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Abstract 

Some criteria for weak compactness of set valued integrals are given. Also we show some of 
applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property. 

The theory of measurable. multifunctions. has shown t o  be useful in many mathematical fields such 
as Control Theory [:I.], Convex ~ n a l ~ s i s  161, Abstract evolution equations [15], etcetera. 

It is the purpose of this paper t o  provide some results about the weakly compactness of the 
measurable selections of a measurable multifunction, and use them to  show a Radon-Nikodym 
Theorem for multimeasures. 

2 Preliminaries 

In this section we fix the notations and definitions that  we use in this paper. For a Banach space 
X ,  its dual space will be denote by X*. We will also use the  following notations: 

Pj(C)(X) = {A G X : A # 0, A closed (convex)) 

Pwkc ( X )  = {A G X : A # 0, A weakly compact (convex)). 

For a subset A of X we set 1 A1 = s u p s ~ ~  IIaII. 
Following [3], given a complete finite measure space (52, C, p) and a Banach space X ,  we say 

that  a multifunction F : R + Pf ( X )  is p-measurable ,  if there is a p-null set N E C and a sequence 
{ f,) of p-measurable functions such that  

F(w) = cl{ f,(w)) for all w E R\N. 

This definition does not need the hypothesis "X separable"; and according with Pettis measur- 
ability theorem [9], it contains the classical definition for separable Banach spaces, due to  Castaing 
Representation [6]. This will allow us t o  deal with a considerable grade of generality. 

Given a measurable multifunction F : 52 + P,(X), we denote by S$ the set 



and for E E C, by JE Fdp,  we denote the set 

We say that  a measurable multifunction F is integmbly bounded if IF (.) ( E L1 (p) . Following [19, 
201, for {A,, A) c Pf (X)  , Aks weakly converges to A (A, 3 A) if for each z* E X*, u(z*, A,) -+ 
u(z*, A); where u(z*; B) = sup{(z*, z )  :'z E B); for any non-empty subset B of X .  A sequence of 
measurable multifunctions {Fn)r=l is said t o  be weakly convergent t o  F in LfY(p) (F, 3 F ) ,  if 

for each z* E (L i (p) )* .  
A multimeasum is a function M : C + P ( X )  satisfying 

(ii) If E1,Ez e C with El n E2 = 0, then M(E l  U E2) = M ( E l )  + M(E2).  

(iii) If is a sequence in C with E; n Ej = 0 V i  # j, then 

= {z E X ;  for each n E N; there is z, E M (En) such that  
Q) 

on, uncondictionally converges t o  z). 
n=l  

The multimeasure M is called bounded variation if 

is finite where the sup is taken over all finite partition of Q. 
For a fixed measurable space (Q, C) ,  c,(X) will denote the Banach space of all X valued count- 

ably additive, bounded variation vector measures endowed with the norm of total variation. 

3 Weak compactness criteria for S; in L $ ( p )  

The following.result can be found in [3]. 

Theorem 3.1 Let F : 52 + Pf,(X) be an  integrably bounded multifunction. Then Sh is weakly 
compact in Lk(p)  if and only if for almost every w E Q, F(w) is weakly compact. 

A small refinement of above theorem is the following one. 



Theorem 3.2 If 1 5 p < m and F : R -+ Pj (X)  is a measurable multifi~rii:tiorz, ilrcn the following 
statement are equivalent: 

(a) Sg zs relatively weakly compact in L$(p). 

(b) Sg is bounded in L$(p) and the multifunction G : R -+ Pj,(X) dr$ned by G(w) = g F ( w )  
takes weakly compact values p.a.e. 

Proof. Suppose p = 1. 
(a + b). If Sk is relatively weakly compact in L i  (p) ;  then it is bounded and by [13] (Theorem 

3.2); F is integrably bounded. 
Furtheremore, given a sequence { fn) C Sk, there is a sequence gn E %{ f k  k 2 n )  ([8] Theorem 

2.1) such that gn(o)  is norm convergent in X p.a.e. This implies z F ( w )  weakly c ~ m p a c t  p.a.e. 
Conversely, if Sk is bounded and c F ( w ) ;  weakly compact p.a.e, being F measurable; by 

definition there is a null set No E C and a sequence 
f n : R - + X  . of measurable functions such that  p(NO) = 0 and 
F(w) = cl(fn(w)) 'dw E R\No. Applying the measurability Pettis theorem, for 4 act1 rt E N, there is 
Nn E C with p(Nn)  = 0 and cl( fn(R\Nn) is separable. 

