Universidad de los Andes

Facultad de Ciencias Departamento de Matemática

Weak Compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures

Diomedes Bárcenas

:

Notas de Matemática Serie: Pre-Print No. 163

Mérida - Venezuela 1997

Weak Compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures

Diomedes Bárcenas

Abstract

Some criteria for weak compactness of set valued integrals are given. Also we show some of applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.

1 Introduction

The theory of measurable multifunctions has shown to be useful in many mathematical fields such as Control Theory [1], Convex Analysis [6], Abstract evolution equations [15], etcetera.

It is the purpose of this paper to provide some results about the weakly compactness of the measurable selections of a measurable multifunction, and use them to show a Radon-Nikodym Theorem for multimeasures.

2 Preliminaries

In this section we fix the notations and definitions that we use in this paper. For a Banach space X, its dual space will be denote by X^* . We will also use the following notations:

$$P_{f(c)}(X) = \{A \subseteq X : A \neq \emptyset, A \text{ closed (convex)}\}$$
$$P_{\omega k c}(X) = \{A \subseteq X : A \neq \emptyset, A \text{ weakly compact (convex)}\}$$

For a subset A of X we set $|A| = \sup_{a \in A} ||a||$.

Following [3], given a complete finite measure space (Ω, Σ, μ) and a Banach space X, we say that a multifunction $F: \Omega \to P_f(X)$ is μ -measurable, if there is a μ -null set $N \in \Sigma$ and a sequence $\{f_n\}$ of μ -measurable functions such that

$$F(\omega) = \operatorname{cl} \{ f_n(\omega) \}$$
 for all $\omega \in \Omega \setminus N$.

This definition does not need the hypothesis "X separable"; and according with Pettis measurability theorem [9], it contains the classical definition for separable Banach spaces, due to Castaing Representation [6]. This will allow us to deal with a considerable grade of generality.

Given a measurable multifunction $F: \Omega \to P_f(X)$, we denote by S_F^p the set

$$S_F^p = \{ f : \Omega \to X : f \in L^p_X(\mu); \quad f(\omega) \in F(\omega)\mu \cdot a.e \};$$

and for $E \in \Sigma$, by $\int_E F d\mu$, we denote the set

$$\int_E F d\mu = \left\{ \int_E f d\mu : f \in S_F^1 \right\}.$$

We say that a measurable multifunction F is integrably bounded if $|F(\cdot)| \in L^1(\mu)$. Following [19, 20], for $\{A_n, A\} \subset P_f(X), A'_n s$ weakly converges to $A(A_n \xrightarrow{\omega} A)$ if for each $x^* \in X^*, \sigma(x^*, A_n) \rightarrow \sigma(x^*, A)$; where $\sigma(x^*; B) = \sup\{\langle x^*, x \rangle : x \in B\}$; for any non-empty subset B of X. A sequence of measurable multifunctions $\{F_n\}_{n=1}^{\infty}$ is said to be weakly convergent to F in $L^1_X(\mu)$ $(F_n \xrightarrow{\omega} F)$, if

$$\int_{\Omega} \sigma(x^*(\omega), F_n(\omega)) d\mu(\omega) \to \int_{\Omega} \sigma(x^*(\omega), F(\omega)) d\mu(\omega)$$

for each $x^* \in (L^1_X(\mu))^*$.

A multimeasure is a function $M: \Sigma \to P(X)$ satisfying

- (i) $M(\emptyset) = \{0\}$
- (ii) If $E_1, E_2 \in \Sigma$ with $E_1 \cap E_2 = \emptyset$, then $M(E_1 \cup E_2) = M(E_1) + M(E_2)$.
- (iii) If $\{E_n\}_{n=1}^{\infty}$ is a sequence in Σ with $E_i \cap E_j = \emptyset \ \forall i \neq j$, then

$$M\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} M(E_n)$$

= {x \in X; for each n \in N; there is $x_n \in M(E_n)$ such that
 $\sum_{n=1}^{\infty} x_n$, uncondictionally converges to x}.

The multimeasure M is called *bounded variation* if

$$||M|| = \sup \sum_{i=1}^{n} ||M(A_i)||$$

is finite where the sup is taken over all finite partition of Ω .

