem 2.10 improves theorem 1 of [1].
In the next result we study the continuity of the number Ao(F) (given by Theorem 2.10) with respect to

F.
Theorem 2.11 Let {F.} be a sequence on C and let F € C. If
F.(t,z) > F(t,z) as n— o0 uniformlyon Rx K
Jor each compact subset K of IR then, given € > 0 there exists an integer N > 1 such that
Xo(Fn) — Ao(F) < for> all n>N.
Further, if there exist positive real numbers &, R such that
F.it,z) < -6 for |z|>R, neN, t€R, (2.9)
then Ao(Fn) = Ao(F).

Proof. Let us fix a bounded solution ug of (2.7). Given ¢ > 0 we define A = Aq(F) + ¢ and we fix
Ro > sup{uo(t) : t € R} such that

F(t,Ro)+A< -1 forall t€IR. (2.10)

Now, we fix a compact subset K of IR such that Rg, uo(t) € int(K) for all t € IR. By our assumption, there
exists an integer N > 1 such that

Fat,z)+ A> F(t,z)+ Ao if |z|< Ry, n>N, teR
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and by (2.10), we can suppose that
Fa(t,Ro)+A <0 forall n>N and t€RR.
Using the argument in Proposition 2.5 we show that the equation
' = Fu(t,z) + A » (2.11)

has a bounded solution for n > N, and hence A > Ao(F,) for all n > N. Thus, the proof of our first assertion

is complete.

Assume now that (2.9) holds. Fix ¢ > 0 and define A = Ao(F) —¢.

Claim There exists an integer N > 1 such that (2.11) has no bounded solutions for all n > N. To show
this, assume on the contrary, that there exists a subsequence {Gx} of {F, } such that the equation

' =Gi(t,z) + A )
has a bounded solution uy for all £ € IN. Using (2.9) and the argument in Proposition 2.1, we get
luello <R forall keN.
On the other hand,
Gk(t,z) = F(t,z) as k > oo uniformlyin Rx[-R—1,R+ 1]

and now it is easy to show that (2.6) has a bounded solution. This contradicts Theorem 2.10 and the proof

of the claim is complete.
By the above claim, there exists N > 1 such that Ag(F,) > A for n > N and so, Ag(Fn) — Ao(F) > —¢

for n > N. Thus, the proof is complete.

3 Concave Systems
In this section we give a version of Theorem 2 of [1] for non periodic systems.
Theorem 3.1 Suppose that for each R, ¢ > 0 there ezists a continuous function b: IR — [0, 00) such that

F(t,(1—p)z+py) > (1 - p)F(t,z)+ uF(t,y) +0(t)u(l —pu) f

lz—yl>¢ Jz|<R, |y<R, upel0,1], tekR. (3.1)

00 0
Abma=/ b(t)dt = +oo. (3.2)

If up < u < uy are bounded solutions of (2.1) and up, u; are separate then

ui(t) —u(t) = 0 as t & 400 and

u(t) — uo(t) = 0 as t— —o0.

Proof. Let us define ¢ = inf{u;(t) — uo(t) : ¢ € IR} and fix R > 0 such that |u;(¢)] < R for t € IR and
i = 0, 1. Take a continuous function b : IR — [0, co) satisfying (3.1)-(3.2) and define

_u(t) — uo(t)
o) = uy(t) — uo(t)
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It is easy to show that v(t) € (0,1), u = (1 — v)ug + vu,, and
o — [F(t,u) = F(t,u) F(t,wm) - F(t,uo)] ’

U — Uy Uy — Up

from this and (3.1)

v’ > a(t)v(l - v) (3.3)
where a = (u; — ug)b. Note that
oo 0
/ a(t)dt = / a(t)dt = +o0
0 -0
since (3.2) holds and u, — ug € BC,. .

Integrating (3.3) over [0,1], for ¢t > 0, we obtain,

v(O)efo a(s)ds

; =1 as t = +oo.
1-v(0) + v(O)efo als)ds

1>v(t) >

Thus, v(t) =& 1 as t =& +o0o and hence, u;(t) — u(t) = 0 as t = +o00. The rest of the proof is similar.

Corollary 3.2 Under the assumptions in Theorem 3.1, equation (2.1) has at most two separate solutions.
Moreover if up < uy are separate solutions of (2.1) and u # uo,u; is a bounded solution of this equation,
then uy < u < uy.

