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Abstracf

The spectral measures defined on a o-algebra S of sets with the CGS-property in a given
Hilbert space H are classified as doubly infinite, simply infinite, finitely infinite and finite ones
and a similar classification is given for the ordered spectral decompositions (briefly, OSDs) of
H relative to such spectral measures. The main result is that a spectral measure E(-) is of a
particular type if and only if the OSDs of H relative to E(-) are also of the same type. Moreover,
the multiplicity set Mg of E(-) is described in terms of the measure sequence associated with
the given OSD of H relative to E(-). Also is included a result on spatial isomorphism of abelian
von Neumann algebras with countably decomposable commutants in terms of the multiplicity
functions m, and m. of their canonical spectral measures.

1. INTRODUCTION

The problem of determining a complete system of unitary invariants for a self-adjoint or a
normal operator on a Hilbert space H goes back to the pioneering work of Hellinger [6] in 1907.
The literature on the unitary invariance problem can be classified as follows:

(a) H separable:

In 1932, Stone [16] recast the work of [4] and [6] in the set up of abstract separable Hilbert space
H and extended their work to self-adjoint operators T on H. He also introduced two multiplicity
functions m, and m. with respect to 0,(T) and o.(T) and obtained two unitary invariance theo-
rems (Theorems 7.7 and 7.8 of [16]), the latter in terms of m, and m,.. Later, in 1963 Dunford and
Schwartz [3] studied the problem for self-adjoint and bounded normal opearotrs T' on H and the
equivalence of two ordered spectral representations relative to T is a complete system of unitary
invariants for T'.

(b) H arbitrary, self-adjoint or normal operators on H:

In 1939, Wecken [17] studied the problem for self-ajoint operators, while in 1946 Yosida [18]
studied for normal operators in terms of the von Neumann algebra generated by the range of the
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resolution of identity of the operator. Also Plesner and Rohlin [13] studied the problem for self-
adjoint operators in 1946 in terms of the multiplicity functions defined on generalized Hellinger

types.

(c) H arbitrary and F(-)- a spectral measure:

Halmos [5] studied in 1951 the unitary invariance problem of an arbitrary spectral measure
defined on a o-algebra of sets ¥, and the multiplicity defined on the set of all finite (positive) mea-
sures determines the spectral measure upto unitary equivalence.In 1974 Brown extended the work
of Wecken [17] to spectral measures and invoking a result of Schwartz [14], obtained his principal
result (Theorem 8.4” of [1]) on unitary invariance of spectral measures E(-) on H.

(d) H arbitrary and operator algebras:

In 1951 Segal [15] studied the problem of unitary equivalence for abelian W*-algebras, while
Kelley [7] studied in 1952 for abelian von Neumann algebras.

Though it is clear that all these results are mutually related, as far as we know, prior to the
publication of our papers, there has not been any work published in the literature which obtains
all the principal results of the above mentioned authors. So, we started working upon a unified ap-
proach to deduce or generalize all the important results known on the problem of unitary invariance.

Before proceeding further, let us briefly comment on the results obtained in our papers [9,10,11,
12]. We use the results of Halmos [5] as basis and generalize the results of Dunford and Schwartz
[3] to spectral measures with the CGS-property in [9], thereby extending the unitary invariance
theorem given for self-adjoint and bounded normal operators in [3] to normal operators on sepa-
rable Hilbert spaces. This also generalizes the Hellinger theory presented in [16] to such spectral
measures. Also we extend in [9] the notions of the multiplicity functions m, and m. given in Stone
[16] to spectral measures with the CGS-property on the Borel sets of a Hausdorff space.

In [10] we introduce the concepts of spectral representations such as OTSRs, BOTSRs and
COBOTSRs, and obtain a few new complete sets of unitary invariants for arbitrary spectral mea-
sures in terms of the equivalence of their spectral representations. In [10] is also given an alternative
proof of the unitary invariance theorem in §68 of Halmos [5] and moreover, certain results of Plesner
and Rohlin [13] are generalized to spectral measures which have the generalized CGS-property or
are arbitrary. Also is deduced in [10] the unitary invariance theorem (Theorem 8.4") of Brown [1],
with a clear description of the cardinals mentioned in the theorem.

In [11] we use some rudiments of von Neumann algebras, and from the results of Halmos [5]
we deduce the type I,-decomposition theorem of a type I von Neumann algebra. We prove a new
result in terms of the multiplicity and uniform multiplicity of projections given by Halmos [5] from
which we deduce a generalization of the principal result of Yosida [18] to spectral measures. Aiso
we deduce some of the classical results on abelian von Neumann algebras, which were first proved




by Segal [15]. Finally, we show that a projection P in the von Neumann algebra W generated by
the range of a spectral measure E(-) has uniform multiplicity n in the sense of Halmos [5] if and
only if the W*-algebra W P has uniform multiplicity n in the sense of Segal [15] and then deduce
the decomposition theorem and the unitary invariance theorem of Segal [15].

Using the results of [10], we deduce in [12] the principal unitary invariance theorem of Kelley [7]
and describe the Kelley multiplicity function ¢ on certain dense subset of the maximal ideal space
of the abelian von Neuamann algebra in question in terms of the uniform multiplicity of projec-
tions (in the sense of Halmos [5]). Also using Theorem 3 of the present paper, we describe in [12]
the function ¢ in terms of the multiplicity functions m, and m, relative to the canonical spectral
measure of the abelian von Neumann algebra A, when its commutant is countably decomposable.

In the present paper we classify spectral measures defined on a og-algebra S with the CGS-
property in a given Hilbert space H and also the ordered spectral decompositions (briefly, OSDs)
of H relative to such spectral measures as doubly infinite, simply infinite, finitely infinite and finite
ones and show that a spectral measure E(-) is of a particular type if and only if all the OSDs of H
relative to E(-) are also of the same type. Moreover, the multiplicity set Mg of E(.) is described
in terms of the measure sequence associated with the given OSD of H relative to E(-). We also
extend the results proved for hermitian operators ( resp. spectral measures) on p.143 of [13] (resp.
pp. 155-156 of [1]) on separable Hilbert spaces to spectral measures with the CGS-property in H.
Finally, given an abelian von Neumann algebra A with its commutant countably decomposable,
we characterize it upto unitary equivalence in terms of the multiplicity functions m, and m. of the
canonical spectral measure of A. The last result is only an analogue of Theorem 7.8 of Stone [16],
but is not its generalization.