For a fixed measurable space (Ω, Σ) , $c_a(X)$ will denote the Banach space of all X valued countably additive, bounded variation vector measures endowed with the norm of total variation.

3 Weak compactness criteria for S_F^p in $L_X^p(\mu)$

The following result can be found in [3].

Theorem 3.1 Let $F : \Omega \to P_{fc}(X)$ be an integrably bounded multifunction. Then S_F^1 is weakly compact in $L^1_X(\mu)$ if and only if for almost every $\omega \in \Omega$, $F(\omega)$ is weakly compact.

A small refinement of above theorem is the following one.

Theorem 3.2 If $1 \le p < \infty$ and $F : \Omega \to P_f(X)$ is a measurable multifunction, then the following statement are equivalent:

(a) S_F^p is relatively weakly compact in $L_X^p(\mu)$.

(b) S_F^p is bounded in $L_X^p(\mu)$ and the multifunction $G: \Omega \to P_{fc}(X)$ defined by $G(\omega) = \overline{c_0}F(\omega)$ takes weakly compact values $\mu.a.e.$

Proof. Suppose p = 1.

 $(a \Rightarrow b)$. If S_F^1 is relatively weakly compact in $L_X^1(\mu)$; then it is bounded and by [13] (Theorem 3.2); F is integrably bounded.

Furtheremore, given a sequence $\{f_n\} \subseteq S_F^1$, there is a sequence $g_n \in \overline{c_0}\{f_k \mid k \ge n\}$ ([8] Theorem 2.1) such that $g_n(\omega)$ is norm convergent in $X \ \mu$.a.e. This implies $\overline{c_0}F(\omega)$ weakly compact μ .a.e.

Conversely, if S_F^1 is bounded and $\overline{c_0}F(\omega)$; weakly compact μ .a.e, being F measurable; by $N_0 \in \Sigma$ and sequence null set there а definition is such that $\mu(N_0) = 0$ $f_n:\Omega\to X$ of measurable functions and $F(\omega) = \operatorname{cl}(f_n(\omega)) \ \forall \omega \in \Omega \setminus N_0$. Applying the measurability Pettis theorem, for each $n \in \mathbb{N}$, there is $N_n \in \Sigma$ with $\mu(N_n) = 0$ and $cl(f_n(\Omega \setminus N_n)$ is separable.

If we put $N = \bigcup_{n=0}^{\infty} N_n$; we see that $\mu(N) = 0$ and $F(\Omega \setminus N)$ is separable. Let Y be the separable Banach space generated by $F(\Omega \setminus N)$. Then if we define, as in [3],

$$H: \Omega \to P_f(Y)$$
$$H(\omega) = \begin{cases} F(\omega) & \text{if } \omega \in \Omega \backslash N\\ \{0\} & \text{if } \omega \in N; \end{cases}$$

G is a measurable multifunction taking values in a separable Banach space. Applying Theorem 1.5 of [13], we see that $\overline{c_0}H$ is a measurable multifunction. Since $G(\omega) = \overline{c_0}F(\omega) = \overline{c_0}H(\omega) \mu$.a.e; we conclude that G is a measurable multifunction taking values in a separable Banach space. It is not hard to see that G is integrably bounded and $G(\omega) \in P_{\omega Kc}(X) \mu$.a.e. So by Theorem 3.1, $S_{\overline{c_0}F}^1$ is weakly compact in $L_X^1(\mu)$ and consequently S_F^1 is relatively weakly compact.

Let $1 . Since <math>S_F^p$ is relatively weakly compact in $L_X^p(\mu)$; and the injection $i: L_X^p(\mu) \to L_X^1(\mu)$ is continuous, the set S_F^p is relatively weakly compact in $L_X^1(\mu)$.

If we put $M = S_F^p$; then M is decomposable *i.e*; if $f, g \in M$ and $A \in \Sigma$, then $fX_A + gX_{\Omega \setminus A} \in \Sigma$. Then, according with [13] Theorem 3.1, there is a measurable multifunction $G: \Omega \to P_f(X)$ such that $M = S_G^1$. Since $\overline{S_G^1}$ is weakly compact in $L_X^1(\mu)$, we see that $\overline{c_0}G(\omega)$ is weakly compact μ .a.e. Since $S_G^1 = S_G^p \supset S_F^p$, Corollary 1.2 from [13] implies the conclusion.

