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Abstract 

The spectral measures defined on a a-algebra S of sets with the CGSproperty in q given 
Hilbert space H are classified as doubly infinite, simply infinite, finitely infinite and finite ones 
and a similar classification is given for the ordered spectral decompositions (briefly, OSDs) of 
H relative to such spectral measures. The main result ie that a epedral measure E(.) is of a 
particular type if and only if the OSDs of H relative to E(.) are also of the same type. Moreover, 
the multiplicity set ME of E(.) is described in terms of the measure sequence associated with 
the given OSD of H relative to E(.). Aleo is included a result on spatial isomorphism of abelian 
von Neumann algebras with countably decomposable wmmutants in terms of the multiplicity 
functions rnp and m, of their canonical spectral measures. 

1. INTRODUCTION 

The problem of determining a complete system of unitary invariants for a self-adjoint or a 
normal operator on a Hilbert space H goes back to  the pioneering work of Hellinger [6] in 1907. 
The literature on the unitary invariance problem can be classified as  follows: 

(a) H separable: 

In 1932, Stone [16] recast the work of [4] and [6] in the set up of abstract separable Hilbert space 
H and extended their work to  self-adjoint operators T on H. He also introduced two multiplicity 
functions mp and m, with respect to  up(T) and u,(T) and obtained two unitary invariance theo- 
rems (Theorems 7.7 and 7.8 of [16]), the latter in terms of mp and m,. Later, in 1963 Dunford and 
Schwartz [3] studied the problem for self-adjoint and bounded normal opearotrs T on H and the 
equivalence of two ordered spectral representations relative t o  T is a complete system of unitary 
invariants for T. 

(b) H arbitrary, self-adjoint or normal operators on H: 

In 1939, Wecken [17] studied the problem for self-ajoint operators, while in 1946 Yosida [18] 
studied for normal operators in terms of the von Neumann algebra generated by the range of the 
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resolution of identity of the operator. Also Plesner and Rohlin [13] studied the problem for self- 
adjoint operators in 1946 in terms of the multiplicity functions defined on generalized Hellinger 
types. 

(c) H arbitrary and E(-)- a spectral measure: 

Halmos [5] studied in 1951 the unitary invariance problem of an arbitrary spectral measure 
defined on a a-algebra of sets C, and the multiplicity defined on the set of all finite (positive) mea- 
sures determines the spectral measure upto unitary equivalence.In 1974 Brown extended the work 
of Wecken [17] to  spectral measures and invoking a result of Schwartz [14], obtained his principal 
result (Theorem 8.4" of [I]) on unitary invariance of spectral measures E(.) on H. 

(d) H arbitrary and operator algebras: 

In 1951 Segal [15] studied the problem of unitary equivalence for abelian W*-algebras, while 
Kelley [7] studied in 1952 for abelian von Neumann algebras. 

Though it is clear that all these results are mutually related, as far as we know, prior to the 
publication of our papers, there has not been any work published in the literature which obtains 
all the principal results of the above mentioned authors. So, we started working upon a unified a p  
proach to  deduce or generalize all the important results known on the problem of unitary invariance. 

Before proceeding further, let us briefly comment on the results obtained in our papers [9 ,10,11, 
121. We use the results of Halmos [5] as basis and generalize the results of Dunford and Schwartz 
[3] to  spectral measures with the CGS-property in [9], thereby extending the unitary invariance 
theorem given for self-adjoint and bounded normal operators in [3] t o  normal operators on sepa- 
rable Hilbert spaces. This also generalizes the Hellinger theory presented in [16] to such spectral 
measures. Also we extend in [9] the notions of the multiplicity functions mp and m, given in Stone 
[16] to spectral measures with the CGS-property on the Bore1 sets of a Hausdorff space. 

In [lo] we introduce the concepts of spectral representations such as OTSRs, BOTSRs and 
COBOTSRs, and obtain a few new complete sets of unitary inwriants for arbitrary spectral mea- 
sures in terms of the equivalence of their spectral representations. In [lCI] is also given an alternative 
proof of the unitary invariance theorem in $68 of Halmos [5] and moreover, certain results of Plesner 
and Rohlin [13] are generalized to  spectral measures which have the generalized CGS-property or 
are arbitrary. Also is deduced in [lo] the unitary invariance theorem (Theorem 8.4") of Brown [I], 
with a clear description of the cardinals mentioned in the theorem. 

In [ll] we use some rudiments of von Neumann algebras, and from the results of Halmos [5] 
we deduce the type I,-decomposition theorem of a type I von Neumann algebra. We prove a new 
result in terms of the multiplicity and uniform multiplicity of projections given by Halmos [5] from 
which we deduce a generalization of the principal result of Yosida [18] t o  spectral measures. Also 
we deduce some of the classical results on abelian von Neumann algebras, which were first pr\)ved 



by Segal [15]. Finally, we show that a projection P in the von Neumann algebra W generated by 
the range of a spectral measure E(.) has uniform multiplicity n in the sense of Halmos [5] if and 
only if the W*-dgebra W P  has uniform multiplicity n in the sense of Segd [15] and then deduce 
the decomposition theorem and the unitary invariance theorem of Segal. [15]. 

Using the results of [lo], we deduce in [12] the principal unitary invariance theorem of Kelley [7] 
and describe the Kelley multiplicity function q5 on certain dense subset of the maximal ideal space 
of the abelian von Neuamann algebra in question in terms of the uniform multiplicity of projec- 
tions (in the sense of Halmos [5]). Also wing Theorem 3 of the present paper, we describe in [12] 
the function q5 in terms of the multiplicity functions mp and m, relative to the canonical spectral 
measure of the abelian von Neumann algebra A, when its commutant is countably decomposable. 