2. PRELIMINARIES

In this section we fix notation and terminolgy and also give some definitions and results from
[8,9,10] for the convenience of the reader. For other concepts and results used in the body of the
paper, the reader is referred to appropriate bibliography.

H, H, and H; denote (complex) Hilbert spaces of arbitrary dimension (> 0). The closed sub-
space spanned by a subset X’ of a Hilbert space is denoted by [X]. @ M; is the orthogonal direct
sum of a family of mutually orthogonal closed subspaces { M;} of a given Hilbert space or of Hilbert

spaces {M;].

If P is a projection in a von Neumann algebra W on H, then Cp denotes the central support
of P. For z € H, [Wz] = [Az : A € W] and, sometimes, it also denotes the orthogonal projection
with range [Wz]. We follow Dixmier [2] for the rest of termoinology and notation in von Neumann
algebras.

Let S be a o-algebra of subsets of a non empty set 2. Let E(-) be a spectral measure on S
with values in projections of H. For z € H, pg(z) denotes the measure ||E(-)z||? on S. Let £(S)




be the set of all finite (positive) measures on §. For py;, 2 € X(S), we write gy = pa if gy < po
and gy < py. Clearly, = is an equivalence relation on X(S). In the sequel, E(-), E,(-), E2(-) will
denote spectral measures on § with values in projections of H, H; and H,, respectively. W will
denote the von Neumann algebra generated by the range of E(.).

For p € X(S8), the projection Cg(p) is defined as the orthogonal projection on the closed
subspace {z € H : pg(z) < p} and it follows from [5] that Cg(u) € W. The multiplicity ug(u) of
p € X(8S) relative to E(-) is defined by

ug(p) = min{H-multiplicity of Cg(v) : 0 # v € u, v € X(S)}

if 4 # 0 and ug(0) = 0, where the H-multiplicity of Cg(v) is the mﬁltiplicity of Cg(v) relative to
E(-) in the sense of Halmos [5]. p € X(S) is said to have uniform multiplicity ug(p) relative to
E() ifug(v) = ug(p) for 0 £ v <« p, v € I(S). .

For z € H, let Zg(z) = [E(0)z : 0 € S]. Since W is the von Neumann algebra generated by
the range of E(-), it follows that Zg(z) = [Wz] € W', where W' is the commutant of W.

A spectral measure F(-) on § is said to have the CGS — property in H if there exists a count-
able set X in H such that [Eo)z : z € X,0 € §] = H. Then it is known from [9] that E(:)
has the CGS-property in H if and only if H admits an ordered spectral decomposition (briefly,
OSD) relative to E(-), where H = @;-v:l Zg(z;) is called an OSD of H relative to E(-) if each
z; #0, N € INU {00} (N is called the OSD multiplicity of E(-) and we denote it by Ry when
it is infinite) and pg(z1) > pe(z2) > ... (which is called the measure sequence of the OSD). If
H; = @f’:‘l ZE‘(zg-')) are OSDs of H; relative to E;(-) for i = 1,2, then they are said to be equivalent
if Ny = N3 and pg,z;(;) = pEzzj(z)) for all j. Then E,(:) and E;(-) are unitarily equivalent if and
only if any two OSDs of H; and Hj; relative to E;(-) and E3(-) are equivalent.

Notation 1. Let W' =3 @,cg WQx be the type I,-direct sum decomposition of the commutant
W' of W so that W'Q,, is of type I,, where the n are non zero cardinals not greater than the
dimension of H. Then {Q, }nes Will denote these central projections in the type I,,-direct sum de-
composition of W’ and by Mg we shall denote {n : n € J}. Mg is called the multiplicity set of E(-).

Notation 2. Let P be a projection in W. Then its multiplicity (resp. uniform multiplicity) in the
sense of Halmos [5, pp.100-101] is referred to as its H-multiplicity (resp. UH-multiplicity) relative

to E(-).

As shown in [8], a projection P’ in W’ is abelian if and only if it is a row in the sense of Hal-
mos [5] and the column generated by a projection in W' is the same as its central support. Thus
Theorem 64.4 of [5] can be reformulated as follows:

PROPOSITION 1. A non zero projection F in the von Neumann algebra W generated by the
range of E(-) has UH-multiplicity n relative to E(-) if and only if there ezists an orthogonal fam-
ily {EL}aes of abelian projections in W' such that card.J = n, Cg: = F for each a € J and




Yacs By = F; in other words, if and only if W'F is of type I, or, equivalently, if and only if
0#F < Qn

3. SOME LEMMAS

LEMMA 1. Let P be a countably decomposable non zero projection in W. Then P has UH-
multiplicity N < Nq if and only if there ezists an OSD PH = @Y Zg(z;) of PH with pg(z,) =
pE(z2) = .... Then Cg(pe(zi)) = P for alli.

Proof. Suppose P has UH-multiplicity N < ®Rg. Then by Proposition 1 there exists an orthogonal
family {P;};es of abelian projections in W' such that card.J = N, CP; = P for each j € J and
P=73:egP. Let J = {1,2,.,N}if N € N and let J = {1,2,..} if N = Rg. Since P is
countably decomposable in W a.nd Pj has its central support P, by Theorem 58.3 of Halmos [5]
there exists a vector z; € P/H such tha.t P = Cp = Ciws,). As [Wz;] = [WPlzj] = Pi[Wgj],
we have [Wz;] < P} Consequently, as P/ is abelian, by the discussion on p.123 of [2] we
have [Wz;] = Clw,,)P; = PP; = P]. Thus there exists z; € P/H such that P} = [Wgz;],
j € J. Therefore, PH = @;c [Wz;] = @jcs Ze(z;). Moreover, by Theorem 66.2 of [5],
Ce(pe(2;)) = Clwz,) = CP; = P for all j. Consequently, by Theorem 65.2 of [5], pg(z,) = pr(z;)

for all j, 7' € J. Hence the condition is necessary.

Conversely, if such an OSD PH = @Y Zg(z;) exists, then clearly N < Ro. As pg(z;) =
pE(z2) = ..., by Theorem 66.2 of [5] it follows that Ciw;,) = Clws,) = ... = Q (say). Then
P = }:{V[W:z:j] < Q. On the other hand, as P € W, we also have [Wz;] < C[W:c,'] < P for all j.
Thus Q = P. Since [Wz;] = Zg(z;) is abelian in W’ by Theorem 60.2 of [5], from Proposition 1
it follows that P has UH-multiplicity N.