00 

If we pllt N = U Nn; we see that  p ( N )  = 0 and F ( R \ N )  is separable. Let Y be the separable 
n = O  

B;ina.ch space generated by F (R \N) .  Then if we define, as in [3], 

H (o )  = F(w) if w E R \ N  
(0) if L I E N ;  

G' is a measurable multifunction taking values in a separable Banach space. Applying Theorem 1.5 
of [13], we see that  %H is a measurable multifunction. Since G(w) = GF(w)  - q H ( w )  p.a.e; we 
conclude that  G is a measurable multifunction taking values in a separable Banach space. It is not 
hard to  see that  G is integrably bounded and G(w) E P,,y,(X) p.a.e. So by Theorem 3.1, SkF is 
weakly compact in Lfy (p) and consequently Sk is relatively weakly compact. 

Let 1 < p < m. Since SF is relatively weakly compact in L$ (p);  and the injection i : L; (p) -+ 
L i  (p) is continuous, the set SF is relatively weakly compact in Lfy (p).  - 

If we put M = SF;  then M is decomposable i.e; if f ,  g E M and A E C,  then f X A  +gXn\A E C. 
Then, according with [13] Theorem 3.1, there is a measurable multifunction G : R -+ P j ( X )  such 

that M = S&. Since is weakly compact in L i  (p),  we see that  GG(w) is weakly compact p.a.e. 
Since S& = Sg 3 SF, Corollary 1.2 from [13] implies the conclusion. 

For the converse, suppose GF(w)  weakly compact for almost every w E R and SF bounded in 
L$ (p) then S; is bounded in Lfy (p) . 

It is not hard to  see that  
1 C SgF = SqF. 

By theorein 3.1, SkF is weakly compact in L ~ Y  (p) ;  which implies SF relatively weakly compact 
in Lfy (p) .  Applying corollary 3.4 of [8], we conclude that  S; is relati:!ely weakly compact in L$ (p) .  
I 



Corollary 3.3 If F (w)  is convex and weakly compact p. a.e wzth L' a nrc4:u in l  . ltegrably bounded 
multifunction, then for 1 5 p < m, SF is weakly compact in L$(p)  if and only i f  zt is bounded. 

Proof. The condition is necessary t o  SF be relatively weakly compacl. 
If{ fn) is a sequence in Sk converging to  f in the  weak topology of L$lp);  t,hen { f,) converges 

to f in the weak topology of L i ( p )  because the inclusion of L%(p)  into Lk  (p) is continuous. As 
it is shown in 131, there is a sub-sequence { I n k }  of { f n )  such, that  fnk  (w)  -+ / ( w )  for almost every 
w E S2. This implies f ( w )  E F(w) ,  p.a.e, and f measurable. Therefore, f E S;. We are done. I 

Corollary 3.4 Let X be a Banach space and 1 5 p < w. For every measurable and integrably 
bounded multifunction F  : R + P f c ( X ) ,  SF is weakly compact i f  and only i f  X is reflexive. 

Remark 3.5 According with Theorem 3.2, Theorems 5.2 and 5.5 of 1161 hold for any Banach space 
and any p E [I ,  +oo). While the hypothesis "X is sequentially weakly complete" should be added in  
Theorem 5.4 of same reference; since according with Rosenthal 1,  dichotomy /2?,l, a Banach space 
is reflexive if: and only i f  it i s  sequentially weakly complete and contains no c~??! of 1 , .  

Remark 3.6 The weak compactness of SF plays a key role in  f'. t -I;tc.ir:, ~f aild sohitinn of 
evolution inclusions ([I 71); with hypothesis F  : R + Pwk,(X).  In [15], in a7 attempt of giozng a 
diflerent appr$ach in the context of reflexive Banach spaces, the weak compactness is replaced by 
closedness and boundneis. According with 3.4, this is a particular case of [I"]. 

4 Weak limits of sequence of measurable multifunctions 

In this section we generalice a result due to  Castaing [4] and Papageorgiou [lg]. 

Theorem 4.1 Let X  be a Banach space with X *  having the Radon-Nikodym Property. Let {F,) 
be a uniformly integmble sequence of measurable multifunctions F, : 52 + P,,::,(X) satisfying the 
following conditions: 

(i) For every A E C, the set 

is relatively weakly compact. 

(ii) Any bounded variation vector measure m : C + X verifying m ( A )  E % ( H A )  for all A E C 
admits a density in  L i ( p ) .  Then there exists F  : R + P w k c ( X )  integrably bounded and a sequence 
{Fnk )  of {F,) such that Fn, -+ F i n  L i ( p ) .  

Proof. Since for each n E N ;  Fn : R -+ Pwkc (X)  is a measurable multifunction, we have that  for 
00 each n E N ,  there is a set Nn E C such that  p(Nn)  = 0 and Fn(R\Nn) is separable. If N = U Nn 

n= 1 
00 

then p ( N )  = 0 and the closed subspace Y generated by U Fn(R\N) is separable. Now we define 
n= 1 



Fn(W); w E Q\N 
Gn(w)={ (0); W E N .  

