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1 Introduction 

Let F : R x R + R be a continuous function such that F ( t ,  z )  is T-periodic in t for some T > 0 and 

F ( t ,  z )  + -oo as 1x1 + +oo uniformly in t E R. (1.1) 

In [I], Mawhin shows the existence of Xo E R such that the equation 

has zero, a t  least one or a t  least two T-periodic solutions according to X < Xo,  X = Xo or X > Xo; with "at 
least" replaced by "exactly" when F ( t ,  z )  is strictly concave in z .  

In this paper we replace the assumption about periodicity by: 
"The restiction of F to R x K is bounded for each compact subset K of R." 
and we prove the existence of Xo E R such that (1.2) has zero, at least one or at least two "separate7' 
solutions, with "at least" replaced by "exactly" when F ( t ,  z )  satisfies an additional assumption concerning 
the concavity of F ( t  , 2 )  with respect to z .  

More precisely, we say that the solutions ul , . . . , UN of (1.2) are separete if they are defined and bounded 
in IR and 

inf{)ui(t) - uj( t)(  : t E IR) > 0 if i # j. 
In this case, we say that (1.2) has a t  least N separate solutions. If in addition, (1.2) does not have N + 1 
separate solutions, we say that (1.2) has exactly N separate solutions. 

Finally, in section 4 we consider the periodic case and we complement the results in [I]. 

2 Coercive Systems 
We begin with some notations. In the sequel, C denotes the space of all continuous functions F : IR x IR + IR 
such that 

C1) F ( t , z )  + -00 as 1x1 + +oo uniformly on 2 E IR. 

C2) F ( t ,  z )  is bounded on IR x I( for each compact set Ii' c IR. 

In order to simplify our proofs we also assume that 

C3) F ( t ,  z )  is locally Lipschitz continuous in z .  

However, we can 'show that the main results of this section remain true even if C3) is not satisfied. 

This research was partially supported by CDCHT, Univeraidad de 10s Andes 



2 First Order Ordinary Differential equations with Several Bounded Separate Solutions 

We denote by B C  the space of all bounded continuous functions u : IR -+ IR provided with the usual 
norm llullo = sup{lu(t)l : t E IR). Analogously we denote by BC1 the space of all bounded and continuously 
differentiable functions u : IR -+ IR such that the derivative u1 belongs to BC. Finally, we define BC+ = 
{u E B C  : inf(u) > 0). 

In the following, F, G denote two points in C. 

Proposi t ion 2.1 Let SF be the set of all solutions of 

belonging to BC. Then SF is a bounded subset of BC. 

Proof. Let us fix R > 0 such that 

F ( t , x )  < -1 if 1x1 > R 

and fix u E SF. By Lemma 2.3 of [2] there exists a sequence (t,) in IR such that Ju( tn)J  -+ /lullo and 
ul(tn) -+ 0 as n -+ + m .  From this and (2.1)-(2.2), there exists N > 1 such that (u(tn)l 5 R for all n > N 
and the proof follows easily. 

Proposi t ion 2.2 If (2. I) has a bounded solution then this equation has bounded solutions OF, rF such that 
OF 5 u 5 rF for any bounded solution u of (2. I). 

Proof. Let SF be as above and define 

Let OF (resp. rF) be the solution of (2.1) determined by the initial condition OF(0) = xo (resp. 
rF(0) = yo) and fix a sequence (u,) in SF such that un(0) -+ xo (resp. u, (0) -+ yo). Then un(t) -+ e F ( t )  
(resp. un(t) -+ rF ( t ) )  for each t in the domain of OF (resp. rF) and the proof follows easily from proposition 
2.1. 

If F does not satisfy C3) then the proof of Proposition 2.2 can be obtained by a suitable application of 
Zorn's Lemma and Ascoli's Theorem. 

Remark 2.3 If F ( t ,  x) is T-periodic in t for some T > 0, then OF, l ? ~  are T-periodic. 

Proof. By Proposition 2.2 we have 

 OF(^) 5 O F ( ~ + T )  and OF(t) 5 O F ( t - T ) ;  t EIR. 

From the last inequality we get OF(t +T) 5 OF(t) and so, OF is T-periodic. The rest of the proof is similar. 