This completes the proof of the lemma.

LEMMA 2. Suppose E(-) has the CGS-property in H. Then Q, = 0 for n > Ro. Let
Mg N = {n,}t_,, where k € INU {o}. Then:

(i) There ezxist vectors zsf;,), with H:c(’)” =1forj=1,2,..,ny, in Qn H such that
Qn,H = GBZE z{)) and pp(al)) = pe(=®) = ... = pe(=(Y) (1)

I=1

forp=1,2,..,k (resp. for p=1,2,...) if k is finite (resp. if k = 00). Then CE(pE(zsfp)))

Qn, for 3 = 1,2,..,n, and for p = 1,2,...,k (resp. for p = 1,2,..) if k is finite (resp. if
k=o0)

(%) If o € ME, then there ezist vectors :z:g)), with ||z§fo)|| =1 for j € IN, in Qu,H such that

QoH =P Zp(al) and pu(al)) = pe(el) = .. (2)
1




Then Cg(pE(2))) = Quo, for j € IN.
(iii) Let
z; —Z_z(1)+z(1) j€ N

where k' = 00 if Mg is an inﬁnite set, ' =k if MgeNIN = {n; < ng < ... < np}, szp) 0

for j>n,, j€ N and zg)) is omitted if Ro € Mg. Then

N
H =P Zg(z;)
1
is an OSD. of H relative to E(-) and the OSD-multiplicity N = Ro if Mg is an infinite set or’
ifRo € Mg and N = n if Mg = {n) <nz < ... < ni}. .
(v) If MENIN = 0, then Mg = {Ro}, Qn, = I and (2) gives an OSD of H relative to E(-).

Proof. Since E(-) has the CGS-property in H, there exists a countable set X in H such that
[E(o)z:z € X,0 € S]= H. Thus [Wz : z € X] = H and hence W’ is countably decomposable. If
n € Mg and n > Ry, then @, = 0. For, otherwise, by Proposition 1 there would exist an orthogonal
family of abelian projections {E}}aes in W’ such that card.J = n, Cg: = @, for each a € J and
Qn = Y acy EL. This contradicts the hypothesis that W’ is countably decomposable. Thus, if
n € Mg, then n < Ro. Let Mg N IV = {n;}}, k € IN U {o0}.

(i) and (ii) are now immediate from the fact that Q,, n € Mg, are countably decomposable in W
with n < Rg and from Lemma 1.

(iif) Suppose Mg = {n,}52, U{Ro}. With z(’) and z&? asin (1) and (2) of the lemma, let us define
zs,]p)zt)for]>np, j € IN. Let

z; = E—z(1)+z(’) j€N.

Since Ro € Mg or since Mg is infinite, z; # 0 for all j € IN. For 5,6 € S and j # j/, we have

et 1 . . : ]
(E(o)z;, E(§)xjr) = El n—g(zfz,?, E(en8)zi)) + (z§), E(cn6)z{)) = 0
p:

since @,Qn = 0 for n,n’ € Mg with n # n'/ and ZE(zs.j)) 1 ZE(zgl)) for n € MEg. Consequently,
{ZEg(z;)}32, is an orthogonal family of non zero subspaces of H.

We shall show that pg(z;) > pE(z;4+1). Choose po such that n, < j < ny 11, where we take
ng = 0. Then zsf,,) = :cs,’:'l) =0forp=1,2,...,po. Thus ‘

o0
1 . .
z; = E -n—:cffp) + zg'o)
p=po+1




and

=) 1 ) .
Tis1 = Z _zgp+l)+z§:o+l)
P=po+1
where zs,’,'si), = 0if np 41 < j+ 1, which is the case when j = n, 4,. Suppose pg(z;)(s) = 0.
Then
o0
1 . ;
IE@eii = X SIE@zI? +1B@)=EN? =0
P=py+1 i

and hence pE(zS,’))(a) =0forp> p,+1 and pE(zg)) (¢) = 0. Note that in (1) we have pE(zs.’B) =
pE(:cS,’,'H)) if j 4+ 1 < n, and by deﬁnition,’ps(zs.’,)) > pg(z.(.’,“-)) = 0if j+ 1> ny,. Moreover, in
(2) we have PE(GJ;(JO)) = pg(z&’o'“)) for all 5 € IN. Therefore, we conclude that pg(z;41)(0) = 0.
Thus we have .

PE(Z1) > pE(22) > ...

Finally we assert that H = @®1° Zg(z;). For, otherwise, let @5 Zg(z;) = K # H. Let
y€ Ho K, y #£ 0. Then there would exist Ny, such that Ynp, = Q,,,,,° y # 0 or Qn,y # 0 since
Y nemg Qn = I. We shall show that this is impossible. Suppose Ynp, = Qn,, #0.

As Qn, ZE(2;) = Qn, [W2;] C [Wz;] = Zp(g;), it follows that Qn,, ¥ L K. Therefore,

0= (!Inpo yE(o)zj) = (Qﬂpo Ynp, 5 E(o)z;) = (ynpo aano E(o)z;) = (ynpo ) E(U);i—zsg)o

for j = 1,2,..,p, and for 0 € S. Hence Ynp, L ZE(zf.’Bo) for j = 1,2,...,np°. Consequently,
Yns, L @?21 ZE(zs;'Bo) = ano H so that Ynp, = 0. This contradiction proves that Q,,,y = 0 for all
p € IN. Similarly, Qr,y = 0 and hence y = 0. Thus

o0
H =P Zs(z;)
1
is an OSD of H relative to E(-). Consequently, the OSD-multiplicity of E(-) is Ro.