00 

The wquence G,  ia a, w u e n c e  of meuurable multifunctions satisfying U .fa Gndp = H A  and n= 1 

since X* has the Radon-Nikodym Property, by (231, every separable subspace of X has a separable 
dual. So Y* is separable. Applying Theorem 5.1 of (41 we find a measurable multifunction 

and a subsequence G,, of G ,  such that  G,, 3 F in ~ : ( p ) .  Since for each n E N; G ,  = Fn p.a.e, 
we conclude that F,, + F in Lk ( p ) .  We are done. m 

An operator theoritical applications may be interesting. 

Theorem 4.2 Let X and Y be Banach spaces and T : X + Y a weakly compact operator. If 
F, : R -, Pwkc(X)  is a sequence of p measumble multifunctions which is unifomly integrable and 
bounded i n  L i  (p) ,  then there is a subsequence {Fnk)  of { F n )  and G : R + Pukc(Y)  such T f i k  3 G 
in L k ( p ) .  

Proof. Since T : X + Y is a weakly compact operator, the factorization scheme of [7]'provides a. 
reflexive Banach space Z and a pair of bounded linear operator T I ,  T2 such that  T = T2 o T I  ; with 
TI  : X + Z & T z  : Z + Y. If we concentrate ourselve on TIFn : R + Pwkc(Z);  we find out that  
{TIFn)F=l is a sequence of bounded on L;(p) and uniformly integrable multifunctions. Hence 

for each A E C,  {JA T I F . d p )  is bounded in Z and, by reflexivity, relatively weakly compact. 
n=l 

Since both Z and Z* have the Radon-Nikodym Property, Theorem 4.1 impli& the existence of a, 

measurable multifunction F : R + Pwkc(Z) and a subsequence {F,,) of {F,) such that  

for each z* E Z*. 
Now, given y* E Y*, y*Tz E Z* and, on the other hand; 

and 
a(TzF, Y*) = a ( F ,  y*T2). 

So the conclusion follows with 'G = T2F.  m 
It is worth to  notice that  by applying the above factorization scheme, Papageorgiou [16] has 

gotten the following result for separable Banach spaces. Since this result easily extend for arbitrary 
Banach spaces, we s ta te  it without separability asumption: 

Theorem 4.3 Let F, : R + P j c ( X )  be a sequence of measumble multifunctions and W E Pwkc(X)  
such that Fn(w) C W p.a.e. for all n E N .  Then there are F : R + Pwk,(X) and a subsequence 
{Fnk)  of {F,) such that F,, 3 F i n  L&(p ) .  



5 Multimeasures and the El,-don-Nikoil yn i  Proptyt: 

Definition 1 Let M : C -t P,kc(X) be a mdtimeasun, and p : C i (0, +m) he a positive measure. 
M is called p-representable if there is a p-measurable multifunction F : R -.+ P u I c ( X )  integmbly 
bounded such that 

M ( A )  = / A Fdp V A  E C .  

Proposition 5.1 Let M : C + P w k c ( X )  be a mulfifunction p-representable by F .  Then 

(a) M ( C )  = U M ( A )  is separable. 
AEC 

( b )  F is unique. 

Proof. 

(a) If there is a p-measurable multifunction F : R + PwkC ( X )  so that F is integrably bdunded and 
[A Fdp  = M('A), VA E C, then by definition there is N E C such that p ( N )  = 0 and U F ( w )  

WEQ\N 
is separable. Let Y be the separable subspace generated by U F ( w ) .  The11 for each selector f 

w ~ n \  N 
of F, we have JA fdp E Y; which implies that U M ( A )  is separable. 

AEC 

(b) By (a) , we can suppose X separable. Now we apply Theorem 111. 35 of 161. 

Theorem 5.2 Let X be a Banach space. The following statements are equivalent: 

( a )  Both X and X *  have the Radon-Nikodym Property. 

( b )  For every complete finite measure space (a, C ,  p)  and any p  continuous bounded variation 
multimeasure M : C + P,k , (X);  with M ( C )  separable, there is a p-measumhle integrably bounded 
multifunction F : R -+ P,k,(X) such that M ( A )  = JA Fdp. 

(c) For every probability space (R, C ,  p ) ,  and every p-continuous bounded vuriation multimeasure 
M : C + P , , ( X ) ,  with M ( C )  separable there is an integmbly bounded multifunction F : R -+ 
Pwk ( X )  such that 

P 

Proof. (a  =+ b). 
Since M ( C )  is separable, there is no loss of generality assuming X separable. 
Since X *  has the Radon-Nikodym Property, then it is separable and the proof follows as either 

in [5] or [12]. 
( b  =+ a ) .  If X does not have the Radon Nikodym Property, there is a separable subspace Y of 

X which lacks such a property. So there is a vector measure m : C + Y ;  bounded variation and 
m << p;  which is not p-representable where 52 = [ O ,  11; C the Bore1 a-algebra and p the Lebesgue 
measure. Therefore the Radon-Nikodym Property on X is a sufficient condition. 