Remark 2.4 Let u be a solution of (2. I) and assume that the hypothesis in Proposition 2.2 holds. 

a )  If u(to) > rF(to)  for some to, then u is defined and bounded on [to, m ) .  Moreover, if ~ ( t ,  x )  is T-priodic 
in t, then u(t) - rF ( t )  -+ 0 as t -+ + m .  

b) If u(to) < OF(to) for some to, then u is defined and bounded on (-colto]. Moreover, if F ( t , x )  is 
T-periodic in t ,  then u(t) - OF(t) -+ 0 as t -+ - m .  
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Proof. We only prove a).  To this end, let us fix R > u(to) such that F ( t ,  R) < 0, then the constant function 
v(t) = R is a supersolution of (2.1) such that v(t0) > u(to). From this r ~ ( t )  < u(t) < R for all t > to, t in 
the domain of u. In particular u is defined and bounded on [to, w) and 

rF ( t )  5 u(t) for all t > to. (2.3) 

Assume now that F ( t ,  x) is T-periodic in t .  Since u is defined and bounded on [to, w), there exists a 
T-periodic solution uo of (2.1) such that 

u(t) - uo(t) + 0 as t + +m.  (2.4) 

By (2.3), rF < uo and by Proposition 2.2, uo = r ~ .  The proof follows now from (2.4). 

Proposition 2.5 If (2.1) has a bounded solution u and F < G then the equation 

x' = G(t,  x) (2.5) 

has a bounded solution v < u (resp. v > u). In particular, QG 5 QF and rF 5 rG. 
Proof. Let us fix R > 0 such that 

G ( t , R ) < O  and R > u ( t )  forall  t E ~ R .  

For each integer n > 1, let v, be the solution of (2.5) determined by the initial condition v,(-n) = u(-n); 
then u(t) < vn(t) 5 R if t > n belongs to the domain of v,. Note that u (resp. w(t) G R) is a subsolution 
(resp. supersolution) of (2.5). From this v, is defined on [-n, m )  and 

u(t) < vn(t) < R for all t > - -n. 

Since {v,(O)) is bounded, we can assume without, loss of generality, that vn(0) + xo for some xo E IR. 
Now it is easy to show that the solution v of (2.5) determined by the initial condition v(0) = xo is defined 
on IR and u(t) 5 v(t) < R for all t E lR. That is, v is a bounded solution of (2.5) such that u < v. The rest 
of the proof is similar. 

Let ul < , . . < UN be bounded solutions of (2.1). We say that u l ,  . . . , U N  are separate if ui+l-  ui E BC+ 
for i = 1, . . . , N - 1. In this case, we say that (2.1) has (at least) N separate solutions. If in addition, (2.1) 
does not have N + 1 separate solutions, we say that (2.1) has exactly N separate solutions. 

Corollary 2.6 If F 5 G and (2.1) has two sepamte solutions then, the same holds for (2.5). 

Proposition 2.7 There exists A E lR such that the system 

x '=  F ( t , x )  + A  

has two sepamte solutions. 

Proof. By our assumption C2), F is bounded on IR x [-I, 11 and hence, there exists A > 0 such that 

F ( t , x )  + A  > 0 if 1x1 5 1 and t E IR. 

Now, fix R > 1 such that 
F ( t , x ) + A < O  if 1 x I > R  and ~ E R ,  

and define for each integer n > 1, v, as the solution of (2.6) determined by the initial condition vn(-n) = 1. 
By the argument in Proposition 2.5, v, is defined on [-n, m )  and 

1 < - vn(t) < R for all t > -n. 

From this, (2.6) has a bounded solution v+ such that v+ > 1. Analogously, this equation has a bounded 
solution v- < -1 and the proof is complete. 
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Proposition 2.8 There exists A E IR such that (2.6) has no bounded solutions. 

Proof. By C 1 ) ,  F( t  , x )  is bounded above and hence, there exists A < 0 such that F(t  , x )  + A 5 - 1 for all 
t ,  x E IR. The proof follows now easily. 

Suppose that the partial derivative F,(t, x )  is defined and continuous on IR x IR. We say that a bounded 
solution u of (2.1) is singular if the linear map 

BC' + B C ;  x + x' - F,(t, u ( t ) ) x  

is not a homeomorphism onto BC.  
We say that F ( t ,  x )  is locally equicontinuous in x ,  if for each compact set K C IR and any 6 > 0 there 

exists 6 > 0 such that 

( F ( t , x ) -  F ( t , y ) l  5 6 if t E IR; x , y  E I<, l z - y l  56. 