In the present paper we classify spectral measures defined on a a-algebra S with the CGS- 
property in a given Hilbert space H and also the ordered spectral decompositions (briefly, OSDs) 
of H relative to such spectral measures as doubly infinite, simply infinite, finitely infinite and finite 
ones and show that a spectral measure E(-) is of a particular type if and only if all the OSDs of H 
relative to E(.) are also of the same type. Moreover, the multiplicity set ME of E(.) is described 
in terms of the measure sequence associated with the given OSD of H relative to E(-). We also 
extend the results proved for hermitian operators ( resp. spectral measures) on p.143 of [13] (resp. 
pp. 155-156 of [I]) on separable Hilbert spaces to spectral measures with the CGS-property in H. 
Finally, given an abelian von Neumann algebra A with its commutant countably decomposable, 
we characterize it upto unitary equivalence in terms of the multiplicity functions mp and m, of the 
canonical spectral measure of A. The last result is only an analogue of Theorem 7.8 of Stone [16], 
but is not its generalization. 

2. PRELIMINARIES 

In this section we fix notation and terminolgy and also give some definitions and results from 
[8,9,10] for the convenience of the reader. For other concepts and results used in the body of the 
paper, the reader is referred to appropriate bibliography. 

H, HI and H2 denote (complex) Hilbert spaces of arbitrary dimension (> 0). The closed sub- 
space spanned by a subset X of a Hilbert space is denoted by [XI. @ Mi is the orthogonal direct 
sum of a family of mutually orthogonal closed subspaces {Mi) of a given Hilbert space or of Hilbert 
spaces {Mi 1 . 

If P is a projection in a von Neumann algebra W on H ,  then Cp denotes the central support 
of P. For z E H,  [Wx] = [Az : A E W] and, sometimes, it also denotes the orthogonal projection 
with range [Wz]. We follow Dixmier [2] for the rest of termoinology and notation in von Neumann 
algebras. 

Let S be a a-algebra of subsets of a non empty set $2. Let E(.) be a spectral measure on S 
with values in projections of H.  For x E H, pE(x) denotes the measure J I E ( . ) x ( ~ ~  on S. Let C(S) 



be the set of all finite (positive) measures on S. For p l ,  pp E C(S), we write pl p2 if p1 << p2 
and pp << p1. Clearly, G is an equivalence relation on C(S) . In the sequel, E (.) , El (-) , E2 ( e )  will 
denote spectral measures on S with values in projections of H ,  H1 and Hp, respectively. W will 
denote the von Neumann algebra generated by the range of E(.). 

For p E C(S), the projection CE(p) is defined as the orthogonal projection on the closed 
subspace {x E H : pE(x) << p} and it follows from [5] that CE(p) E W. The multiplicity uE(p) of 
p E C(S) relative to  E(.) is defined by 

if p # 0 and uE(0) = 0, where the H-multiplicity of CE(v) is the multiplicity of CE(v) relative to 
E(.) in the sense of Halmos [5]. p E C(S) is said to  have uniform multiplicity uE(p) relative to 
E(.) if uE(u) = uE(p) for 0 # v << p, v E C(S). 

For x E H ,  let ZE(x) = [E(a)x : a E S]. Since W is the von Neumann algebra generated by 
the range of E(.), it follows that ZE(x) = [Wx] E W', where W' is the commutant of W. 

A spectral measure E(.) on S is said to  have the CGS - property in H if there exists a count- 
able set X in H such that [Ea)x : x E X, a E S] = H. Then it is known from [9] that E ( - )  
has the CGS-property in H if and only if H admits an ordered spectral decomposition (briefly, 
OSD) relative to E(-) ,  where H = ZE(xj) is called an OSD of H relative to  E(.) if each 
x, # 0, N E N u (00)  ( N  is called the OSD multiplicity of E(.) and we denote it by No when 
it is infinite) and pE(xl) >> pE(x2) >> ... (which is called the measure sequence of the OSD). If 

H, = Z~,(X?))  are OSDs of Hi relative to  E;(.) for i = 1,2, then they are said to be equivalent 
if N1 = N2 and P E , X ~ ( ~ )  G p ~ ~ x , ( ~ ) )  for all j .  Then El(.)  and E2(-)  are unitarily equivalent if and 
only if any two OSDs of H1 and H2 relative to El (.) and E2 ( a )  are equivalent. 

Notation 1. Let W' = C enE WIQn be the type In-direct sum decomposition of the commutant 
W' of W so that WIQn is of type In, where the n are non zero cardinals not greater than the 
dimension of H .  Then {Qn)nE j will denote these central projections in the type In-direct sum de- 
composition of W' and by ME we shall denote {n : n E J). ME is called the multiplicity set of E(.) .  

Notation 2. Let P be a projection in W. Then its multiplicity (resp. uniform multiplicity) in the 
sense of Halmos [5, pp.100-1011 is referred to as its H-multiplicity (resp. UH-multiplicity) relative 
to E (.) . 

As shown in [8], a projection P in W' is abelian if and only if it is a row in the sense of Hal- 
mos [5] and the column generated by a projection in W' is the same as its central support. Thus 
Theorem 64.4 of [5] can be reformulated as follows: 

PROPOSITION 1. A non zero projection F in the von Neumann algebra W generated by the 
mnge of E(.) has UH-multiplicity n relative to E(- )  if and only if there exists an orthogonal fafm- 
ily {Eh)aEJ of abelian projections in W' such that card.J = n, CEb = F for each a E J and 



CaEJ EL = F; in other words, i f  and only i f  W'F irr of type In or, equivalently, i f  and only if 
o # F < Q n .  

3. SOME LEMMAS 

LEMMA 1. Let P be a countably decomposable non zero projection in W. Then P has UH- 
multiplicity N < N o  if and only if there ezists an OSd P H  = $: ZE(xi) of P H  with pE(xl) - 
pE(x2) .... Then CE(pE(2;)) = P for all i. 

Proof. Suppose P has UH-multiplicity N < No. Then by Proposition 1 there exists an orthogonal 
family {q)jE J of abelian projections in W' such that card.J = N ,  Cp! = P for each j E J and 

P = CjEJPj. Let J = {1,2,.,.,N) if N E N and let J = {1,2 ,... \ if N = No. Since P is 
countably decomposable in W and Pj' has its central support P, by Theorem 58.3 of Halmos [5] 
there exists a vector x j  E q H  such that P = Cp; = C[wz,l. As [Wzj] = [ W q x j ]  '= q[Wxj],  

we have [ W X ~ ]  < Pj. Consequently, as P: is abelian, by the discussion on p.123 of [2] we 
have [Wxj] = C[wz,lq = Pq  = q. Thus there exists x j  E q H  such that P: = [Wxj], 
j € J. Therefore, P H  = $jEJ[W~j] = ejEJ ZE(xj). Moreover, by Theorem 66.2 of [5], 
CE(PE(X~))  = CIWq] = CPj = P for all j. Consequently, by Theorem 65.2 of [5], pE(xj) l pE(xj,) 
for all j, j' E J .  Hence the condition is necessary. 