When Mg N NN is an infinite set with Ry € Mg, then in the above definition of the vectors z;
we have to suppress the term z&’o) and the rest of the argument remains the same and shows that

H= éZE(zJ')
1

is an OSD of H relative to E(-). Hence the OSD-multiplicity of E(-) is Ro. When Mg = {n, < ny <
... < N} U {Ro}, the argument is similar to the case discussed above with obivious modifications
and again the OSD-multiplicity of E(-) is Ro. Finally, when Mg = {n, < n; < ... < n}}, it can
similarly be shown that

H= éézz(%')
1
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is an OSD of H relative to E(-) and hence the OSD-multiplicity of E(:) is ng.
(iv) Since H # {0}, Mg # 0. Moreover, Q, = 0 for n > Ry as F(:) has CGS-property and by
hypothesis, Q, = 0 for n € IN. Therefore, Mg = {Ro}. Then by Proposition 1 we have Qx, = I.
Thus (2) gives an OSD of H relative to E(-). '

This completes the proof of the lemma.

Remark 1. The above lemma provides an alternate proof of Theorem 3.7 of [9].

COROLLARY 1. If E(-) has the CGS-property in H, then its OSD-multiplicity is Ry if Ro € ME
or if Mg is an infinite set.




4. A CLASSIFICATION OF SPECTRAL MEASURES WITH THE
CGS-PROPERTY

We introduce four types of OSDs of H relative to spectral measures on S with the CGS-property
in H and call them doubly infinite, simply infinite, finitely infinite and finite OSDs, respectively.
Similarly, considering the multiplicity set Mg of the spectral measures E(:) on § with the CGS-
property in H, we clasify them into four types and call them doubly infinite, simply infinite, finitely
infinite and finite spectral measures, respectively. The purpose of this section is to show that a
spectral measure E(-) on § with the CGS-property in H is doubly infinite (resp. simply infinite,
finitely infinite, finite) if and only if the same is true for any OSD of H relative to E(-). More-
over, given an OSD H = @iN=1 Zg(z;) relative to a spectral measure E(-), we describe Mg and

{Qn}rneMm; in terms of {pE(z;)},-N=l.

Notation 3. In the sequel, given a spectral measure E(-) on § with the CGS-property in H, {z;},
will denote the set of vectors defined in Lemma 2(iii). For n € Mg, p,  denotes the measure in
¥(S) for which Cg(p,, ) = @n- (Note that such a measure p, exists by Lemma 1 and is unique

upto equivalence by Theorem 65.2 of [5].)

DEFINITION 1. Let H = @7° Zg(w;) be an OSD of H relative to E(:). Then we say that the
OSD is

i) doubly infinite if there exists an infinite subsequence {n;}$° of IV such that
1

PE(Wn,) > pE(Wnyy,) (3)
#

and if there exists v € £(S) with Cg(v) # 0 such that
pe(w;) > v forje IN; (4)
#
(i) stmply infinite if there exists an infinite subsequence {nx};° of IV such that (3) holds and if
there does not exist any v € X(S) with Cg(v) # 0 such that (4) holds for all j € IV;
(ili) finstely infinite if there exists no € IV such that
‘ PE(wn) = pE(Wn,) (5)
for all n > ng.

An OSD H = @Y Zg(w;) of H relative to E(-) is said to be finiteif N € IN.

Given an OSD of H relative to E(-), obviously it belongs to one and only one of the above
types. Moreover, in virtue of Theorem 3.11 of [9], all the OSDs of H relative to a given spectral
measure E(-) belong to the same type.




DEFINITION 2. If E(-) has the CGS-property in H, then E(-) is said to be a doubly infinite
(resp. simply infinite, finitely infinite, finite) spectral measure if its multiplicity set Mg is an infi-
nite set with Ro € Mg (resp. an infinite set with Ro € Mg, a finite set with o € Mg, a finite set
of natural numbers).

Given a spectral measure E(-) on § with the CGS-property in H, clearly E(-) belongs to one
and only one of the above types.

THEOREM 1. For the spectral measure E(-) with the CGS-property in H the following assertions
hold:

(i) pe(z;) = V{pg, : n € Mg, n > j} ifz; #0.
(#) Celpe(z1)) = 1.
(#i1) Ce(pE(%5)) =1 — LneMpmn<; @n  2; #0.
Consequently, if H = @Y Zg(w;), N € IN U {oo}, is an OSD of H relative to E(-), then (i)- (i)

hold for w; and w, in stead of z; and z,.

Proof. Suppose Mg = {ni}{° U {Ro}. The other cases of Mg can similarly be dealt with. By the
definition of z; in Lemma 2(iii) we have

oj=Y —ald +al), jEN

1 P
and each z; # 0.
By Lemma 2(i), Q.,H = @ Zg (a:S;JP)) is an OSD with Cg(pg(z (;))) = Cg(pe(z 2,,))) =
CE(pE(zs,’;"))) = Qn,. Since Cg(kq,,) = @n,, by Theorem 65.2 of [5] we have pE(z(J)) Kq,, for
1 < j < np. Similarly, pg(z (J)) HQy, for j € IN.

As Q.Qmm = 0 for n # m, n,m € Mg, by Theorem 65.1 of [5] it follows that {pE(xf;Q) 2, U

{pE(z&?)} is an orthogonal family of measures in X(S) for each j € IN. Besides,
= —re(e) +pp(el), j€ N.
1 %

Let ng = 0. If Ny, <7 < Mp 41y a:sfp) =0forp=1,2,..,n, and hence

[ o]
1 : : .
pe(z;)= Y —pE(l) +pE(2{), for ny, < j < ny 1.
P=py+1

10




Consequently, by the discussion on p.79 of [5], we have

pp) = (\ ppE?)\ped)

p=pyt+1
V{tqg, :n € Mg, n>j} (6)

Thus (i) holds.

By Theorem 66.5 of [5] and by (6) we have
Celpe(z1)) = Y Celpg,)= Y Qu=1

neMp neMpg
and

Celpez))= Y. Qu=I- > Qn

nEMEyan nEMgn<j

Thus (i) and (iii) hold.
The last part follows from the previous parts by Theorem 3.11 of [9].
This completes the proof of the theorem.

THEOREM 2. For a spectral measure E(-) with the CGS-property in H the following assertions
hold:

(1) If Mg = {n1 < n2 < ..} U {Ro}, then
(a) pE(zn;) > pE(2;) = PE(Tniy,) for ni < j <nip1,i=0,1,2,..., where ng = 0 and the
term corresponding to ng ts omitted; and

(b) there ezists v € £(S) such that Cg(v) # 0 and pgp(z;) > v, forall j € IN.
#

(i) If Mg = {n1 < nz < ...}, then (i)(a) holds and there does not ezist any v € L(S) with

CEg(v) # 0 such that
pe(z;) ;) v forall j € IN.