Examples. 

a)  If F ( t ,  x )  is T-periodic in t ,  for same T > 0 then F is locally equicontinuous in x .  

b )  If F ( t , x )  = a( t ) xN  for same integer N > 0 and a E B C ,  then F is locally equicontinuous in x 

c)  If F, G are locally equicontinuous in x then the same holds for F + G. 

Remark 2.9 Suppose that F E C is locally equicontinuous in x .  Given a compact set K of IR and a sequence 
(t,) in IR it is easy to show (Using C 2 )  and Ascoli's Theorem) the existence of a subsequence (s,) of (t,) 
and a continuous function cp : K + IR such that 

F(s,, x )  + cp(x) as n + CQ uniformly in K .  

Theorem 2.10 Let F E C .  Then there exists X o  = Xo(F) in IR with the following properties: 

a )  If X 2 X o ,  equation (2.6) has at least a bounded solution. 

b) If A > X o  and F ( t ,  x )  is locally equicontinuous in x ,  then (2.6) has at least two separate solutions. 

c) If X = X o  and the partial derivative F,(t, x )  is defined and continuous on IR x IR, then each solution of 
(2.6) is singular. 

e )  If X < Xo,  equation (2.6) has no bounded solutions. 

Proof. Let us define A as the subset of IR consisting of all points X such that (2.6) has a bounded solution. 
By Proposition 2.7, A is nonempty and by Propositions 2.8 and 2.5, there exists X 1  E IR such that (2.6) has 
no bounded solutions if X 5 X I .  Thus, X 1  is an upper bound for A and we can define 

Xo = inf ( A ) .  

Note that, by Proposition 2.5, ( X o ,  CQ) C A C [ X o ,  CQ).  
Let us fix a sequence X I  > A2 > . . . in ( X o ,  CQ)  converging to X o  and define F,, ( t ,  x )  = A, + F(t  , x ) ,  

u,  = OF,, v, = r ~ ,  . By Proposition 2.5, u1 5 . . . 5 u,  < - v, < - . . . 5 vl and hence, (2.6) has a bounded 
solution for X = X o .  Thus, A = [ X o ,  CQ).  

Let us fix X > X o  and a bounded solution u0 of 
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By Proposition 2.5, (2.6) has a bounded solution vl 2 uo. If vl(to) = uo(to) for some to then ul(to) < v:(to) 
and hence vl < u on (to - 6, to) for some 6 > 0. This contradiction proves that vl - uo > 0. 

Claim If F is locally equicontinuous in z ,  then vl - uo E BC+. To show this define w = vl - uo and 
suppose on the contrary that inf(w) = 0. By Lemma 2.3 of [2] there exists a sequence {t,) in IR such that 
w(t,) + 0 and wl(tn) + 0 as n + Soo. Now, let us fix a compact set K of IR contraining vl(IR) and uo(IR). 
By Remark 2.9, we can assume the existence of a continuous function p : K + IR such that 

On the other hand, since uo, vl are bounded and w(t,) + 0, we can assume without lass of generality 
the existence of a zo E IR such that 

From this and (2.8)) 
F( tn ,  ~ ~ ( t n ) )  - F(tn,  vl (tn)) + P ( ~ o )  - ~ ( z o )  = 0 

and hence X = Xo,  since wl(tn) + 0. This contradiction proves the claim; 
Similarly, if X > Xo and F ( t ,  z )  is locally equicontinuous in z ,  then (2.6) has a bounded solution vo such 

that uo - vo E BC+ . Thus, vl , vo are separate solutions of (2.6). 
Finally, assume that F,(t,z) is defined and continuous in IR x IR and suppose that uo is a bounded 

solution of (2.7) which is not singular. If we define 3 : BC' + BC,  3 ( z )  = z1 - F( t ,  z )  - Xo; then the 
Frechet derivative F1(uo) : BC1 -+ BC,  is a linear homeomorphism into BC,  and by the Inverse Function 
Theorem there exists 6 > 0 such that the equation 

has a bounded solution. Therefore, Xo - 6 E A and this contradiction ends the proof. 