Conversely, if such an OSD P H  = $: ZE(xj) exists, then clearly N < No. As pE(xl) G 
- pE(x2) f ..., by Theorem 66.2 of [5] it follows that C[wx,l = C[w,,l - ... = Q (say). Then 

P = C:[WX~] < Q. On the other hand, as P E W , w e  also have [Wx,] < Clwxjl < P for all j. 
Thus Q = P.  Since [Wxj] = ZE(xj) is abelian in W' by Theorem 60.2 of [5], from Proposition 1 
it follows that P has UH-multiplicity N.  

This completes the proof of the lemma. 

LEMMA 2. Suppose E ( . )  has the CGS-property in  H .  Then Qn = 0 for n > No. Let 
ME n IV = {n,),k=, , where k E N U {w ) . Then: 

(j) ( i )  There exist vectors xnp , with l(x$; 1 ( = 1 for j = 1,2, ... , n,, in Qnp H such that 

n~ 

Qnp H = @ ~ ~ ( 2 2 2 )  and pE (xt:) 1 pE(xi;)) 1 ... I p E ( x 2 ) )  (1) 
j=l 

for p = 1,2, ..., k (resp. for p = 1,2, ...) if k is finite (resp. i f  k = m). Then ~ ~ ( ~ ~ ( ~ 2 2 ) )  = 
Qnp for j = 1,2,  ..., np and for p = 1,2, ..., k (resp. for p = 1,2,  ...) if k is finite (resp. i f  
k = 00). 

(ii) If N o  E ME, then there ezist uectors xfj,  with 11xfj11 = 1 for j E N ,  in QxoH such that 



Then C E ( ~ E ( X ~ ) )  = Q N ~ ,  for j E N .  

(iiz) Let 

where k' = m i f  ME is an infinite set, k' = k i f  ME n N = {n l  < n2 < ... < n k ) ,  xi: = 0 - 
for j > np, j E N and x f ;  is omitted i f  No  $ ME.  Then 

N 

H =  @ z E ( z j )  
1 

is an OSD of H relative to E( . )  and the OSD-multiplicity N = No if ME is an infinite set or .  
i f  No  E ME hnd N = n k  if ME = {n l  < n2 < ... < nk ) .  

(iv) If ME n N = 0, then ME = {NO), Q N ~  = I and (2) gives an OSD of H relative to E ( . ) .  

Proof. Since E ( - )  has the CGS-property in H ,  there exists a countable set X in H such that 
[ E ( a ) x  : x E X, a E S] = H. Thus [ W x  : x E XI = H and hence W' is countably decomposable. If 
n E ME and n > N o ,  then Q ,  = 0. For, otherwise, by Proposition 1 there would exist an orthogonal 
family of abelian projections {EL)aE J in W' such that card.J = n, CEA = Q,  for each a E J and 
Q ,  = CaEJ EL. This contradicts the hypothesis that W' is countably decomposable. Thus, if 
n E ME,  then n < No.  Let ME n N = {n j ) ; ,  k E N U  (00). 

(i) and (ii) are now immediate from the fact that Q,, n E M E ,  are countably decomposable in W 
with n < No and from Lemma 1. 

(iii) Suppose ME = { n p } g l  u {No}. With x r  and rf;  as in ( 1 )  and (2) of the lemma, let us define 

x?: = O f o r j  > np, j E N .  Let 

Since No E ME or since ME is infinite, xj # 0 for all j E N .  Fol ~ , 6  E S and j # j', we have 

since Q,Q,t = 0 for n ,  n' E ME with n # n' and ZE(X?)) I Z E ( x g t ) )  for n E ME.  Consequently, 
{ Z E ( x j ) ) g l  is an orthogonal family of non zero subspaces of H .  

We shall show that p E ( X j )  B p ~ ( s j + i ) .  Choose po such that npo < j < nPo+l, where we take 
(l+l) - m = 0. Then XQ = xnp - 0 for p = 1,2,  ..., po. Thus 



where xt::), = 0 if npo+l < j + 1, which is the case when j = Suppose pE(zj)(a) = 0. 
Then 

00 1 
IIE(a)zj(12 = C -ill~(a)~$l12 + IIE(~)z:)~~' = 0 

p=p0+l "P 

(j) and hence PE(z~,)(u) = 0 for p 2 po + 1 and pp (z~) ) ( a )  = 0. Note that in (1) we have pE(z?:) 

PE(x?~+~)) if j + 1 < q and by definition, PE(zg) W p ~ ( z i 2 1 ) )  = 0 if j + 1 > np. Moreover, in 
(]+I) 

(2) we have pE(zf;) I ~ E ( Z *  ) for 41 j E N. Therefore, we condude that pE(Zj+l)(C7) = 0. 
Thus we have 

~ ~ ( 2 1 )  =4 ~ ~ ( 2 2 )  > .... 
Finally we assert that H = @;" ZE(Zj). For, otherwise, let @';O ZE(zj) = K # H. Let 

y E H e K, y # 0. Then there would exist npo such that yn = Qnpo y # 0 or Qnoy # 0 since Po CnEMs Qn = I. We shall show that this is impossible. Sup- y,,o = Qnpo # 0. 

As Qnpo Z ~ ( z j )  = Qnpo [wz,] C [Wzj] = ZE(zj), it ~ O ~ ~ O W S  that Q "PO y I I. Therefore, 

(j) for j = 1,2, ..., po and for a E S. Hence ynpo I ZE(Znp0 ) for j = 1,2, ..., npo. Consequently, 
n~ ynpo I @,j=: Z E ( ~ & )  = Qnpo H 80 that gnpo = 0. This contradiction prove. that Qnpy = 0 for all 

p E N. Similarly, Quay = 0 and hence y = 0. Thus 

is an OSD of H relative to  E( . ) .  Consequently, the OSD-multiplicity of E(.) is No. 