(iii) If Mg = {n) < ny < ... < ng} U {Rg}, then (i)(a) holds for 1 =0,1,2,..,k— 1 and
pE(x;) = Pay, » for all 7 > ny.
If Mg = {¥o}, then Qg, = I and

PE(xj) = ll’QNO’ forall j € IN.

11




() If Mg = {n1 < nz < ... < ng}, then (i)(a) holds for i = 0,1,2,...,.k - 1.

Proof.
(i) Let Mg = {n;}{° U{Ro}. Then, as observed in the proof of Lemma 2(iii), z; # 0 for all j € IN.
Moreover, for n, < j < np41, by Theorem 1(i) we have

PE(Tn,) 2 PE(Z;) = pE(Tnyy,)
#
for p = 0,1,2,..., where np = 0 and the term corresponding to ng is omitted. Thus (i)(a)
holds. Since Fay, # 0, it follows from Theorem 1(i) that pg(z;) > oy, for 7 € IN. Besides,
#
CE("ONO) =Qx, #0. Let v = pq, . Then (i)(b) holds.

(ii) If Mg = {n;}$2,, clearly the argument in the proof of (i)(a) holds here verbatim and hence
(i)(a) holds in this case too. If there exists ¥ € X(S) with Cg(v) # 0 such that pg(z;) > v for all
£

j € IN, then by Theorem 66.3 of [5] and by Theorem 1(iii) we have
Celpe(z:)) =~ 3. Qu) 2Ce()#0

nEME,fl(j
for all j € IN. Consequently,
0=(1~- ZQn)=/\(1" E Qn)ZCE(V)#O

nEMg JEN nEMgn<j

which is absurd. Hence (ii) holds.

(iii) Suppose Mg = {n;}5., U {Ro}. From the definition of z; in Lemma 2(iii) it is clear that
T; = z&’o) for j > nx. Hence by Lemma 2(ii) we have pg(z;) = pE(a:g))) = g, for all j > ni. As
0

in the case of (i), by Theorem 1(i) we also have

PE(Zn;) >¢> PE(Z;) = pE(Tnsy,)

forn; < j<ng41,i=0,1,2,...,k— 1 withng =0 and the term correspondjng to ng being omitted.
When Mg = {Ro}, Mg N N = § and hence z; = 2 and pg(z;) = pp(z§)) = oy, forall j € V.
Then by Theorem 1(ii), Qx, = 1.

(iv) Noting that z; = 0 for j > ny, we observe that the proof of (i)(a) is applicable here and hence
(iv) holds.

This completes the proof of the theorem.

The following theorem which is based on Theorem 2 not only gives a description of the multiplic-
ity set of E(-) in terms of the measure sequence of an OSD of H relative to E(-) but also expresses
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the reciprocal relationship between the classifications of OSDs and those of spectral measures with
the CGS-property in H.

THEOREM 3. Let E(-) have the CGS-property in H. If E(-) is doubly infinite (resp. simply infi-
nite, finitely infinite, finite), then the same is true for evey OSD of H relative to E(-). Conversely,

suppose .
H=@ Zg(wi), Ne Nu{x} (7)
1

is an OSD of H relative to E(-). Let {h;}f‘zl be a subsequence of IN such that

pE(wﬂ.’) >¢>PE(WJ') = PE(’wnH_,), n; < .7 < Nit1, (8)
for i =0,1,2,...,k -1 if k is finite and for 1 = 0,1,2,..., if k = oo, where ng = 0, and the term
corresponding to ng is omitted. Moreover, if k is finite and N = oo, then (8) is replaced by

PE(Wn,) >; PE(w;) = pE(Wny41) for all 52> np+1 (9)

and by

pE(wﬂi) >¢> pE(wJ) = pE(wn.‘+1) fOf‘ n; <jJ < niyr and for i= 0, 1a2)'“1k -1 (10)

where n, = 0 and the terem corresponding to ng is omitted.
If such a sequence {n;}¥ does not ezist and N = oo, then instead of (9) and (10) we have
pE(’wl) = pE(’U)2) = .... (11)

Then the following hold:

(1) ME N IN = {n;}} when such a sequence ezists and on the contrary, Mg = {No} if N = oo
and Mg = {N}if Ne NN.

(i) The OSD (7) is simply infinite if and only if k is infinite and A2, Cg(pE(Zn;)) = 0. In that

case, Mg = {n;}2,.

(i1i) The OSD (7) is doubly infinite if and only if k is infinite and A2, Ce(pE(zs,)) = Q (say) #
0. In that case, Mg = {n;}32, U {Ro} and Qn, = Q.

(iv) The OSD (8) is finitely infinite if and only if N is infinite and k is finite or Mg = {No}.
In the former case, Mg = {n;}5_, U {No} and Qn, = CE(pE(Wn,+1)). In the latter case,
Qn, = I = Cg(pe(w1))-

(v) If N is finite, then either Mg = {n;}%_, with ny = N or Mg = {N}.
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(vi) (a) In case (i)
@n, = Ce(pe(wn;)) — CE (PE(wn.‘+1 ) (12)

forie IN.

(b) In case (ii1), (12) holds for i € IN and Qy, = Q.

(c) In case (iv), (12) holds for i =1,2,....k —1, Qn, = Ce(pE(Wn,)) — CE(pPE(Wn,+1)) and
Qr, = Ce(pE(Wn, +1)) when Mg # {Ro}. If Mg = {Ro}, then Qn, = Ce(pe(w)) = I.

(d) In case (v), (12) holds for i =1,2,....k — 1 and Qn, = CE(pE(wn,)) when Mg = {n;}}
and Qn = I = Cg(pe(w;)) fori =1,2,...,N when Mg = {N}.

Consequently, if the OSD (7) is doubly infinite (resp. simply infinite, finitely infinite, finite) then
the same is true for every OSD of H relative to E(-) and for the spectral measure E(-).