Theorem 2.10 improves theorem 1 of [I]. 
In the next result we study the continuity of the number Xo(F) (given by Theorem 2.10) with respect to 

F. 

Theorem 2.11 Let {F,) be a sequence on C and let F E C. If 

Fn(t, z )  + F ( t ,  z )  as n + oo uniformly on R x K 

for each compact subset K of IR then, given c > 0 there exists an integer N > 1 such that 

Xo(Fn) - Xo(F) 5 6 for all n 2 N 

Further, if there exist positive real numbers 6, R such that 

Fn(t, z )  5 -6 for 1x1 > R,  n E N, t E IR, (2.9) 

then Xo(Fn) + Xo(F). 

Proof. Let us fix a bounded solution uo of (2.7). Given 6 > 0 we define X = Xo(F) + 6 and we fix 
Ro > sup{uo(t) : t E IR) such that 

F ( t , R o ) + X <  -1 for all t E IR. (2.10) 

Now, we fix a compact subset K of IR such that Ro, uo(t) E in t (K)  for all t E IR. By our assumption, there 
exists an integer N 2 1 such that 

Fn(t,  2) + A > F ( t ,  2) + Xo if 121 < Ro, n > N, t E IR 
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and by (2.10), we can suppose that 

Fn(t ,Ro)+X < 0 for all n > N and t E IR. 

Using the argument in Proposition 2.5 we show that the equation 

2' = F,,(t,z) + X (2.11) 

has a bounded solution for n > N ,  and hence X > Xo(F,) for all n - > N .  Thus, the proof of our first assertion 
is complete. 

Assume now that (2.9) holds. Fix 6 > 0 and define X = Xo(F) - r. 
Claim There exists an integer N > 1 such that (2.11) has no bounded solutions for all n > N. To show 

this, assume on the contrary, that there exists a subsequence {Gk) of {F,,) such that the equation 

has a bounded solution uk for all k E IN. Using (2.9) and the argument in Proposition 2.1, we get 

(JuklJO 2 R for all k E IN. 

On the other hand, 

Gk(t, 2) + F( t ,  2) as k + oo uniformly in IR x [-R - 1, R +  11 

and now it is easy to show that (2.6) has a bounded solution. This contradicts Theorem 2.10 and the proof 
of the claim is complete. 

By the above claim, there exists N > 1 such that Xo(F,) > X for n > N and so, Xo(Fn) - Xo(F) > - -r 
for n > N. Thus, the proof is complete. 

3 Concave Systems 

In this section we give a version of Theorem 2 of [I] for non periodic systems. 

Theorem 3.1 Suppose that for each R,  6 > 0 there ezists a continuous function b : IR + [0, oo) such that 

F( t ,  (1 - P)Z + PY) 2 (1 - ~ ) F ( t , z )  + P F ( ~ ,  Y) + b ( t ) ~ ( l  - P) i f  

If uo < u < ul are bounded solutions of (2.1) and uo, ul are separate then 

ul( t)  - u(t) + 0 as t + +oo and 
u(t) - uo(t) + 0 as t + -00. 

Proof. Let us define 6 = inf{u~(t)  - uo(t) : t E IR) and fix R > 0 such that lui(t)) 5 R for t E IR and 
i = 0 , l .  Take a continuous function b : IR + [0, oo) satisfying (3.1)-(3.2) and define 



It is easy to show that v(t) E (0, I ) ,  u = (1 - v)uo + vul, and 

from this and (3.1) 

where a = (ul - uo)b. Note that 

I" 
since (3.2) holds and ul - uo E BC+. 

Integrating (3.3) over [0, t], for t > 0, we obtain, 

Thus, v(t) + 1 as t + +co and hence, ul( t )  - u(t) + 0 as t + +a. The rest of the proof is similar. 

Corollary 3.2 Under the assumptions in Theorem 3.1, equation (2.1) has at most two sepamte solutions. 
Moreover if uo < ul are sepamte solutions of (2.1) and u # uo, ul is a bounded solution of this equation, 
then uo < u < ul. 

Proof. The first assertion is clear. Assume now that u is a bounded solution of (2.1) such that u < uo < ul ,  
then u l ,  u are separate and by Theorem 3.1, ul (t) - uo(t) + 0 as t + +oo. Similarly, we get a contradiction 
if we assume the existence of a bounded solution of (2.1) such that uo < ul < u. Thus, the proof is complete. 