Proof. The first assertion is clear. Assume now that u is a bounded solution of (2.1) such that ¥ < ug < u,,
then u;,u are separate and by Theorem 3.1, u; () — ug(t) — 0 as t = +oo. Similarly, we get a contradiction
if we assume the existence of a bounded solution of (2.1) such that up < u; < u. Thus, the proof is complete.

Remark 3.3 Suppose that F(t,z) is T-periodic in t and that the partial derivative F,(t,z) is defined and
continuous in RxIR. If F(t,z) is strictly concave in z then, for each R, e > 0 there exists a positive constant

function b satisfying (3.1).

Proof. Assume on the contrary the existence of R,¢ > 0 and sequences g, € (0,1),t, € [0,T], [zn] < R,
[9n| < R, |Zn — yn| > € such that

' 1
Fltn,(1 = pn)zn + patn) < (1 = pn) F(tn, zn) + pn F(tn, yn) + ;/‘n(l — fn). (3.4)
Without lost of generality we can suppose that
oo p, th—=1 o=z and Yy, oy

Note that z # y since |z ~y| > e
If 4 € (0,1), then by (3.5),

F(T, (1 - }J).’C + /Jy) S (1 - /J)F(T,I) +/-‘F(T) y)

which contradicts the fact that F(t,z) is structly concave in . Thus 4 € {0, 1}.
Assume g = 0. By the Mean Value Theorem, there exists &, € (zn, (1 — fn)2n + fnyn) such that

F(tny (1 - /-‘n)zn + /Jnyn) - F(tnyzn) = /Jn(yn - zn)Fx(tnygn)
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and by (3.5), .
(yn - zn)Fz(tm{n) < F(tmyn) - F(tmzn) + ;(1 _I‘n)-

Letting n = +oc we obtain
(y— Z)F,(T, 2) S F(Tvy) - F(T,z)'

(Note that &, — z since u, — 0), which contradicts the fact that F(r,z) is strictly concave in z.
Analogously, we obtain a contradiction if 4 = 1, and the proof is complete.

Let a € BC. As in [3], we define the lower average of a by

. . 1 ¢
AL(a) = r—l+u+1-100 t-glt_;r t—-s _/; a(T)dT‘

Remark 3.4 Let a € BC be nonnegative. It is easy to show that the linear operators Ly : BC' = BC;
Ly (z) = 2’ + az; are homeomorphisms onto BC if and only if Ay (a) > 0. In this case, for each b € BC we

have,
L;l(b) =~ f:" b(s)exp (— [ a(r)dr) ds,

LZ'(8) = [, b(s)exp (— IN a(‘r)dr) ds.

Proposition 3.5 Ifa € BC is nonnegative and AL(a) > 0, then there exists § > 0 such that the equation
Y =alt)y(l-y) -4 (3.5)
has two separate solutions.

Proof. Let us define ¥ : BC! = BC by F(y) = ay(1 ~ y) — y. Then, the Frechet derivatives F(0), F/(1)
are linear homeomorphisms onto BC' and by the Inverse Function Theorem there exists § > 0 such that (3.5)
has bounded solutions vg,v; such that [[ve]| < § and ||1 — v1]lo < 1. It is clear that vg, v, are separate and
the proof is complete.

Remark 3.6 Let v be a bounded solution of (3.5) where § > 0, a € BC, a > 0 and Ap(a) > 0. Then,
0 < inf(v) < sup(v) < 1.

Proof. By Lemma 2.3 of [2] there exists a sequence (i,) in IR such that
v(tn) = inf(v) and v'({,) 20 as n — +oo.
On the’ other hand {a(t,)} is bounded and so we can assume that a(t,) = a for some o > 0. Form this
ainf(v)(1 —inf(v)) =6> 0

and hence a > 0. Consequently, inf(v) > 0.
Analogously, sup(v) < 1 and the proof is complete.
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Theorem 3.7 Let F € C and suppose that:
i) F(t,z) is locally equicontinuous in .

it) For each R,¢ > 0 there exists b € BC nonnegative satisfying (3.1) such that Ap(b) > 0.
Then there erists Ag = Ag(F) with the following properties:

a) If XA < g, then (2.6) has no bounded solutions.
b) if A > Ao, then (2.6) has exactly two separate solutions.
¢) If X = Ay and the partial derivative F(t,z) is defined and continuous in IR, then (2.6) has ezactly a

separate solution.