Proof. The first part follows from Theorem 2 and from Theorem 3.11 of [9]. For the OSD (7) let
{n;}%_, be given as in the theorem. By the second part of Theorem 1 and by Theorem 1(iii) we

have: .
Celpe(w;))=1- ) Qn (13)
ﬂ€ME,ﬂ<j
(i) Let Mg N IN = {p;}*' where k' € INU {cc}. Then by Theorem 3.11 of [9] and by Theorem 2 we

have
PE(wp,) >¢> PE(w;) = pp(wp,,,) for p; < j < piya

and i = 0,1,2,...,k' = 1if ¥ < oo and ¢ = 0,1,2,... if k¥’ = 0o, where p, = 0 and the term
corresponding to p, is omitted. Then from the hypothesis it follows that k' = k and p; = n; for
each i. Thus Mg N IN = {n;}¥. When such a sequence does not exist and N = oo (resp. and
N e N)
pe(w1) = pp(w2) = ... = pp(w;) = ...

for j € IN (resp. for 1 < j < N) and hence (7) implies that I = YV E! where E! = Zg(w;),
1 <t < N,i€ IN, are mutually orthogonal abelian projections in W’ by Theorem 60.2 of [5].
Moreover, by Theorem 62.2 of [5] C, = I for all such ¢ and hence by Proposition 1 we conclude
that I has UH-multiplicity Ro (resp. N). Thus Ro € Mg and Qn, = I (resp. N € Mg and
Qn = I). Moreover, again by Proposition 1, we conclude that Mg = {Ro} (resp. Mg = {N}).

(i) Let the OSD (7) be simply infinite. Then k = oo and there does not exist any v € X(§) with
Cg(v) # 0 such that pg(w;) > v for all j € IN. If possible, let AT° Cg(pe(w;)) = Q # 0. Then
for each non zero vector w € QH we have Q > Cg(pg(w)) # 0. Consequently, by Theorem 65.2
of [5] we have pg(w;) > pg(w) for all j € IN. This contradiction proves that Q = 0. Conversely,
let k = oo and AP Ce(pe(w;)) = 0. If v € 3(S) is such that pg(w;) > v for all j € IV, then
Ce(pe(w;)) > Cg(v) for all j, and therefore,

Cs) < A\ Colps(u;)) =o.
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Hence the OSD (7) is simply infinite.

Let the OSD (7) be simply infinite. Then, as observed above, A;° Cg(pg(w;)) = 0 and hence
by (i) and (13) we have

0=/\CE(PE(wj))= /\(I"' Z Qn)=1_EQm"
1 i=1 neMg,n<j =1

Thus 32, Qn, = I and hence Mg = {n;}2,. Therefore, E(-) is simply infinite.

(iii) Let the OSD (7) be doubly infinite. Then k = oo and there exists v € X(S) such that Cg(v) # 0
and such that pg(w;) > v for all j € IN. Then

Cg(pe(w;)) > Cg(v) for all j € N

and hence

ACr(ps(w;)) 2 Cs(v) £0.
1

Conversely, suppose k = 00 and A{° Ce(pe(w;)) = Q # 0. Then as shown in the proof of (ii) there
exists w € QH such that Q@ = Cg(pg(w)) # 0 so that pg(w;) > pr(w) # 0 for all j € IN. Thus
the OSD (7) is doubly infinite.

Now let the OSD (7) be doubly infinite. Then k¥ = oo and AP Ce(pe(w;)) = Q(say) # 0.
Moreover, as I = Cg(pg(wi1) > Ce(pe(wn,) by the second part of Theorem 1, it follows that

Q # I. Therefore, by (13) and (i) we have

0#1-Q= v(I Colpr(ws)) = V(X Qn) = 3 @n.

1=1 n; <y =1

Thus R € Mg and Qn, = Q. Consequently, as Mg = Mg N IN U {X¢}, by (i) we have
Mg = {n;}{° U {Ro}. Hence E(-) is doubly infinite.

(iv) Let the OSD (7) be finitely infinite. Then by (5) there exists no such that pg(w;) = pg(ws,)
for all j > n,. Consequently, n, = nx + 1 and hence k is finite whenever such a sequence {n;}*
exists. Thus, in this case, k is finite and N is infinite. If such a sequence does not exist, then

pE(w)) = p(w2) = ... = pp(w;) = ...

for all j € IV and hence, as shown in the proof of (i), Qx, = I and Mg = {Ro}. Conversely, if
N = oo and k is finite, by hypothesis pg(w;) = pr(wn,+1) for all j > ni + 1, and hence the OSD is
finitely infinite. If Mg = {Ro}, then by Theorem 2(iii) Qn, = I and pg(z;) = Fay, for all j € IN.
Then by Theorem 3.11 of [9] we conclude that pg(w;) = pe(z;) = Fay, for all j € IN. Thus, in
this case too, the OSD is finitely infinite.
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If the OSD (7) is finitely infinite and Mg # {No}, then k is finite and by (i), Mg N IN = {n;}}.
Moreover, by (13) we have

k
0 ’;é CE(PE(w'nk+l)) =1I- ZQn.'-
1
Hence o € Mg and Qn, = Ce(pg(wn,+1))- Thus Mg = {ni}¥ U{No}. The other case is that
Mg = {Ro} in which case Qnr, = I = Ce(pg(w1)) by the second part of Theorem 1 and by Theorem

1(ii). Moreover, E(-) is finitely infinite in both cases.

(v) If N is finite and {n;}} exists, then clearly n; = N and by (i), Mg = Mg NN = {n;}{. If such
a sequence does not exist, then by the second part of (i) we have Mg = {N} and Qn = I.

(vi)(a) If the OSD (7) is simply infinite, by (ii) we have Mg = {n;};°. Moreover, by (13) we obtain

1—1 N
Ce(pE(Ws,)) = CE(PE(Wniy)) = (1 = 3 Qn;) = (1 = Y_ Qn;) = Qn;
1 1

for 2 € IN, where Qn, = 0.

Similar arguments combined with (iii), (iv) and (v) prove the validity of (b),(c) and (d). The
details are left to the reader.

Other assertions follow from the previous parts.

This completes the proof of of the theorem.
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5. OSDs INDUCED BY COBOTSRs AND COBOTSRs INDUCED BY OSDs.

Let the spectral measure E(-) have the CGS-property in H. Then H admits not only OSDs
relative to E(-), but also by Theorems 3.6 and 5.6 of [10] it admits COBOTSRs relative to E(-) (see
Definitions 3.1 and 5.2 of [10]). Starting with a COBOTSR U (resp. with an OSD) of H relative
to E(+), we now construct in a canonical way an OSD (resp. a COBOTSR U ) of H relative to E(:).

