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Abstract

Some criteria for weak compactness of set valued integrals are given. Also we show some of
applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.

1 Introduction

The theory of measurable multifunctions. has shown to be useful in many mathematical fields such
as Control Theory [1], Convex Analysis [6], Abstract evolution equations [15], etcetera.

It is the purpose of this paper to provide some results about the weakly compactness of the
measurable selections of a measurable multifunction, and use them to show a Radon-Nikodym

Theorem for multimeasures.

2 Preliminaries

In this section we fix the notations and definitions that we use in this paper. For a Banach space
X, its dual space will be denote by X*. We will also use the following notations:

Piy(X) = {ACX:A#0, A closed (convex)}
Puac(X) = {ACX:A#0, A weakly compact (convex)}.
For a subset A of X we set |A| = supaeal|al|.
Following [3], given a complete finite measure space (2, £, 1) and a Banach space X, we say

that a multifunction F : Q — P¢(X) is y-measurable, if there is a y-null set N € X and a sequence
{fn} of p-measurable functions such that

F(w) = cl{fa(w)} forall we Q\N.

This definition does not need the hypothesis “X separable”; and according with Pettis measur-
ability theorem [9], it contains the classical definition for separable Banach spaces, due to Castaing
Representation [6]. This will allow us to deal with a considerable grade of generality.

Given a measurable multifunction F : Q@ — P;(X), we denote by St the set

SE={f:Q2X:felf{); fw)eF(wpu-ae}
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and for E € X, by [p Fdu, we denote the set

/Epdy—_-{/E/dy:fes;}.

We say that a measurable multifunction F is integrably bounded if |[F(-)| € L(u). Following [19,
20], for {An, A} C P;(X), Al s weakly converges to A (An, =+ A) if for each z* € X* o(z* A,) —
o(z*, A); where o(z*; B) = sup{(z*, z) :'z € B}; for any non-empty subset B of X. A sequence of
measurable multifunctions {F,}32, is said to be weakly convergent to F in Ly () (F, = F), if

[ @ @), Fuw))du() - [ o("w), F)du(w)

for each z* € (L (u))*.
A maultimeasure is a function M : ¥ — P(X) satisfying

(i) M(®)={0}
(ll) If E,,E;€ ¥ with ENE; = @, then M(El U Ez) = M(E]) + M(Ez)
(i) If {En}3, is a sequence in ¥ with E; N E; = @ Vi # 7, then

M (U E,,) S M(E,)

n=1 n=1

= {z € X; for each n € N; there is z,, € M(E,) such that

o0
E z,, uncondictionally converges to z}.

n=l

The multimeasure M is called bounded variation if
M| =sup Y ||M(A)|l
=1

is finite where the sup is taken over all finite partition of 2.
For a fixed measurable space (2, L), ¢,(X) will denote the Banach space of all X valued count-
ably additive, bounded variation vector measures endowed with the norm of total variation.

3 'Weak compactness criteria for S; in L% (p)
The following.result can be found in [3].

Theorem 3.1 Let F : @ — P;.(X) be an integrably bounded multifunction. Then S} is weakly
compact in LY (u) if and only if for almost every w € Q, F(w) is weakly compact.

A small refinement of above theorem is the following one.




Theorem 3.2 If 1 < p < 0o and F : Q = P;(X) is a measurable multifunction, ilien the following

statement are equivalent:
(a) Sh 1s relatively weakly compact in L% (k).

(b) SE is bounded in L% () and the multifunction G : Q@ — Pyc(X) defined by Gw) = &F(w)
takes weakly compact values yi.a.e.

Proof. Suppose p = 1.

(a = b). If S} is relatively weakly compact in L% (pn); then it is bounded and by [13] (Theorem
3.2); F is integrably bounded.

Furtheremore, given a sequence { f,} C S}, there is a sequence g,, € €o{ fi k¥ > n} ([8] Theorem
2.1) such that g, (w) is norm convergent in X p.a.e. This implies ToF (w) weakly compact p.a.e.

Conversely, if S}, is bounded and & F (w); weakly compact y.a.e, being F' measurable; by
definition there is a null set Noe X and a sequence
22X of measurable functions such that #(No) =0 and

F(w) = cl(fa(w)) Yw € Q\No. Applying the measurability Pettis theorem, for cach n € N, there is
N, € ¥ with u(N,) = 0 and cl(f,(22\/N,) is separable.