When ME n N is an infinite set with No gT ME, then in the above definition of the vectors xj 
we have to suppress the term zf: and the rest of the argument remains the same and shows that 

is an OSD of H relative t o  E ( . ) .  Hence the OSD-multiplicity of E(-) is No. When ME = {nl < n z  < 
... < nk) U {No), the argument is similar t o  the case discussed above with obivious modifications 
and again the OSD-multiplicity of E( . )  is No. Finally, when ME = (nl < n2 < ... < nk), it can 
similarly be shown that 

n h  

H = @zE(xj) 
1 



is an OSD of H relative to  E(-)  and hence the OSD-multiplicity of E(.) is nk. 

(iv) Since H # {0), ME # 0. Moreover, Qn = 0 for n > No as E(.) has CGS-property and by 
hypothesis, Qn = 0 for n E N. Therefore, ME = {NO). Then by Proposition 1 we have QH, = I .  
Thus ( 2 )  gives an OSD of H relative to  E(-).  

This completes the proof of the lemma. 

Remark 1. The above lemma provides an alternate proof of Theorem 3.7 of [9]. 

COROLLARY 1. If E(.) has the CGS-property in H ,  then its OSD-multiplicity is No if No E ME 
or if ME is an infinite set. 



4. A CLASSIFICATION OF SPECTRAL MEASURES WITH THE 
CGS-PROPERTY 

We introduce four types of OSDs of H relative to  spectral measures on S with the CGS-property 
in H and call them doubly infinite, simply infinite, finitely infinite and finite OSDs, respectively. 
Similarly, considering the multiplicity set ME of the spectral measures E(.) on S with the CGS- 
property in H ,  we clasify them into four types and call them doubly infinite, simply infinite, finitely 
infinite and finite spectral measures, respectively. The purpose of this section is t o  show that a 
spectral measure E(.) on S with the CGSproperty in H is doubly infinite (resp. simply infinite, 
finitely infinite, finite) if and only if the same is true for any OSD of H relative t o  E(.). More- 
over, given an OSD H = $El ZE(zi) relative t o  a spectral measure E(.), we describe ME and 
{ Q n l n E ~ ,  in terms of { p ~ ( z i ) ) g l -  

Notation 3. In the sequel, given a spectral measure E(-)  on S with the CGS-property in H ,  {zj)j 
will denote the set of vectors defined in Lemma 2(iii). For n E ME, pQn denotes the measure in 
C(S) for which CE(pQn) = Qn. (Note that such a measure pQn exists by Lemma 1 and is unique 
upto equivalence by Theorem 65.2 of [5].) 

DEFINlTION 1. Let H = $7 ZE(w;) be an OSD of H relative t o  E(.) .  Then we say that the 
OSD is 

(i) doubly infinite if there exists an infinite subsequence { n k ) r  of N such that 

and if there exists Y E C(S) with CE(u) # 0 such that 

pE(wj) >> Y for j E N; (4) 
$ 

(ii) simply infinite if there exists an infinite subsequence {nk)F  of HV such that (3) holds and if 
there does not exist any v E C(S) with CE(y) # 0 such that (4) holds for all j E HV; 

(iii) finitely infinite if there exists 'no E N such that 

for all n 2 no. 

An OSD H = $7 ZE(w;) of H relative t o  E(.) is said t o  be finite if N E HV. 

Given an OSD of H relative t o  E(.), obviously it belongs t o  one and only one of the above 
types. Moreover, in virtue of Theorem 3.11 of [9], all the OSDs of H relative t o  a given spectral 
measure E(.) belong to  the same type. 



DEFINITION 2. If E(- )  has the CGS-property in H ,  then E(- )  is said to be a doubly infinite 
(resp. simply infinite, finitely infinite, finite) spectral measure if its multiplicity set ME is an infi- 
nite set with No E ME (resp. an infinite set with No @ ME, a finite set with No E ME, a finite set 
of natural numbers). 

Given a spectral measure E (.) on S with the CGS-property in H ,  clearly E(- )  belongs to one 
and only one of the above types. 

THEOREM 1. For the spectml measure E(.) with the CGS-property in H the following assertions 
hold: 

Consequently, if H = $; ZE (w;) , N E N U {oo), is an OSD of H relative to E (.), then (i)- (iii) 
hold for wj and wl in stead of x j  and xl . 

Proof. Suppose ME = ink)? U {No). The other cases of ME can similarly be dealt with. By the 
definition of xj  in Lemma 2(iii) we have 

and each xj # 0. 
(1) BY Lemma 2(i), Q.,H = @y ~ E ( x i 2 )  is an OSD with CE(pE(xnP)) = ~ ~ ( p ~ ( x g ) ) )  = ... = 

(j) - CE(~E(X$'))) = Qnp. Since C,y(pQnp) = Qnpl by Theorem 65.2 of [5] we have pE(xnP ) = pqnP for 
(j) - 1 5 j 5 n,. Similarly, pE(xNo) = p ~ , ,  , for j E N .  

As QnQm = 0 for n # m, n, m E ME, by Theorem 65.1 of [5] it follows that { p E ( x k 2 ) } ~ l  u 
{pE(xiJ)) is an orthogonal family of measures in E(S) for each j E N. Besides, 

Let no = 0. If npo < j 5 npo+l, xi2 = 0 for p = 1,2,  ..., npo and hence 



Consequently, by the discussion on p.79 of [5], we have 

Thus (i) holds. 

By Theorem 66.5 of [5] and by ( 6 )  we have 

and 

Thus ( i i )  and (i i i )  hold. 

The last part follows from the previous parts by Theorem 3.11 of [9]. 

This completes the proof of the theorem. 