THEOREM 4. Suppose U is a COBOTSR of H relative to E(-) with the measure family F. Then
there ezists an OSD N
H= @ZE(:D.') (14)
1

of H relative to E with N € IN U {oo} such that
Ce(pe(z))= Y, CeW

nEFug(u)2i

for all those i € IN for which there ezists some p € F with ug(u) > i. Moreover, N =sup{n:n €
Mg}, and the OSD (14) is determined upto equivalence of OSDs. The OSD (14) is called the OSD
induced by the COBOTSR U.

Proof. Let v; = \/{u € F : ug(p) > i}. As F is countable by Theorem 5.6 of [10], v; is well defined
and is unique upto equivalence. Obviously, v; > v, > ... > .... By Theorem 5.6(iii) of [10] we have

HQ, = \/{y € F :ug(p) =n}, for n€ Mg.

Then
vi=\/{p € F:up(p) > i} =\/{ug, :n€ Mg,n>i}.
Suppose Mg = {n;}$° U{Ro}. Similarly, other cases can be dealt with. For 1 < ¢ < nj, we have

OV La(vi) = ((®n (®21(L2(1qn,)) ® (@n, (L2(ngw,))) D
D (Bry—ni (©F2(L2(kQn,)) © (Snz—ni (L2(1q, )

® .. @((®nk—ﬂk—l (®?:—‘k(L2(#‘Qn.' )) ® (®ﬂk—ﬂk—1 (L2 (/‘Qno )))

Therefore, by rearranging we have

DLaw) = @D (Lalean,) DEDLalpia,, ) D - DED(La(nan,) D
DD P Lalan,) DE(Laluan,))-

i=k+1 ni ny
Since this holds for all n;, k € IN, we conclude that

K =@ Law) = @D Lalka.,) DED Laway, ).

=1 nq 1
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Since by Lemma 5.3 of [10], {1q.,}{° U {#qy, } is the measure family of a COBOTSR Up of H
relative to E(-) and since U and Up are equivalent by Theorem 4.2 of [10], then by Definition 3.1
of [10] we conclude that there exists an isomorphism Vy from H onto K satisfying

VWECVG () = (x(y fi), for (i) € K.

Consequently, by Definition 4.1 of [9] Vi is an ordered spectral representation of H relative to E(-)
as 11 > v3 > .... Hence by the discussion on pp.228-229 of [9] there exists an OSD H = &$° Zg(z;)
of H relative to E(-) such that pg(z;) = vi. Then by Theorems 66.2 and 66.5 of [5] we conclude that

Ce(pe(2i) = CB(¥i) = LucFug(n)>i CE(1). Then (14) is unique upto equivalence by Theorem
3.11 of [9].

Now let sup{n : n € Mg} = k. Note that k = R, if Mg is infinite or if X, € Mg. If k € N,
then by Proposition 3.3(v) of [10] there exists some u € F such that ug(u) = k and hence vy
and therefore, pg(zi) exist. Obviously, pg(z;) with z; # 0 is not defined for ¢ > k and hence the
OSD-multiplicity N of the OSD coincides with k. If ¥ = Vg, then pg(y;) exists and y; es non zero
for each 1 € IV and hence the OSD-multiplicity N is Rg.

This completes the proof of the theorem.

Remark 2. For self-adjoint operators (resp. for spectral measures) on a separable Hilbert space
similar result was proved by Plesner and Rohlin [10, p. 143] (resp. Brown [1, pp.155-156]).

Given an OSD of H relative to E(-), the following theorem gives in a canonical way the con-
struction of a COBOTSR of H relative to E(:).

THEOREM 5. Let E(:) have the CGS-property in H and let us consider the OSD (7) of Theorem
3. Then the following assertions hold:

(1) The multiplicity set Mg is determined by pp(w;), 1 <t < N,i€ IN.
(i) The central projections Q,, n € Mg, are determined by {Cr(pe(w:)){'}.

(i4i) There ezists a COBOTSR U of H relative to E(-) with the measure family F = {pg(Qnw1) }nemy
and U is called the COBOTSR indeuced by the OSD (7).
(tv) For n € Mg,

QnH = @ ZE(Qnw;)

=1

is an OSD of Q. H with pp(Qnw1) = pp(Qrwi) = ... = pp(Quw;) = ... forj€ N, j < n.
Moreover, uq, = pe(@nw;), 1 <j<n, j€N.

Proof.
(i) and (ii) hold by Theorem 3.
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(iii) By the second part of Theorem 1, Cg(pg(w;)) = I. Consequently, by Theorem 66.2 of [5],
Ce(pE(Q@nw1)) = Ciwq,u,] = @nClww,] = @uCE(pE(11)) = Qn

for n € Mg. Thus, by Theorem 65.2 of [5], pp(Qnwi) = pq, for n € Mg. Then (iii) holds by
Lemma 5.4 of [9].

(iv) By (13), Ce(pe(ws)) L Qn for n € Mg with n < i and Cg(pg(w;))Qn = Q@ for n € Mg with
n > i. Therefore, by Theorems 66.2 and 66.5 of [5] we have

0 ifn<:
Cr(PE(@nwi)) = Cwgau) = QnClwun) = QnCr(pr(w) = { Qn ifn>i

for n € Mg. Moreover, for each n € Mg, by Theorem 60.2 of [5] the projections E! = [WQ,w;], 1 <
i <n, 1 € IN, form an orthogonal family of abelian projections in W’. Since these projections have
the same central support @, it follows from Proposition 1 and Theorem 65.2 of [5] that

QnH = P Ze(Qnw;), n€ Mg

=1

is an OSD of Q,H with pg(Qrw1) = pE(Qnwsz) = .... As Ce(pe(Qrw;)) = Q, it follows that
PE(Qnw;) = pq, forn € Mg andfor 1<i<n, i€ IN.

This cdmpletes the proof of the theorem.

6. Spatial isomorphism of abelian von Neumann algebras

Using the results of [7,9,12] we give a necessary and sufficient condition for an involution pre-
serving isomorphism between two abelaian von Neumann algebras to be spatial. When the algebras
have countably decomposable commutants, we deduce the condition in terms of the multiplicity
functions m, and m. of the respective canonical spectral measures of the algebras. The last result
is an analogue of Theorem 7.8 of Stone [16], though it is not a gcneralization.