For the converse, suppose $\overline{c_0}F(\omega)$ weakly compact for almost every $\omega \in \Omega$ and S_F^p bounded in $L_X^p(\mu)$ then S_F^p is bounded in $L_X^1(\mu)$.

It is not hard to see that

$$S_F^p \subset S_{\overline{c_0}F}^p = S_{\overline{c_0}F}^1.$$

By theorem 3.1, $S_{\overline{c_0}F}^1$ is weakly compact in $L_X^1(\mu)$; which implies S_F^p relatively weakly compact in $L_X^1(\mu)$. Applying corollary 3.4 of [8], we conclude that S_F^p is relatively weakly compact in $L_X^p(\mu)$. **Corollary 3.3** If $F(\omega)$ is convex and weakly compact μ .a.e with F a measurable integrably bounded multifunction, then for $1 \leq p < \infty$, S_F^p is weakly compact in $L_X^p(\mu)$ if and only if it is bounded.

Proof. The condition is necessary to S_F^p be relatively weakly compact.

If $\{f_n\}$ is a sequence in S_F^p converging to f in the weak topology of $L_X^p(\mu)$; then $\{f_n\}$ converges to f in the weak topology of $L_X^1(\mu)$ because the inclusion of $L_X^p(\mu)$ into $L_X^1(\mu)$ is continuous. As it is shown in [3], there is a sub-sequence $\{f_{n_k}\}$ of $\{f_n\}$ such, that $f_{n_k}(\omega) \to f(\omega)$ for almost every $\omega \in \Omega$. This implies $f(\omega) \in F(\omega)$, μ .a.e., and f measurable. Therefore, $f \in S_F^p$. We are done.

Corollary 3.4 Let X be a Banach space and $1 \leq p < \infty$. For every measurable and integrably bounded multifunction $F: \Omega \to P_{fc}(X)$, S_F^p is weakly compact if and only if X is reflexive.

Remark 3.5 According with Theorem 3.2, Theorems 5.2 and 5.5 of [16] hold for any Banach space and any $p \in [1, +\infty)$. While the hypothesis "X is sequentially weakly complete" should be added in Theorem 5.4 of same reference; since according with Rosenthal l_1 dichotomy [22], a Banach space is reflexive if and only if it is sequentially weakly complete and contains no copy of l_1 .

Remark 3.6 The weak compactness of S_F plays a key role in the existence of mild solution of evolution inclusions ([17]); with hypothesis $F: \Omega \to P_{\omega kc}(X)$. In [15], in an attempt of giving a different approach in the context of reflexive Banach spaces, the weak compactness is replaced by closedness and boundness. According with 3.4, this is a particular case of [17].

4 Weak limits of sequence of measurable multifunctions

In this section we generalice a result due to Castaing [4] and Papageorgiou [19].

Theorem 4.1 Let X be a Banach space with X^* having the Radon-Nikodym Property. Let $\{F_n\}$ be a uniformly integrable sequence of measurable multifunctions $F_n : \Omega \to P_{o,bc}(X)$ satisfying the following conditions:

(i) For every $A \in \Sigma$, the set

$$H_A = \bigcup_{n=1}^{\infty} \int_A F_n d\mu$$

is relatively weakly compact.

(ii) Any bounded variation vector measure $m: \Sigma \to X$ verifying $m(A) \in \overline{c_0}(H_A)$ for all $A \in \Sigma$ admits a density in $L^1_X(\mu)$. Then there exists $F: \Omega \to P_{\omega kc}(X)$ integrably bounded and a sequence $\{F_{n_k}\}$ of $\{F_n\}$ such that $F_{n_k} \to F$ in $L^1_X(\mu)$.