THEOREM 2. For a spectml measure E ( . )  with the CGS-property in  H the following assertions 
hold: 

(i) If ME = {n l  < n2 < ...) U {No),  then 

(a) PE(%,) >> pE(Xj) n pE(Xni+,) for n; < j 5 n;+l,i = 0 , 1 , 2 ,  ..., where no = 0 and the + 
term corresponding to no is  omitted; and 

(6) there exists v E C ( S )  such that C E ( v )  # 0 and p E ( x j )  >> v ,  for all j E N .  
f 

(ii) If ME = {nl < n2 < ...), then (;)(a) holds and there does not exist any v 6 C ( S )  with 
C E ( v )  # 0 such that 

pE(Xj) >> v for all j E AT. + 
(iii) If ME = {nl < nz < ... < nk)  U {No) ,  then (i)(a) holds for i = 0 , 1 , 2 ,  ..., k - 1 and 

If ME = {No) ,  then Quo = I and 

p E ( x j )  -- p for all j E N .  
QN,, ' 



(tu) If ME = {nl < n2 < ... < nk), then (;)(a) holds for t = 0,1,2, ..., k - 1. 

Proof. 
(i) Let ME = {nj)y U {No). Then, as observed in the proof of Lemma 2(iii), z j  # 0 for all j E N .  
Moreover, for n, < j 5 n,+l, by Theorem l(i) we have 

for p = 0,1,2, ..., where no = 0 and the term corresponding to no is omitted. Thus (i)(a) 
holds. Since p # 0, it follows from Theorem l(i) that pE(zj) >> p , for j E N. Besides, 

Quo f QUO 

C E ( P ~ ~ ~  = QUO # 0- Let v = w ~ , .  Then (i) (b) holds. 

(ii) If ME = { n j ) z l ,  clearly the argument in the proof of (i)(a) holds here verbatim and hence 
(i)(a) holds in this case too. If there exists v E C(S) with CE(v) # 0 such that pE(zj) >> v for all 

j E N, then by  heo or em 66.3 of [5] and by Theorem l(iii) we have 
$ 

for all j E N. Consequently, 

which is absurd. Hence (ii) holds. 

(iii) Suppose ME = {nj)!=l U {No). From the definition of z j  in Lemma 2(iii) it is clear that 
(j) x, = xf: for j > nk. Hence by Lemma 2(ii) we have pE(zj) = pE (zuo ) = p for all j > nk. As 

Quo 
in the case of (i), by Theorem l(i) we also have 

for ni < j 5 n;+l, i = 0,1,2,  ..., k - 1 with no = 0 and the term corresponding to being omitted. 
When ME = {No}, ME fl N = 0 and hence z j  = z g )  and pE(zj) = pE(zuo (j) ) - = pQuo for all j E N. 

Then by Theorem l(ii), Quo = I. 

(iv) Noting that z j  = 0 for j > nk, we observe that the proof of (i)(a) is applicable here and hence 
(iv) holds. 

This completes the proof of the theorem. 

The following theorem which is based on Theorem 2 not only gives a description of the multiplic- 
ity set of E(.) in terms of the measure sequence of an OSD of H relative to  E(.) but also expresses 



the reciprocal relationship between the classifications of OSDs and those of spectral measures with 
the CGS-property in H. 

THEOREM 3. Let E ( - )  have the CGS-property in H .  If E(.)  is doubly infinite (resp. simply infi- 
nite, finitely infinite, finite), then the same is true for evey OSD of H mlative to E(.) .  Conversely, 
suppose 

N 
H=@zE(w; ) ,  N E N u { ~ )  (7) 

1 

is an OSD of H relative to E ( - ) .  Let { n ; ) L l  be a subsequence of N such that 

for i = 0,1 ,2 ,  ..., k - 1 i f  k is  finite and for i = 0,1,2,  ..., if k = oo, where no = 0 ,  and the t e rn  
corresponding to is omitted. Moreover, i f  k is finite and N = oo, then (8) is replaced by 

and by 

PE(wni) >> ~ ~ ( w j )  P E ( w ~ , + ~ )  for n; < j 5 n;+l and for i = 0,1 ,2 ,  ..., k - 1 (10) 
$ 

where no = 0 and the terem corresponding to is omitted. 

If such a sequence {n;): does not exist and N = oo, then instead of (9) and (10) we have 

Then the following hold: 

(i) ME n RV = {n;): when such a sequence exists and on the contrary, ME = {No) if N = oo 
andME = { N )  i f N  E N .  

(ii) The OSD (7) is simply infinite if and only i f  k is infinite and Agl CE(pE(xn i ) )  = 0. In that 
case, ME = { n ; ) Z 1 .  

(iii) The OSD (7) is doubly infinite i f  and only i f  k is infinite and Agl C E ( P E ( X ~ ; ) )  = Q (say) # 
0. In that case, ME = {ni)iOO,l U {No) and QN,  = Q. 

(iv) The OSD (8) is finitely infinite if and only if N is infinite and k is finite or ME = {No). 
In the former cwe, ME = {n;)ik,, U {No) and QN, = CE (pE(wnk+1)). In the latter case, 
QN,  = I = C E ( P E ( W ~ ) ) -  

(v) If N is finite, then either ME = { n i ) L l  with nk = N or ME = { N ) .  



(vi) (a) In case (ii) 

Qni = C E ( P E ( W ~ ~ ) )  - C E ( P E ( W ~ ~ + ~  )) (12) 

for i E N. 

(6) In case (iii), (12) holds for i E HV and QN, = Q. 

(c) In case (iu), (12) holds for i = 1,2, ..., k - 1, Qnk = CE(PE (wnk)) - CE(pE (wnk+1)) and 
QN, = C E ( P E ( W ~ ~ + ~ ) )  when ME # {No). If ME = {NO), then QN, = C ~ ( p ~ ( w 1 ) )  = I .  

(d) In case (v), (1 2) holds for i = 1,2, ..., k - 1 and Qnk = CE (pE(wnk)) when ME = in;)! 
and QN = I = CE(pE(w;)) for i = 1,2, ..., N when ME = {N). 

Consequently, if the OSD (7) is doubly infinite (resp. simply infinite, finitely infinite, finite) then 
the same is true for every OSD of H relative to E(.) and for the spectml measure E(.) .  