Suppose X* lacks the  Radon-Nikodym Property. By the  proposition in [I I.], if R = {- 1, 1IN 
is the Cantor group and p the normalized Haar measure on R ,  there is a subset H L k ( p )  such 
that  

(i) H is uniformly bounded. 

(ii) { I A  fdp)  f E H  is relatively weakly compact for each A E C. 

(iii) H is not relatively weakly compact in L k ( p ) .  
Now we define 

Since G is a bounded decomposable subset of L k  ( p )  so is c. So there is a p-measurable 
integrably bounded multifunction F' : R + Pf ( X )  so that  Sb,  = c. Take F = GF'I Then F is 
integrably bounded and by Krein-Smulyan theorem M ( A )  = {JA F d p )  is a weakly convex va.ll.lcd 
multimeasure. Since H C Sh, this set is not relatively weakly compact and by Theorem 3.2; F ( 0 )  
is not weakly compact p.a.e. 

(a + c) .  Take M : C + Pwk ( X )  satisfying hypothesis (c) . Since X has the Radon-Nikodyrn 
property, by [24], cl M ( A ) .  is convex for each A E C. So M ( A )  is convex, and weakly compact for 
each A E C. Therefore, we have reduced the problem t o  the  implication a b. 

( c  + a) .  If M : C + Pwk ( X )  is a multimeasure such that  V A  E C, 

integrably bounded, then by [18], cl M ( A )  is convex for each A E C. So 

and by the implication b + a,  the  proof is over. I 

Remark 5.3 Above result improve the conclusion in [la] Theorem 5.3, with a mther diflerent proof. 

If we put SM = { m  : C + X ;  m E c , ( X ) ,  m ( A )  E M ( A )  V A  E C ) ,  when the  multimeasllre 
M is compact valued, the  following holds. 

Theorem 5.4 For a Banach space X ,  the following are equivalent statements 

( a )  X has the Radon-Nikodym property. 

(b) If M : C + P k ( X )  is a p-continuous bounded variation multimeasure for which SM is ron~.puct 
in c, ( X )  then there is  an integmbly bounded multifunction F : R + Pk, (X)  such that 

M ( A )  = J Fdp. 
A 



Proof. Suppose X has the Rzdon-Nikodym property. Then by [24] Theorem 2.7, M(Z)  is relatively 
compact in X. Therefore M(C) is separable. 

For each rn E SM, there is f, E Lfy(p) so that  

and SM isomorphic t o  {fm}mESM & Lfy(p). Furthermore, by [lo] we have that  for each A E E, 

Since {fm)mcsM is a decomposable compact subset of Lk  (p); we have that  { fm)mEsM is also 
separable in L i ( p ) ;  and hence we can suppose X separable. So by [13], there is an integrably 
bounded multifunction F : R + Pfc(X) such that  Sh = { fm)mEs,. Therefore 

M(A) = / F d p  for each A E C 
A 

with Sb compact in Lfy (p). This implies F(w) weakly compact p.a.e and by [2] proposition 7, F(w) 
is actually compact p.a.e. 

Conversely, if (b) holds, it happens, for single vector measure, the very definition of the Radon 
Ni kodym property. I 

Since the unit ball of Loo([O, 11) is not compact in L'[O, 11, the multimeasure M can be repre- 
sented by a compact valued multifunction without being SM a compact subset of c,(X), as i t  is 
shown in next Theorem. 

Theorem 5.5 Let X be a Banach Space. The following are equivalent: 

(a) For every F : [0, I] + Pwk,(X) p-measurable respect to the Lebesgue measure, with JFJ E ~ ~ ' ( p ) ,  
M(A) = JA F d p  is compact for each A E C. 

(b) X is finite dimensional. 

Proof. (6 + a).  If X is finite dimensional, then for each A E C, JA F d p  C B(0, M), where M = sup 
ess IF(. This implies M(A) compact. 

(a =+ 6). Suppose X is infinite dimensional. Then there is a convex separable subset W in Bx 
such that  W is not compact; which implies the existence of a sequence {xk) C W without any 
convergent subsequence. Put  F : [O, I] + Pwkc(X) such that  F(w) G W (w E [O,l]). Then for each 
k E N, fk xk is a measurable selection of F and, if p is the Lebesgue measure on [0, 11 then for 
any t > 0, {J; fkdp} is not compact in X, which implies that  M : [0, I]  + Pwtc(X) is not compact 
valued . I 
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