Proof. Since for each $n \in \mathbb{N}$; $F_n : \Omega \to P_{\omega kc}(X)$ is a measurable multifunction, we have that for each $n \in \mathbb{N}$, there is a set $N_n \in \Sigma$ such that $\mu(N_n) = 0$ and $F_n(\Omega \setminus N_n)$ is separable. If $N = \bigcup_{n=1}^{\infty} N_n$ then $\mu(N) = 0$ and the closed subspace Y generated by $\bigcup_{n=1}^{\infty} F_n(\Omega \setminus N)$ is separable. Now we define

$$G_n: \Omega \to P_{\omega kc}(Y)$$

by

$$G_n(\omega) = \begin{cases} F_n(\omega); & \omega \in \Omega \setminus N \\ \{0\}; & \omega \in N. \end{cases}$$

The sequence G_n is a sequence of measurable multifunctions satisfying $\bigcup_{n=1}^{\infty} \int_A G_n d\mu = H_A$ and since X^* has the Radon-Nikodym Property, by [23], every separable subspace of X has a separable dual. So Y^* is separable. Applying Theorem 5.1 of [4] we find a measurable multifunction

$$F: \Omega \to P_{\omega kc}(Y) \subset P_{\omega kc}(X)$$

and a subsequence G_{n_k} of G_n such that $G_{n_k} \xrightarrow{\omega} F$ in $L^1_X(\mu)$. Since for each $n \in \mathbb{N}$; $G_n = F_n \mu$.a.e., we conclude that $F_{n_k} \to F$ in $L^1_X(\mu)$. We are done.

An operator theoritical applications may be interesting.

Theorem 4.2 Let X and Y be Banach spaces and $T : X \to Y$ a weakly compact operator. If $F_n : \Omega \to P_{\omega kc}(X)$ is a sequence of μ measurable multifunctions which is uniformly integrable and bounded in $L^1_X(\mu)$, then there is a subsequence $\{F_{nk}\}$ of $\{F_n\}$ and $G : \Omega \to P_{\omega kc}(Y)$ such $TF_{nk} \xrightarrow{\omega} G$ in $L^1_X(\mu)$.

Proof. Since $T: X \to Y$ is a weakly compact operator, the factorization scheme of [7] provides a reflexive Banach space Z and a pair of bounded linear operator T_1, T_2 such that $T = T_2 \circ T_1$; with $T_1: X \to Z \& T_2: Z \to Y$. If we concentrate ourselve on $T_1F_n: \Omega \to P_{\omega kc}(Z)$; we find out that $\{T_1F_n\}_{n=1}^{\infty}$ is a sequence of bounded on $L_X^1(\mu)$ and uniformly integrable multifunctions. Hence for each $A \in \Sigma$, $\bigcup_{n=1}^{\infty} \{\int_A T_1F_nd\mu\}$ is bounded in Z and, by reflexivity, relatively weakly compact. Since both Z and Z^* have the Radon-Nikodym Property, Theorem 4.1 implies the existence of a measurable multifunction $F: \Omega \to P_{\omega kc}(Z)$ and a subsequence $\{F_{n_k}\}$ of $\{F_n\}$ such that

$$\int_{A} \sigma(T_1F_{n_k}, z^*) d\mu \to \int_{A} \sigma(F, z^*) d\mu$$

for each $z^* \in Z^*$.

Now, given $y^* \in Y^*$, $y^*T_2 \in Z^*$ and, on the other hand;

$$\sigma(TF_{n_k}, y^*) = \sigma(T_1F_{n_k}, y^*T_2)$$

and

$$\sigma(T_2F, y^*) = \sigma(F, y^*T_2).$$

So the conclusion follows with $G = T_2 F$.

It is worth to notice that by applying the above factorization scheme, Papageorgiou [16] has gotten the following result for separable Banach spaces. Since this result easily extend for arbitrary Banach spaces, we state it without separability asumption:

Theorem 4.3 Let $F_n : \Omega \to P_{fc}(X)$ be a sequence of measurable multifunctions and $W \in P_{\omega kc}(X)$ such that $F_n(\omega) \subseteq W$ $\mu.a.e.$ for all $n \in \mathbb{N}$. Then there are $F : \Omega \to P_{\omega kc}(X)$ and a subsequence $\{F_{nk}\}$ of $\{F_n\}$ such that $F_{nk} \xrightarrow{\sim} F$ in $L^1_X(\mu)$.