If we put N = Ej N,; we see that u(N) = 0 and F(Q\N) is separable. Let Y be the separable
n=0
Banach space generated by F(Q\N). Then if we define, as in [3],

H:Q - Pi(Y)

| Fw) if wed\N
H(“’)’{ {0} ;f w € N;

(i is a measurable multifunction taking values in a separable Banach space. Applying Theorem 1.5
of [13], we see that €gH is a measurable multifunction. Since G(w) = GF(w) = o H (w) p.a.e; we
conclude that G is a measurable multifunction taking values in a separable Banach space. It is not
hard to see that G is integrably bounded and G(w) € Pk (X) p.a.e. So by Theorem 3.1, Sp is
weakly compact in L (1) and consequently S} is relatively weakly compact.

Let 1 < p < co. Since S} is relatively weakly compact in L% (u); and the injection i : L% (u) —
LY () is continuous, the set S% is relatively weakly compact in L (n).

If we put M = S%; then M is decomposable i.e; if f,g € M and A € L, then fXa+gXa\u € L.
Then, according with [13] Theorem 3.1, there is a measurable multifunction G : @ = Pf(X) such
that M = S. Since @ is weakly compact in L} (¢), we see that oG (w) is weakly compact p.a.e.
Since S& = S% D SE, Corollary 1.2 from [13] implies the conclusion.

For the converse, suppose TpF(w) weakly compact for almost every w € Q and S%. bounded in
L% (u) then S% is bounded in L (p).

It is not hard to see that

St C Sf—op = SEIEF.

By theorem 3.1, SlaF is weakly compact in L} (u); which implies S% relatively weakly compact

in LY (u). Applying corollary 3.4 of [8], we conclude that S% is relatively weakly compact in L% ().




Corollary 3.3 If F(w) is convez and weakly compact pi.a.e unth F' o mewsurab, i egrably bounded
multifunction, then for 1 < p < 00, S%. is weakly compact in L% (u) +f and only if it is bounded.

Proof. The condition is necessary to S% be relatively weakly compact. ’

If{f,} is a sequence in S% converging to f in the weak topology of L% (u); t.he.m { fn} converges
to f in the weak topology of L (u) because the inclusion of L% (u) into L (u) is continuous. As
it is shown in [3], there is a sub-sequence {fn,} of {f»} such, that f,, (w) = f(w) for almost every
w € Q. This implies f(w) € F(w), p.a.e, and f measurable. Therefore, f € S%. We are done. =

Corollary 3.4 Let X be a Banach space and 1 < p < oo. For every measurable and integrably
bounded multifunction F : Q = P;(X), S§ is weakly compact if and only if X is reflezive.

Remark 8.5 According with Theorem 3.2, Theorems 5.2 and 5.5 of [16] hold for any Banach space
and any p € [1,+00). While the hypothesis “X is sequentially weakly complete” should be added in
Theorem 5.4 of same reference; since according with Rosenthal I, dichotomy [2?], a Banach space
is reflezive if and only if it is sequentially weakly complete and contains no cc2y of .

Remark 3.6 The weak compactness of S plays a key role in th- ¢ristcnes of nild solution of
evolution tnclusions ([17]); with hypothesis F : Q — Poic(X). In [15], in an attempt of giving a
different approach in the contert of reflezive Banach spaces, the weak compactness is replaced by
closedness and boundness. According with 3.4, this is a particular case of [17].

4 Weak limits of sequence of measurable multifunctions
In this section we generalice a result due to Castaing [4] and Papageorgiou [19).

Theorem 4.1 Let X be a Banach space with X* having the Radon-Nikodym Property. Let {F,}
be a uniformly integrable sequence of measurable multifunctions F, : Q@ — P....(X) satisfying the
following conditions:

(i) For every A € L, the set
Ha= U [ Fad
n=1 A

ts relatively weakly compact.

(i) Any bounded variation vector measure m : £ — X verifying m(A) € co(H,) forall A€ £
admits a density in L} (). Then there ezists F : Q — P.(X) integrably bounded and a sequence
{F..} of {F.} such that F,,, = F in L% (un).

Proof. Since for each n € N; F, : Q@ — P_i.(X) is a measurable multifunction, we have that for
each n € N, there is a set NV, € ¥ such that u(N,) = 0 and F,,(Q\N,,) is separable. If N = 8 N,

n=1

o
then p(/N) = 0 and the closed subspace Y generated by |} F,(Q\N) is separable. Now we define

n=1

Gr i Q=3 Poo(Y)
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by
F,(w); we€QN
G (w)={ {(g},) weN.