Proof. Let )y be given by Theorem 2.10. Obviously, a) is satisfied and by Corollary 3.2, b) is also satisfied.
Thos show c), assume in the contrary that (2.7) has two separate solutions 4o < u; and fix R, ¢ > 0 such that
u1(t) — uo(t) > ¢, |uo(t)] < R, |[u1(t)] < R for all t € R. Fix also b € BC nonnegative satisfying (3.1) such
that Az (b) > 0 and define a = b(u; —ug). Since u; —ug € BC,, then a €. BC is nonnegative and A (a) > 0.
Thus, by Proposition 3.4 and Remark 3.5, there exists § > 0 such that (3.5) has separate solutions vo, vy

and0<vg<vi <1
Let us define
wi = (1 — vi)ug + vu; = ug + vi(u; — uo)

then, using (3.1) we obtain
w; < Fi(t,wi) + 0 — 7

where 71 = ¢ inf(u; — uo). Note also that
u; Fi(t, ui) + Ao > Fi(t, i) + Ao — 7
and that uy < wp < w; < u;. Thus, the equation
¢ =F(t,z)+ X o—7

has bounded solutions u}, u] such that #g < uj < wp and w; < u] < u;. This contradicts part a) and the
proof is complete.

Remark 3.8 Theorem 2 of [1] and Theorem 3.7 above agree on the class of all F € C such that
1} F(t,z) is T-periodic in t for some T > 0.
2) F(t,z) is strictly concave in z.

3) The partial derivative F;(t,z) is defined and continuous in IR x R.

4 Periodic Case

In this section we assume that F(t, ) is T-periodic in the time ¢ for some T > 0, and we complement the

results in [1].
Given z, A € IR we denote by u(t, z, A) the solution of (2.6} determined by the initial condition u(0,z,)) =

z. We define
D={(z,A) e Rx R:u(-,z,)) isdefinedin [0,T7]} and =:D >R

by 7(z,A) = u(T,z, ).
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Theorem 4.1 Let A\g = Ao(F) be given by Theorem 2.10, then m(z,Ao) —z < 0 if (z,A0) € D.

Proof. Let Op4a,,[F4a, be given by Proposition 2.2. By Remark 2.3, we know that ©p4»,,[F4a, are
T-periodic. Define £ = Op41,(0) and F = I'r4,(0), by Remark 2.4 we know that

m(z,Ag) <z ifeither z<z or z>7T.
Assume now that our result is false, then there exist yg < zp such that
(Yo, Xo) = Yo, m(z,A) >z if z € (yo,20), m(2z0,A0)= z0.
Fix z. € (yo, 20). Since m(z., Ag) > z. there exists § > 0 such that
m(2u,A) >z i (A= Ap) <4.

Without loos of generality, we can assume that (yo, ), (z0,A) € D if |A — Ag| < 6. On the other'hand, if
A € (Mg — 8, Ao) we have m(yo,A) < 7(yo, o) = Yo, and hence, m(zx,A) = zx, for some z) € (yo,z.). That
is, (2.6) has a T-periodic solution if A € (Ag — 8, Ag). This contradicts the definition of A\g and the proof is

complete.

Corollary 4.2 Suppose that the partial derivatives Fy(t,z), Fz-(t,z) are defined and continuous in IR x IR.
If Ao is given by Theorem 2.10 and u is a bounded solution of (2.6) then

T
/ Fo(t,u(t))dt =0
0

and

/OT Fzz(t, u(t)) exp (/Ot Fa(s, u(s)d.s-) dt < 0.

Proof. Let us write £o = u(0). By Theorem 4.1 we have 7 (29, Ao) = 1 and #z-(z0, Ao) <0, and the proof
follows easily.

Corollary 4.3 Let A\q be given by Theorem 2.10 and suppose that (2.7) only has a finite number N of
T-periodic solutions, then there erists § > 0 such that (2.6) has at least 2N T-periodic solutions for all
A€ (/\0,/\0 + 5).

Proof. Let z,,...,zn be the fixed points of 7(-, Ag) and fix and open interval U; of IR containing z; such
that U; NU; = @ for i # j. Since 7(z,A) > n(z, Ao) if (z,A), (2, o) € D and X > )y, it is easy to show that
hence exists § > 0 such that m(:,A) has two fixed points in &; for all A € (Ao, Ao +6),i=1,...,N. So, the
proof is complete.
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