5 Multimeasures and the Radon-Nikodym Property

Definition 1 Let $M: \Sigma \to P_{\omega kc}(X)$ be a multimeasure, and $\mu: \Sigma \to [0, +\infty)$ be a positive measure. M is called μ -representable if there is a μ -measurable multifunction $F: \Omega \to P_{\omega kc}(X)$ integrably bounded such that

$$M(A) = \int_A F d\mu \quad \forall A \in \Sigma.$$

Proposition 5.1 Let $M: \Sigma \to P_{\omega kc}(X)$ be a multifunction μ -representable by F. Then

(a) $M(\Sigma) = \bigcup_{A \in \Sigma} M(A)$ is separable.

(b) F is unique.

Proof.

(a) If there is a μ -measurable multifunction $F: \Omega \to P_{\omega kC}(X)$ so that F is integrably bounded and $\int_A F d\mu = M(A), \forall A \in \Sigma$, then by definition there is $N \in \Sigma$ such that $\mu(N) = 0$ and $\bigcup_{\omega \in \Omega \setminus N} F(\omega)$ is separable. Let Y be the separable subspace generated by $\bigcup_{\omega \in \Omega \setminus N} F(\omega)$. Then for each selector f of F, we have $\int_A f d\mu \in Y$; which implies that $\bigcup_{A \in \Sigma} M(A)$ is separable.

(b) By (a), we can suppose X separable. Now we apply Theorem III. 35 of [6].

Theorem 5.2 Let X be a Banach space. The following statements are equivalent:

(a) Both X and X^* have the Radon-Nikodym Property.

(b) For every complete finite measure space (Ω, Σ, μ) and any μ continuous bounded variation multimeasure $M: \Sigma \to P_{\omega kc}(X)$; with $M(\Sigma)$ separable, there is a μ -measurable integrably bounded multifunction $F: \Omega \to P_{\omega kc}(X)$ such that $M(A) = \int_A F d\mu$.

(c) For every probability space (Ω, Σ, μ) , and every μ -continuous bounded variation multimeasure $M : \Sigma \to P_{\omega_k}(X)$, with $M(\Sigma)$ separable there is an integrably bounded multifunction $F : \Omega \to P_{\omega_k}(X)$ such that

$$M(A) = \int_A F d\mu, \quad \forall A \in \Sigma.$$

Proof. $(a \Rightarrow b)$.

Since $M(\Sigma)$ is separable, there is no loss of generality assuming X separable.

Since X^* has the Radon-Nikodym Property, then it is separable and the proof follows as either in [5] or [12].

 $(b \Rightarrow a)$. If X does not have the Radon Nikodym Property, there is a separable subspace Y of X which lacks such a property. So there is a vector measure $m : \Sigma \to Y$; bounded variation and $m \ll \mu$; which is not μ -representable where $\Omega = [0, 1]$; Σ the Borel σ -algebra and μ the Lebesgue measure. Therefore the Radon-Nikodym Property on X is a sufficient condition.

6

Suppose X^{*} lacks the Radon-Nikodym Property. By the proposition in [11], if $\Omega = \{-1, 1\}^N$ is the Cantor group and μ the normalized Haar measure on Ω , there is a subset $H \subseteq L_X^1(\mu)$ such that

- (i) H is uniformly bounded.
- (ii) $\{\int_A f d\mu\}_{f \in H}$ is relatively weakly compact for each $A \in \Sigma$.
- (iii) H is not relatively weakly compact in $L^1_X(\mu)$.

Now we define

$$G = \left\{ f = \sum_{i=1}^{n} g_i X_{A_i}; \ g_i \in H, \ A_i \in \Sigma; \ A_i \cap A_j = \emptyset \ \forall i \neq j \& \bigcup_{i=1}^{n} A_i = \Omega \right\}.$$

Since G is a bounded decomposable subset of $L^1_X(\mu)$ so is \overline{G} . So there is a μ -measurable integrably bounded multifunction $F': \Omega \to P_f(X)$ so that $S^1_{F'} = \overline{G}$. Take $F = \overline{c_0}F'$. Then F is integrably bounded and by Krein-Smulyan theorem $M(A) = \{\int_A F d\mu\}$ is a weakly convex valued multimeasure. Since $H \subseteq S^1_F$, this set is not relatively weakly compact and by Theorem 3.2; $F(\omega)$ is not weakly compact μ .