Remark 3.3 Suppose that F( t ,  z )  is T-periodic in t and that the partial derivative F,(t, z )  is defined and 
continuous in R x R. If F(t  , z )  is strictly concave in z then, for each R, c > 0 there ezists a positive constant 
function b satisfying (3.1). 

Proof. Assume on the contrary the existence of R, c > 0 and sequences pn E (0, l ) , t n  E [O,T], lznl < R, 
(ynl < R, (z, - ynl 2 c such that 

Without lost of generality we can suppose that 

Pn + P ,  tn + T ,  211 + Z  and yn + y. 

Note that z # y since ( z  - yJ 2 c 
If p E (0, I ) ,  then by (3.5), 

which contradicts the fact that F ( t ,  z )  is structly concave in z .  Thus p E (0, 1). 
Assume p = 0. By the Mean Value Theorem, there exists tn E (z,, (1 - pn)zn + such that 
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and by (3.5), 
1 

(yn - z n ) F s ( t n , t n )  < F( tn ,yn)  - F ( t n 1 z n )  + - ( I  n - p n ) .  

Letting n + +oo we obtain 
(Y  - z ) F = ( r 1 2 )  I F ( r ,  y) - F ( 7 , z ) .  

(Note that tn + z since pn + 0 ) ,  which contradicts the fact that F ( r ,  2 )  is strictly concave in z .  
Analogously, we obtain a contradiction if p = 1, and the proof is complete. 

Let a E B C .  As in [3], we define the lower average of a by 

lim inf - l a ( r ) d T .  
A ~ ( a )  = r++m L-82. t - s 

Remark 3.4 Let a E B C  be nonnegative. It is easy to show that the linear operators L* : B C 1  + B C ;  
L*(z )  = 2' f a,; are homeomorphisms onto B C  i f  and only i f  A L ( a )  > 0.  In this case, for each b E B C  we 
have, 

~ 7 ' ( b )  = - b(s)  exp (- La a ( r ) d r )  ds,  

L:' (b)  = J f  , b(s) exp (- Jat a ( r ) d r )  ds. 

Proposi t ion 3.5 If a E B C  is npnnegative and A L ( a )  > 0 ,  then there exists 6 > 0 such that the equation 

has two separate solutions. 

Proof. Let us define 3 : BC' + B C  by 3 ( y )  = ay(1 - y) - y'. Then, the Frechet derivatives 3 ' ( 0 ) , F t ( 1 )  
are linear homeomorphisms onto B C  and by the Inverse Function Theorem there exists 6 > 0 such that (3.5) 
has bounded solutions vo, vl such that llvoll < a and 111 - vlllo < a. It is clear that vo, vl are separate and 
the proof is complete. 

Remark 3.6 Let v be a bounded solution of (3.5) where 6 > 0,  a E B C ,  a 2 0 and AL(a)  > 0.  Then, 
0 < in f (v )  5 sup(v) < 1. 

Proof. By Lemma 2.3 of [2] there exists a sequence (1,) in IR such that 

v ( t n )  + inf(v) and v t ( t n )  + 0 as n + +oo. 

On the other hand { a ( t n ) )  is bounded and so we can assume that a ( t n )  + a for some a 2 0.  Form this 

and hence a > 0. Consequently, inf(v) > 0. 
Analogously, sup(v) < 1 and the proof is complete. 



Theorem 3.7 Let F E C and suppose that: 

i )  F ( t ,  x )  is locally equicontinuous in x .  

i i )  For each R ,  6 > 0 there exists b E BC nonnegative satisfying (3.1) such that AL(b) > 0. 
Then there exists A. = Ao(F) with the following properties: 

a)  I f  A < Aol then (2.6) has no bounded solutions. 

b) if A > Aol then (2.6) has exactly two separate solutions. 

c )  I f  A = A. and the partial derivative F,(t, x )  is defined and continuous in H1, then (2.6) has exactly a 
separate solution. 