Let A be an abelian von Neumann algebra on a Hilbert space H and let M be its maximal ideal
space. For each f € C(M), let Ty be the operator in .A whose image under the Gelfand mapping is
f. Let B(M) be the o-algebra of the Borel subsets of M. The set function G : B(M) — A defined
by G(0) = Ty(y(,,, Where T(0) is clopen and T(s)Ac is meagre in M. Then G() is projection
valued and is o-additive in the strong operator topology. Then G(.) is called the canonical spectral
measure of A.

For the concepts of primitive projections in A, proper A-base and the Kelley multiplicity func-
tion ¢ of A, the reader is referred to [7]. It is shown in [12] that a projection P € A is primitive if
and only if P is cyclic and has UH-multiplicity, where we consider A as the von Neumann algebra
generated by the range of its canonical spectral measure G(-). Moreover, for a primitive projection
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P € A, let ep be the clopen set in M such that P = . If P has UH-multiplicity n, then as
shown in [12], we have ¢(t) = n for all t € ep. The followmg proposition is proved in [12] , which
is the same as result 5.1 mentioned on p.605 of [7].

PROPOSITION 2. There exists a mazimal orthogonal family F of primitive projections in A.
For F € F, let Jr be a proper A-base for F. Let Ly(M,B(M),pc(z)) = La(pc(z)). Choose
zp € Jr, F € F. Let card.Jp = np. Then there ezists an isomorphism U from H onto K =

@B rer Onp L2(pc(zF)) such that
UAU~V(frj)reF.jeir = (9fF;), (frj)Ferjeir € K

for A€ A, where g € C(M) with T, = A.

If A’ is countably decomposable, then G(-) has the CGS-property in H and using Theorem 3
above, we showed in [12] that the Kelley multiplicity function ¢ is given by ¢(t) = max(my(t), m.(t))
for t € M\(pg\pg), where pg = {t € M : G({t}) # 0} and m, and m. are the multiplicity func-
tions corresponding to G(:) as in Definitions 6.4 and 6.8 of [9].

Let F, zr, Jr and np be as in Proposition 2. Let S, be the o-ring of all Borel sets of M
which are contained in some clopen set corresponding to a cyclic projection in A. Let vr(o) =
Y rerpc(zr)(o) for 0 € S,. It is clear that vr is a o-finite measure on S,. Adopting the von
Neumann definition of ordinal and cardinal numbers, so that each ordinal is identical with the set
of all smaller ordinals, and a cardinal is an ordinal which cannot be put in 1-1 correspondence with
a smaller ordinal, let C be the supremum of the values of ¢. Let v be the counting measure on
the o-ring of all countable subsets of C. Now we give below a proof of the result 5.2 mentioned
in [7] in which we also include the special case when the commutant of A is countably decomposable.

THEOREM 8. Let ' be the subset of M x C, consisting of ordered pairs (t,c) with ¢(t) > c and
let nr be vr X v restricted to subsets of I'. Then there ezists an isomorphism V from H onto La(nr)
such that VAV ~1k(t,c) = g(t)k(t, c) for k € La(nF), where g € C(M) with T, = A. If A’ is count-
ably decomposable and if m, and m. are the multiplicity functions of the canonical spectral measure
G(-) of A, then the above result holds with T replaced by I', = {(t,c) : maz(m,(t), m.(t)) > c} in
MxC.

Proof. Let K, F,F,zr,Jr and np be as in Proposition 2. Let Cr be the set all of all cardinals

{c: ¢ < nfp}. Let ¢ : CFr — Jr be a bijective map. For k € La(nr), let krg.()(t) = k(t,c) if
t € ep. Then clearly krg () is Borel measurable on ep and moreover,

LS, ol = ([ et ePdrdy
L [ ktataamar= 3 [ ([ 1keoldsotzren

il

JACCRIECY
r

FeF Fer
= E Z/ [kr.op(c) ()2 dpc(zr) (15).
FeF ceCp
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Hence Y rer Lcecy Jr IkFe () (t)1Pdpe(2F) < oo and thus (krg () Fer cecr € K. Then clearly
the map ¥ : La(n) = K given by ¥(k) = (kpe())FeFcecr is an isometry. = Conversely, let
krop() € La(pg(zF)) for F € F and for ¢ € Cr such that (kpe,())rercecy € K. Let
k(t,c) = de»p(c)(t) ifte Fandc € Cr and let k(t,c) assume any complex value if (¢,¢) € T
with ¢ € M\ Uper E. Then clearly k is measurable in.I" since G(M\Ugex F) = 0. Then by a cal-
culation similar to that in (15) one can show-that k € L3(nr) and that ¥(k) = (kpg #(c)) FEF ceCp-

Thus ¥ is an onto isomorphism from Ly(nr) onto K. For g € C(M) and k € La(nF), let
(gk)(t,c) ='g(t)k(t,¢). If V. =W¥~1U, where U is as in Propisition 2, then V is an isomorphism of
H onto Ly(nr) and by the same proposition we have VAV ~1k(t,c) = g(¢t)k(t, c) where g € C(M)
with T; = A.

To prove the second part we observe that M\ (¢\pg) is open and dense in M and G(3¢\pg) = 0
since pc\pc is nowhere dense in. M. Since ¢(t) = max(mp(t), m(t)) for t € M\(Pa\pa)) by The-
orem 7 of [12], now the second part is immediate from the first.

COROLLARY 2. Let A; be abelian von Neumann algebras (resp. with A} countably decompos-
able) for i =1,2. If ® is an involution preserving isomorphism:from A, onto A; and.if ¢; and ¢,

are the Kelley multiplicity functions of A, and A; (resp. m() and m{) are the multiplicity func-
tions on the mazimal ideal space.of the Gelfand space M of the canonical spectral measure G; ()

fori=1,2), then ® is spatial if and only if $1(t) = ¢2 (ht) (resp. if and only if m(l)( t) = m(h( t))
and m{' )( t) = mgz)(h(t)) for t € M, where h : M; = M, is the homeomorphism induced by ®
(see Theorem IV.6.26 of [3]).

Remark 3.. The above corollary can be considered as an analogue of Theorem 7.8 of Stone [16]
for abelian von Neumann algebras with countably decomposable commutants, theugh it is not its
generalization. : ‘ :
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