P m j .  The first part follows from Theorem 2 and from Theorem 3.11 of [9]. For the OSD (7) let 
{n;)f=l be given as in the theorem. By the second part of Theorem 1 and by Theorem l(iii) we 
have: 

CE(PE(W~)) = I - C Qn. (13) 
nEM~,n<j 

(i) Let ME fl N = {p,)if where k' E N U  {oo). Then by Theorem 3.11 of [9] and by Theorem 2 we 
have 

pE(wpi) >> ~ ~ ( w j )  P E ( w ~ ~ + ~ )  for pi < j 5 
f 

and i = 0,1,2, ..., k' - 1 if k' < oo and i = 0,1,2, ... if k' = oo, where p, = 0 and the term 
corresponding to  p, is omitted. Then from the hypothesis it follows that k' = k and p; = n; for 
each i. Thus ME fl N = {n;):. When such a sequence does not exist and N = oo (resp. and 
N E N )  

pE(wl) pE(wp) ... pE(wj) ... 
for j E N (resp. for 1 5 j 5 N )  and hence (7) implies that I = CF E: where E;' = ZE(w;), 
1 5 i 5 N ,  i E N, are mutually orthogonal abelian projections in W' by Theorem 60.2 of [5]. 
Moreover, by Theorem 62.2 of [5] CEif = I for all such i and hence by Proposition 1 we conclude 
that I has UH-multiplicity No (resp. N). Thus No E ME arid QN, = I (resp. N E ME and 
QN = I).  Moreover, again by Proposition 1, we conclude that ME = {No) (resp. ME = {N)). 

(ii) Let the OSD (7) be simply infinite. Then k = oo and there does not exist any v E C(S) with 
CE(V) # 0 such that pE(wj) >> v for all j E N. If possible, let AT CE(pE(wj)) = Q # 0. Then 
for each non zero vector w E Q H  we have Q > CE(pE(w)) # 0. Consequently, by Theorem 65.2 
of [5] we have pe(wj) > pE(w) for all j E N. This contradiction proves that Q = 0. Conversely, 
let k = oo and I \ T C E ( p ~ ( w j ) )  = 0. If v E C(S) is such that pE(wj) >> v for all j E N, then 
CE(pE(wj)) _> CE(v) for all j ,  and therefore, 



Hence the OSD (7) is simply infinite. 

Let the OSD (7) be simply infinite. Then, as observed above, /\r CE(pE(wj)) = 0 and hence 
by (i) and (13) we have 

Thus xgl Qni = I and hence ME = {n;)&. Therefore, E( . )  is simply infinite. 

(iii) Let the OSD (7) be doubly infinite. Then k = w and there exists v E C(S) such that CE(v) # 0 
and such that pE(wj) >> v for all j E N. Then 

CE(pE(wj)) 2 CE(V) for all j E N 

and hence 
00 

ACE(pE(wj)) 2 C E ( ~ )  # 0. 
1 

Conversely, suppose k = oo and A? CE(pE(wj)) = Q # 0. Then as shown in the proof of (ii) there 
exists w E QH such that & = CE(pE(w)) # 0 so that pE(wj) >> pE(w) # 0 for all j E BV. Thus 
the OSD (7) is doubly infinite. 

Now let the OSD (7) be doubly infinite. Then k = w and l\? CE(pE(wj)) = &(say) # 0. 
Moreover, as I = CE(pE(wl) > CE(pE(wn2) by the second part of Theorem 1, it follows that 

# 
Q # I. Therefore, by (13) and (i) we have 

Thus No E ME and Quo = Q. Consequently, as ME = ME n N U {No), by (i) we have 
ME = {n;)? U {No). Hence E ( . )  is doubly infinite. 

(iv) Let the OSD (7) be finitely infinite. Then by (5) there exists no such that pE(wj) pE(wno) 
for all j 2 no. Consequently, no = nk + 1 and hence k is finite whenever such a sequence in,): 
exists. Thus, in this case, k is finite and N is infinite. If such a sequence doe. not exist, then 

for all j E N and hence, as shown in the proof of (i), Quo = I and ME = {No). Conversely, if 
N = oo and k is finite, by hypothesis pE(wj) pE(wn,+l) for all j 2 nk + 1, and hence the OSD is 
finitely infinite. If ME = {No}, then by Theorem 2(iii) Qs = I and pE(zj) r poNo for all j E N. 
Then by Theorem 3.11 of [9] we conclude that pE(wj) r pE (zj) p for all j E N. Thus, in 

Quo 
this case too, the OSD is finitely infinite. 



If the OSD (7) is finitely infinite and ME # { N o } ,  then k is finite and by (i), ME n N = {n;}:.  
Moreover, by (13) we have 

Hence N o  E ME and QN0 = C E ( ~ E ( ~ n k + l ) ) .  Thus ME = {n;)! U { N O ) .  The other case is that  
ME = {No) in which case QNo = I = CE (pE (wl )) by the second part of Theorem 1 and by Theorem 
l(ii). Moreover, E ( . )  is finitely infinite in both cases. 

(v) If N is finite and {ni): exists, then clearly nk = N and by (i) , ME = ME n HV = {n;):.  If such 
a sequence does not exist, then by the second part of (i) we have ME = {N) and Q N  = I. 

(vi)(a) If the OSD (7) is simply infinite, by (ii) we have ME = { n ; ) r .  Moreover, by (13) we obtain 

i- 1 i 

C E ( ~ ~ ( w n . ) )  -CE(PE(~U,,+I))  = ( I -  C Q ~ , )  - ( I -  C Q ~ , )  = Qn, 
1 1 

for i E HV, where Qno = 0. 

Similar arguments combined with (iii), (iv) and (v) prove the validity of (b),(c) and (d). The 
details are left t o  the reader. 

Other assertions follow from the previous parts. 

This completes the proof of of the theorem. 



5. OSDe INDUCED BY COBOTSRe AND COBOTSRs INDUCED BY OSDe. 

Let the spectral measure E(-) have the CGS-property in H. Then H admits not only OSDs 
relative to E(.), but also by Theorems 3.6 and 5.6 of [lo] it admits COBOTSRs relative to E(. )  (see 
Definitions 3.1 and 5.2 of [lo]). Starting with a COBOTSR U (reap. with an OSD) of H relative 
to E ( . ) ,  we now construct in a canonical way an OSD (reap. a COBOTSR U ) of H relative to E(.). 