Proof. Let A. be given by Theorem 2.10. Obviously, a)  is satisfied and by Corollary 3.2, b) is also satisfied. 
Thos show c) ,  assume in the contrary that (2.7) has two separate solutions uo < ul and fix R ,  6 > 0 such that 
u l ( t )  - uo(t) > 5 ,  luo(t)l 5 R ,  Iul(t)( < R for all t E H1. Fix also b E BC nonnegative satisfying (3.1) such 
that AL(b) > 0 and define a = b(ul -tio). Since ul -uo E BC+, then a E.BC is nonnegative and AL(a)  > 0. 
Thus, by Proposition 3.4 and Remark 3.5, there exists 6 > 0 such that (3.5) has separate solutions vo, vl 
and 0 < vo < vl < 1. 

Let us define 
wi = (1  - vi)uo + V i U l  = uo + v;(ul - uo)  

then, using (3.1) we obtain 
W: < F i ( t , ~ i )  + A0 - 7 7  

where q = 6 inf(ul - uo). Note also that 

and that uo < wo < wl < u l .  Thus, the equation 

x' = F ( t , x )  + A. - q 

has bounded solutions u:, u: such that uo 5 u: 5 wo and wl 5 u: 5 u l .  This contradicts part a) and the 
proof is complete. 

Remark 3.8 Theorem 2 of [I] and Theorem 3.7 above agree on the class of all F E C such that 

1) F ( t ,  x )  is T-periodic in t for some T > 0. 

2) F ( t ,  x )  is strictly concave in x .  

3)  The partial derivative F,(t, z) is defined and continuous in R x R. 

4 Periodic Case 

In this section we assume that F ( t ,  x )  is T-periodic in the time t for some T > 0 ,  and we complement the 
results in [ I ] .  

Given x ,  A E IR we denote by u ( t ,  x ,  A )  the solution of (2.6) determined by the initial condition u(0,  x ,  A )  = 
x. We define 

D = { ( % , A )  E IR x IR: u( . , x ,A )  is defined in [O,TJ) and ~r : D + H1 

by ~ ( x ,  A )  = u(T ,  x ,  A ) .  
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Theorem 4.1 Let Xo = Xo(F) be given by Theorem 2.10, then n(x, Xo) - z 5 0 if (2, Xo) E V. 

Proof. Let eF+x0, rF+x, be given by Proposition 2.2. By Remark 2.3, we know that 8 ~ + x , ,  rF+x0 are 
T-periodic. Define 3: = eF+x0 (0) and 5 = r F + ~ , ( o ) ,  by Remark 2.4 we know that 

n(x,Xo) < x if either x < z or x > 5. 

Assume now that our result is false, then there exist yo < zo such that 

 YO, Xo) = YO, n(x, Xo) > x if x E (yo, ZO), n(zo, Xo) = zo. 

Fix x, E (yo, 20). Since n(x,, Xo) > x, there exists 6 > 0 such that 

Without 100s of generality, we can assume that (yo, A), (20, A) E V if IX - X o (  < 6. On the other'hand, if 
X E (Ao - 6, Xo) we have n(y0, A) < n(y0, Xo) = yo, and hence, n(xx, A) = xx, for some xx E (yo, x,). That 
is, (2.6) has a T-periodic solution if X E (Xo - 6, Xo). This contradicts the definition of Xo and the proof is 
complete. 

Corollary 4.2 Suppose that the partial derivatives F, (t , x), Fzz(t, x) are defined and continuous in R x R. 
If Xo is given by Theorem 2.10 and u is a bounded solution of (2.6) then 

lT F, (t, u(t))dt = 0 

and 

Proof. Let us write xo = u(0). By Theorem 4.1 we have n,(xo, Xo) = 1 and n,,(xo, Xo) 5 0, and the proof 
follows easily. 

Corollary 4.3 Let Xo be given by Theorem 2.10 and suppose that (2.7) only has a finite number N of 
T-periodic solutions, then there ensts 6 > 0 such that (2.6) has at least 2N T-periodic solutions for all 
X E (Xo, Xo + 6). 

Proof. Let X I ,  . . . , XN be the fixed points of n(., Xo) and fix and open interval Ui of R containing xi such 
that Ui n Uj = 0 for i # j. Since n(x, A) > n(x, Xo) if (2, A), (x, Xo) E V and X > Xo,  it is easy to show that 
hence exists 6 > 0 such that n(., A)  has two fixed points in €Ji for all X E (Ao, Xo + 6), i = 1, . . . , N .  So, the 
proof is complete. 
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