The sequence G, is a sequence of measurable multifunctions satisfying U J4Gndp= Ha and

since X* has the Radon-Nikodym Property, by [23], every separable subspace of X has a separable

dual. So Y* is separable. Applying Theorem 5.1 of [4] we find a measurable multifunction

F:Q 2 Po(Y) C Puke(X)

and a subsequence G, of Gy such that Gp, 4 Fin L} (y.) Since for each n € N; G = F;, p.a.e,
we conclude that F,, — F in L (1). We are done. =
An operator theoritical a,pplica.tions may be interesting. :

Theorem 4.2 Let X and Y be Banach spaces and T : X — Y a weakly compact eperator. If
F,: Q- Pwkc(X ) is a sequence of u measurable multifunctions which is uniformly mtegrable and
bounded in L (1), then there is a subsequence { Fui} of {F} and G : Q2 — Fic(Y') such T Fry 3G

in Ly (4)-

Proof. Since 7' : X — Y is a weakly compact operator, the factorization scheme of [7] provides a
reflexive Banach space Z and a pair of bounded linear operator T, T, such that T = T, o T; with
Ty: X2 Z&T,:Z - Y. If we concentrate ourselve on T\ F,, : 2 = P,;.(Z); we find out that
{T\F,}, is a sequence of bounded on L% (u) and uniformly integrable multifunctions. Hence

for each A € %, U {Ja T F, du} is bounded in Z and, by reflexivity, relatively weakly compact.

Since both Z a,nd Z" have the Radon-Nikodym Property, Theorem 4.1 1mphes the existence of a
measurable multifunction F : Q — P,k.(Z) and a subsequence {F,,} of {F,} such that

/a(Tan,‘,z")dpﬁ/ o(F,z%)du
A A

for each 2* € Z~.
Now, given y* € Y*, y*T; € Z* and, on the other hand;

U(TFnu y‘) = U(TlFﬂm y'T32)

and
o(ToF,y*) = o(F, y"T2).

So the conclusion follows with G = T3 F. -

It is worth to notice that by applying the above factorization scheme, Papageorgiou [16] has
gotten the following result for separable Banach spaces. Since this result easily extend for arbitrary
Banach spaces, we state it without separability asumption:

Theorem 4.3 Let F,, : Q = Py.(X) be a sequence of measurable multifunctions and W € Pi.(X)
such that [,(w) C W p.a.e. for alln € N. Then there are F : Q — P1.(X) and a subsequence
{F.+} of {F,} such that F, = F in L ().



5 Multimeasures and the Radon-Nikodym Propert;

Definition { Let M : & — Pukc(X) be a multimeasure, and p : £ — [0,+00) be a positive measure.

M is called p-representable if there 15 a p-measurable muitifunction F : Q = P (X) integrably

bounded such that

M(A) = / Fdu VA€E.
A

Proposition 5.1 Let M : £ — Pukc(X) be a multifunction p-representable by F. Then
(a) M(Z)= U M(A) is separable.

AL
(b) F is unique.

Proof.

(a) If there is a y-measurable multifunction F’: @ — P_xc(X) so that F is integrably bounded and
J4 Fdu = M(A), YA € L, then by definition there is N € ¥ such that y(N) =0and |} F(w)

wEMN
is separable. Let Y be the separable subspace generated by |J F(w). Then for each selector f
wEQ\N
of F', we have [, fdu € Y; which implies that |J M (A) is separable.
. A€ET
(b) By (a), we can suppose X separable. Now we apply Theorem III. 35 of [6]. -

Theorem 5.2 Let X be a Banach space. The following statements are equivalent:
(a) Both X and X* have the Radon-Nikodym Property.

(b) For every complete finite measure space (2, E, ) and any p continuous bounded variation
multimeasure M : ¥ — P (X); with M(X) separable, there is a p-measurahle integrably bounded
multifunction F : Q — P x(X) such that M(A4) = [, Fdp.

(c) For every probability space (Q, X, i), and every u-continuous bounded variation multimeasure
M : X — P, (X), with M(X) separable there is an integrably bounded multifunction F : Q —
P, (X) such that

M(A) =/Aqu, YA € E.

Proof. (a => b).

Since M(X) is separable, there is no loss of generality assuming X separable.

Since X* has the Radon-Nikodym Property, then it is separable and the proof follows as either
in [5] or [12].