THEOREM 4. Suppose U is a COBOTSR of H wlative to E(.) with the measue family F. Then 
them ezists an OSD 

N 

H = @ ZE (zi) (14) 
1 

of H elative to E with N E N U {w) such that 

for all those i ' ~  N for which thew ezists some p E F with uE(p) 2 i. Mowover, N = sup{n : n E 
ME), and the OSD (14) is determined upto equivalence of OSDs. The OSD (14) is called the OSD 
induced by the COBOTSR U. 

Proof. Let u; E V{p E F : uE(p) > i). AS F is countable by Theorem 5.6 of [lo], u; is well defined 
and is unique upto equivalence. Obviously, ul >> u2 >> ... >> .... By Theorem 5.6(iii) of [lo] we have 

p ~ , ,  = V{p E F : uE(p) = n), for n E ME. 

Then 
u ~ ~ V { ~ E F : U ~ ( ~ ) > ~ ) ~ V { ~ ~ : ~ E M ~ , ~ > ~ ) .  

Suppose ME = {ni)r  U {No). Similarly, other cases can be dealt with. For 1 5 i 5 nk, we have 

2 = ((en1 (@ZI ('2(pQn8 )) @ (en1 ('~(PQN, 1)) @ 
@ ((@nz-n1(@$2 (L2(pQni )) @ (enz-nl (L~(PQN, ))) 

@ ... @((@nk-nlr-l ( @ g k ( L 2 ( ~ n i  )) @ (em-nr-1 (L~(PQ~, ) ) ) .  

Therefore, by rearranging we have 

Since this holds for all nk, k E N, we conclude that 



Since by Lemma 5.3 of [ICI], (pQn,)y U (wH,) is the measure family of a COBOTSR Uo of H 
relative to E(.) and since U and Uo are equivalent by Theorem 4.2 of [lo], then by Definition 3.1 
of [lo] we conclude that there exists an isomorphism Vv from H onto K satisfying 

Consequently, by Definition 4.1 of [9] Vv is an ordered spectral representation of H relative to E( . )  
as y >> v2 >> .... Hence by the discussion on pp.228-229 of [9] there exists an OSD H = @rZE(z;) 
of H relative to  E(- )  such that pE(z;) G v;. Then by Theorems 66.2 and 66.5 of [5] we conclude that 
CE (pE(z;)) = CE (v;) = CCcEF,uE(Cc)>; CE (p). Then (14) is unique upto equivalence by Theorem 
3.11 of [9]. 

Now let sup(n : n E ME) = k.  Note that k = No if ME is infinite or if No E ME. If k E I?, 
then by Proposition 3.3(v) of [lo] there exists some p E F such that uE(p) = k and hence vk 
and therefore, pE(zk) exist. Obviously, pE(z;) with z; # 0 is not defined for i > k and hence the 
OSD-multiplicity N of the OSD coincides with k.  If k = No, then pE(y;) exists and y; es non zero 
for each i E HV and hence the OSD-multiplicity N is No. 

This completes the proof of the theorem. 

Remark 2. For self-adjoint operators (resp. for spectral measures) on a separable Hilbert space 
similar result was proved by Planer and Rohlin [lo, p. 1431 (resp. Brown [I, pp.155-1561). 

Given an OSD of H relative to E(.), the following theorem gives in a canonical way the con- 
struction of a COBOTSR of H relative to  E(.). 

THEOREM 5 .  Let E(-)  have the CGS-property in H and let us consider the OSD (7) of Theorem 
3. Then the following assertions hold: 

(i) The multiplicity set ME is determined by pE(wi), 1 5 i 5 N, i E I?. 

(ii) The central projections Q,, n E ME, are determined by (CE(PE(~ i ) ) r ) .  

(iii) There ezists a COBOTSR U of H relative to E(-)  with the measure family F = (pE(Qn~l) )nEME 
and U is called the COBOTSR indeuced by the OSD (7). 

(av) For n E ME, 

is an OSD of QnH with ~E(Qnw1) ~E(Qnw2) ... pE(Qnwj) ... for j E I?, j 5 n. 
Moreover, pQn - ~ ~ ( Q n w j ) ,  1 5 J 5 n,  j E I?. 

Proof. 
(i) and (ii) hold by Theorem 3. 



(iii) By the second part of Theorem 1, C ~ ( p ~ ( w 1 ) )  = I. Consequently, by Theorem 66.2 of [5], 

for n E ME. Thus, by Theorem 65.2 of [5], pE(Qnwl) E p ~ ,  for n E ME. Then (iii) holds by 
Lemma 5.4 of [9]. 

(iv) By (13), CE(PE(W;)) I Qn for n E ME with n < i and CE(pE(w;))Qn = Qn for n E ME with 
n > i .  Therefore, by Theorems 66.2 and 66.5 of [5] we have 

for n E ME. Moreover, for each n E ME, by Theorem 60.2 of [5] the projections E: = [WQ,w;], 1 < 
i < n, i E N, form an orthogonal family of abelian projections in W'. Since these projections have 
the same central support Qn, it follows from Proposition 1 and Theorem 65.2 of [5] that 

is an OSD of QnH with PE(&~WI)  -- P E ( & ~ w ~ )  . . a .  As CE(PE(&~W~))  = Qn it ~ O ~ ~ O W S  that 
~ ~ ( Q n w i )  p ~ ,  for n E ME and for 1 < i < n, i E N. 

This completes the proof of the theorem. 

6. Spatial isomorphism of abelian von Neumann algebras 

Using the results of [7,9,12] we give a necessary and sufficient condition for an involution pre- 
serving isomorphism between two abelaian von Neumann algebras to be spatial. When the algebras 
have countably decomposable commutants, we deduce the condition in terms of the multiplicity 
functions mp and m, of the respective canonical spectral measures of the algebras. The last result 
is an analogue of Theorem 7.8 of Stone [16], though it is not a gcaeralization. 

Let A be an abelian von Neumann algebra on a Hilbert space H and let M be its maximal ideal 
space. For each f E C ( M ) ,  let Tj  be the operator in A whose image under the Gelfand mapping is 
f .  Let B(M) be the a-algebra of the Bore1 subsets of M. The set function G : B(M) + A defined 
by G(u) = Tx(,(0)), where T(u) is clopen and T(u)Au is meagre in M. Then G(.) is projection 
valued and is a-additive in the strong operator topology. Then G(.) is called the canonical spectral 
measure of A. 