 $(a \Rightarrow c)$. Take $M : \Sigma \to P_{\omega_k}(X)$ satisfying hypothesis (c). Since X has the Radon-Nikodym property, by [24], clM(A) is convex for each $A \in \Sigma$. So M(A) is convex, and weakly compact for each $A \in \Sigma$. Therefore, we have reduced the problem to the implication $a \Rightarrow b$.

 $(c \Rightarrow a)$. If $M: \Sigma \to P_{\omega_k}(X)$ is a multimeasure such that $\forall A \in \Sigma$,

$$M(A) = \int_A F d\mu$$
 for some $F: \Omega \to P_{\omega_k}(X)$,

integrably bounded, then by [18], clM(A) is convex for each $A \in \Sigma$. So

$$M(A) = \overline{c_0} \left(\int_A F d\mu \right) = \int_A \overline{c_0} F d\mu;$$

and by the implication $b \Rightarrow a$, the proof is over.

Remark 5.3 Above result improve the conclusion in [14] Theorem 5.3, with a rather different proof.

If we put $S_M = \{m : \Sigma \to X; m \in c_a(X), m(A) \in M(A) \forall A \in \Sigma\}$, when the multimeasure M is compact valued, the following holds.

Theorem 5.4 For a Banach space X, the following are equivalent statements

(a) X has the Radon-Nikodym property.

(b) If $M: \Sigma \to P_k(X)$ is a μ -continuous bounded variation multimeasure for which S_M is compact in $c_a(X)$ then there is an integrably bounded multifunction $F: \Omega \to P_{kc}(X)$ such that

$$M(A)=\int_A Fd\mu.$$

Proof. Suppose X has the Radon-Nikodym property. Then by [24] Theorem 2.7, $M(\Sigma)$ is relatively compact in X. Therefore $M(\Sigma)$ is separable.

For each $m \in S_M$, there is $f_m \in L^1_X(\mu)$ so that

$$m(A) = \int_A f_m d\mu \quad \forall A \in \Sigma$$

and S_M isomorphic to $\{f_m\}_{m\in S_M} \subseteq L^1_X(\mu)$. Furthermore, by [10] we have that for each $A \in \Sigma$,

$$M(A) = \left\{ \int_A f_m d\mu \right\}_{m \in S_M}$$

Since $\{f_m\}_{m\in S_M}$ is a decomposable compact subset of $L^1_X(\mu)$; we have that $\{f_m\}_{m\in S_M}$ is also separable in $L^1_X(\mu)$; and hence we can suppose X separable. So by [13], there is an integrably bounded multifunction $F: \Omega \to P_{fc}(X)$ such that $S^1_F = \{f_m\}_{m\in S_M}$. Therefore

$$M(A) = \int_A F d\mu$$
 for each $A \in \Sigma$

with S_F^1 compact in $L_X^1(\mu)$. This implies $F(\omega)$ weakly compact μ .a.e and by [2] proposition 7, $F(\omega)$ is actually compact μ .a.e.

Conversely, if (b) holds, it happens for single vector measure, the very definition of the Radon Nikodym property.

Since the unit ball of $L^{\infty}([0,1])$ is not compact in $L^{1}[0,1]$, the multimeasure M can be represented by a compact valued multifunction without being S_{M} a compact subset of $c_{a}(X)$, as it is shown in next Theorem.

Theorem 5.5 Let X be a Banach Space. The following are equivalent:

(a) For every $F : [0,1] \to P_{\omega kc}(X) \mu$ -measurable respect to the Lebesgue measure, with $|F| \in L^{\infty}(\mu)$, $M(A) = \int_A F d\mu$ is compact for each $A \in \Sigma$.

(b) X is finite dimensional.

Proof. $(b \Rightarrow a)$. If X is finite dimensional, then for each $A \in \Sigma$, $\int_A F d\mu \subset B(0, M)$, where $M = \sup$ ess |F|. This implies M(A) compact.