(b = a). If X does not have the Radon Nikodym Property, there is a separable subspace YV of
X which lacks such a property. So there is a vector measure m : ¥ — Y; bounded variation and
m << p; which is not p-representable where €1 = [0, 1]; £ the Borel o-algebra and u the Lebesgue
measure. Therefore the Radon-Nikodym Property on X is a sufficient condition.



Suppose X* lacks the Radon-Nikodym Property. By the proposition in [11], if Q = {-1, 1N
is the Cantor group and g the normalized Haar measure on {2, there is a subset H C L} (p) such

that
(i) H is uniformly bounded.
(i) {[f4 fd/"}feH is relatively weakly compact for each A € X.

(iii) H is not relatively weakly compact in L (u).
Now we define

G:{f:Zg,-XA‘; GEH AET AiNA;=0Vi#j& UA,:Q}.
=1 =1

Since G is a bounded decomposable subset of L} (1) so is G. So there is a p-measurable
integrably bounded multifunction F’ : Q — P;(X) so that S}, = G. Take F = ¢gF’: Then F is
integrably bounded and by Krein-Smulyan theorem M(A) = {f, Fdu} is a weakly convex valued
multimeasuré. Since H C S}, this set is not relatively weakly compact and by Theorem 3.2; F(w)

is not weakly compact p.a.e.

(a = ¢). Take M : £ = P, (X) satisfying hypothesis (c) . Since X has the Radon-Nikodym
property, by [24], ciM(A).is convex for each A € . So M(A) is convex, and weakly compact for
each A € . Therefore, we have reduced the problem to the implication a = b.

(c=>a). f M:X > P, (X)is a multimeasure such that VA € &,

M(A)=/Ade for some F:Q — P, (X),

integrably bounded, then by [18], c!lM(A) is convex for each A € £. So

M(A)=%</AF¢1#) =/A%Fd,u;

and by the implication b = a, the proof is over. =
Remark 5.3 Above result improve the conclusion in [14] Theorem 5.3, with a rather different proof.

If we put Sy ={m:LZ = X; mec,(X), m(A) € M(A) VA € £}, when the multimeasure
M is compact valued, the following holds.
Theorem 5.4 For a Banach space X, the following are equivalent statements
(a) X has the Radon-Nikodym property.

(b If M :X — Pi(X) is a p-continuous bounded variation multimeasure for which Sy is compact
in ¢, (X)) then there is an integrably bounded multifunction F : Q — Pi.(X) such that

M(A) = /A Fdp.




Proof. Suppose X has the Radon-Nikodym property. Then by [24] Theorem 2.7, M(X) is relatively
compact in X. Therefore M(X) is separable.
For each m € Sp, there is fm € L% (1) so that

m(A)=/Afmdp VAET

and Sps isomorphic to {fm}mes, C L (1). Furthermore, by [10] we have that for each 4 € ¥,

M(A) = { /A fmdp}mGSM.

Since {fm}mes,, i8 a decomposable compact subset of LY (&); we have that {fm}mes,, is also
separable in L% (4); and hence we can suppose X separable. So by [13], there is an integrably
bounded multifunction F : @ — Ps.(X) such that Sk = {fm}mesy- Therefore

M(4) = /A Fdu foreach A€

with S} compact in L% (u). This implies F(w) weakly compact p.a.e and by (2] proposition 7, F(w)
is actually compact p.a.e. )
Conversely, if (b) helds, it happens for single vector measure, the very definition of the Radon
Nikodym property. - -
Since the unit ball of L°°([0,1]) is not compact in L![0, 1], the multimeasure M can be repre-
sented by a compact valued multifunction without being Sps a compact subset of ¢,(X), as it is
shown in next Theorem. ,

Theorem 5.5 Let X be a Banach Space. The following are equivalent:

(a) Forevery F :[0,1] = Pukc(X) p-measurable respect to the Lebesgue measure, with |F| € L™ (u),
M(A) = [, Fdu is compact for each A € E.

(b) X is finite dimensional.

Proof. (b = a). If X is finite dimensional, then foreach A € &, [, Fdu C B(0, M), where M = sup
ess |F|. This implies M(A4) compact.

(a = b). Suppose X is infinite dimensional. Then there is a convex separable subset W in By
such that W is not compact; which implies the existence of a sequence {zx} C W without any
convergent subsequence. Put F : [0, 1] = P_k.(X) such that F(w) =W (w € [0, 1}). Then for each
k € N, fi = zx is a measurable selection of F and, if y is the Lebesgue measure on [0, 1] then for
any t > 0, {f; fkdp,} is not compact in X, which implies that M : [0,1] = P,.(X) is not compact

valued. =
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