For the concepts of primitive projections in A, proper A-base and the Kelley multiplicity func- 
tion q!~ of A, the reader is referred to [7]. It is shown in [12] that a projection P E A is primitive if 
and only if P is cyclic and has UH-multiplicity, where we consider A as the von Neumann algebra 
generated by the range of its canonical spectral measure G(-). Moreover, for a primitive projection 



P E A, let ep be the clopen set in M such that P = TXep . If P has UH-multiplicity n, then as 
shown in [12], we have 4(t) = n for all t E ep. The following proposition is proved in [12] , which 
is the same as result 5.1 mentioned on p.605 of [7]. 

PROPOSITION 2. There exists a maximal orthogonal family 3 of primitive projections in A. 
For F E 3, let JF be a proper A-base for F. Let L2 (M , B(M),  PC(%)) = L~(PG(x)) .  Choose 
XF E JF, F E 3. Let card.JF = n ~ .  Then there exists an isomorphism U from H onto K = 

$F€F $nF '52 (PG('F)) such 'hat 

for A E A, where g E C ( M )  with Tg = A. 

If A' is countably decomposable, then G(-) has the CGS-property in H and using Theorem 3 
above, we showed in [12] that the Kelley multiplicity function 4 is given by 4(t) = max(mp(t), m,(t)) 
for t E M\(pG\pc),  where p c  = {t E M : G({t)) # 0) and m, and m, are the multiplicity func- 
tions corresponding to G(-) as in Definitions 6.4 and 6.8 of [9]. 

Let 3, XF, JF and nF be as in Proposition 2. Let So be the a-ring of all Borel sets of M 
which are contained in some clopen set corresponding to a cyclic projection in A. Let v3(a) = 
C F E F p C ( ~ F ) ( ~ )  for a E So. It is clear that v 3  is a a-finite measure on So. Adopting the von 
Neumann definition of ordinal and cardinal numbers, so that each ordinal is identical with the set 
of all smaller ordinals, and a cardinal is an ordinal which cannot be put in 1-1 correspondence with 
a smaller ordinal, let C be the supremum of the values of 4. Let 7 be the counting measure on 
the a-ring of all countable subsets of C. Now we give below a proof of the result 5.2 mentioned 
in [7] in which we also include the special case when the commutant of A is countably decomposable. 

THEOREM 6. Let J? be the subset of M x C,  consisting of ordered pairs (t, c) with 4(t) 2 c and 
let q~ be v~ x 7 restricted to subsets of J?. Then there exists an isomorphism V from H onto L2(q3) 
such that VAV-'k(t, c) = g(t)k(t, c) for k E L2(qF), where g E C ( M )  with Tg = A. If A' is count- 
ably decomposable and if m, and m, are the multiplicity functions of the canonical spectml measure 
G(.) of A, then the above result holds with r replaced by ro = .C (t, c) : mas (mp(t), m,(t)) > c) in 
M x C. 

Proof. Let K, 3, F, XF, JF and nF be as in Proposition 2. Let CF be the set all of all cardinals 
{c : c 5 nF). Let QF : CF + JF be a bijective map. For k E L2(q3), let kF,OF(c)(t) = k(t, C) if 
t E eF. Then clearly kF,oF(c) is Borel measurable on eF and moreover, 



Hence CFEF CcEcF SF I ~ F , Q ~ ( ~ )  ( f  ) I2dpc ( z~)  < 00 and thus ( ~ F , o ~ ( ~ ) )  F € F , C E C ~  E K -  Then clearly 
the map 9 : L2(q) + givbn by O(k) = ( k F , O F ( c ) ) ~ E ~ , c E ~ F  is an isometry. Conversely, let 
k ~ , a ~ ( ~ )  E L ~ ( P C ( ~ F ) )  for F E 3 and for c E CF such that ( ~ F , Q ~ ( ~ ) ) F E F , ~ E c ~  E K .  Let 
k(t ,  c) = knrp(,j(t) if t E F and b E CF and'let k( t ,  c) assume any complex value if ( I ,  c) E 
with t E M\ U p E 3  I?., Then clearly k is measurable in I' since G(M\ UpE= F) = 0. Then by a cal- 
culation similar t o  that in (15) one can show that k E L3(q3) and that g ( k )  = (kF,4F(c))FE3,cECF. 
Thus is an onto isomorphism from L2(q3) onto K. For g E C ( M )  and k E L ~ ( ~ ) J F ) ~  let 
(gk)(t, c) = g(t)k(t., c). If V = W 1 U ,  where U is as in Propisition 2, then V is an isomorphism of 
H onto L2(q3) and by the same proposition we have VAV-' k(t ,  c) = g(t)k(t, c) where g E C ( M )  
with T, = A. 

To prove the second part we observe that M\(jiG\pG) is open and dense in M and G(pG\pG) = 0 
since pc\pG is nowhere dense in M .  Since &(t) = max(mp(t), mc(t))  for t E M\(PG\pG)) by T h e  
orem 7 of [12], now the second part is immediate from the first. 

COROLLARY 2. Let A; be aklian voh Neumann algebrns (msp. with A: countably decompos- 
able) for i = 1,2. If O is an involution pmsenring isomorphism~from A1 onto A2 and if and 1452 

are the Kelley multiplicity functions of A1 and A2 (resp. mg) and m!') are the multiplicity func- 
tions onthe maxikal ideal space of the ~eljand space M ,  of the canonical sfictral measure G,(-) 
for i = 1,2), then O is spatial if and only if dl  ( t )  = &2(ht) (nsp. if and only if mp)( t )  = mF1(h(t)) 

and mL1)(t) = mL2)(h(t)) for t E M I  when h : M I  + M 2  is the homeomorphism induced by O 
(see Theorem IV. 6.26 of [3]). 

Remark 3.. The above corollary can be considered as an analogue of Theorem 7.8 of Stone [16] 
for abelian von Neurnann algebras with countably decomposable commutants, though it is not its 
generalization. 
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