 $(a \Rightarrow b)$. Suppose X is infinite dimensional. Then there is a convex separable subset W in B_X such that W is not compact; which implies the existence of a sequence $\{x_k\} \subset W$ without any convergent subsequence. Put $F : [0, 1] \rightarrow P_{\omega kc}(X)$ such that $F(\omega) \equiv W$ ($\omega \in [0, 1]$). Then for each $k \in \mathbb{N}$, $f_k \equiv x_k$ is a measurable selection of F and, if μ is the Lebesgue measure on [0, 1] then for any t > 0, $\{\int_0^t f_k d\mu\}$ is not compact in X, which implies that $M : [0, 1] \rightarrow P_{\omega kc}(X)$ is not compact valued.

References

[1] Z. Arststein, Weak convergence of set valued functions and control, SIAM, J. Control and Optimization, 13 (1975), 865-878.

- [2] I. Assani A. Klei, Parties décomposables compactes de L¹_E, C.R. Acad. S C. Paris, 294, (1982), Serie I, 533-536.
- [3] D. Barcenas W. Urbina, Measurable multifunctions in non separable Banach spaces, to appear in SIAM, Journ. Math. Analysis.
- [4] C. Castaing, Weak compactness criteria in set valued integration, Laboratorie d' Analyse convex, prepublication 1995/03.
- [5] C. Castaing P. Clauzure, Compacite faible dans l'space des multifunctions integrablements bornees et minimizations, Annali, di Matematica pura ed applicata, (IV) 140 (1985), 345-364.
- [6] C. Castaing M. Valadier, Convex analysis and measurable multifunctions, LNM 586, Springer Verlag, Berlin (1977).
- [7] W.J. Davis T. Fiegel W.B. Jhonson A. Pelczynski, Factoring weakly compact operators, J. Functional Analysis, 17, (1974), 311-327.
- [8] J. Diestel W. Ruess and W. Schachermayer, On weak compactness in $L^1(\mu, X)$, Proc. Amer. Math. Soc. 118 (1993), 443-453.
- [9] J. Diestel J.J. Uhl, Vector measures, Amer. Math. Soc. Surveys, vol 15, Providence, R.I. (1977).
- [10] C. Godet Thobie, Some results about multimeasures and their selectors, Measure Theory (D. Kölzow, ed.) LNM 794, Springer-Verlag, Berling (1980) 112-116.
- [11] N. Ghoussoub P. Saab, Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property, Pacific J. of Math. 110, 1, (1984), 65-70.
- [12] F. Hiai, Radon-Nikodym theorems for set valued measures, J. Multivariate Analysis 8, (1978), 96-118.
- [13] F. Hiai H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Analysis, 7 (1977), (149-182).
- [14] H.A. Klei, A compactness criteria in $L^1(E)$ and Radon-Nikodym Theorems for multimeasures, Bull. Sc. Math. 2^e serie, 112 (1988), 305-324.
- [15] M. Muresan, On a boundary value problem for quasi-linear differential inclusions of evolution, Collect. Math. 45, 2(1994), 165-175.
- [16] N. Papageorgiou, Contributions to the theory of set valued functions and set valued measures, Trans. A.M.S. 304, 1, (1987), 245-265.
- [17] N. Papageorgiou, Boundary value problems for evolution inclusions, Comm. Math. Univ. Carol. 29 (1988), 437-464.
- [18] N. Papageorgiou, Decomposable sets in the Lebesgue Bochner spaces, Comm. Math. Univ. Sanct. Pauli, 37, 1,(1988), 49-62.

- [19] N. Papageorgiou, Radon-Nikodym Theorem for multimeasures and transition multimeasures, Proc. Ammer-Math. Soc. 111, 2, (1991), 465-474.
- [20] N. Papageorgiou, On the convergence properties of measurable multifunctions in separable Banach spaces, Math. Japonica 37, 4 (1992) 637-643.
- [21] N. Papageorgiou, On the conditional expectation and convergence properties of Random sets, Trans. Amer. Math. Soc. 347, 7, (1995), 2495-2515.
- [22] H.P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. 71, (1974), 2411-2413.
- [23] C. Stegall, The Radon-Nikodym property in conjugate Banach Spaces II, Trans. Amer. Math. Soc, 264 (1981), 507-519.
- [24] X. Xiaoping C. Lixing L. Goucheng Y. Xiabo, Set valued measures and integral representations, Comm. Math. Univ. Carol. 37, 2 (1996), 269-284.