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MOTIVATION OF THE MULTILINEAR REPRESENTATION 
THEOREM OF DOBRAKOV 

In 1910, F.Riesz proved his famous representation theorem for the bound- 

ed linear forms on C[O, 11, which has bcen generalized later to compact and 

locally compact Hausdorfr spaces by hlarlioff, I(al<utani and othcrs. Lct us 

present t!lis theorem in thc general form as follows: 

THEOREM 1. (Riesz represe~l ta t io i l  theorem)  Let T bc a locally 

c~oinpuc1. Ila'usdorfl space c~tzc l  let B (T)  be the cr-algebra of ihe Bore1 scts of 

7'.  Lct Cu(l') be ilze Banach space of all co~rzplex valued cotziitiuous f u t~c t ions  

0 7 7 ,  T z~nnish i t~g  at itifinity, wiih ihe supremum nortn 1 1  f \ I T  = sul){l f (i)! : 

t E 7'). T1r.c~ the dual Co(T)* of all cotzli;.zuous linear fornzs o n  Co(T)  can 

LJC bd~l / . / i Jed  ,with ihc Bnnaclz apace h'l(T) of all regular (Complcr)  Dore1 

n~,ca.surcs oli T ,  i n  the scn.se that there exists a n  isometric i somotyhis tn  F 

CU('fl)* -+ M ( T )  such  that  

f o r 4  E C.6(Y1)*, and l \ $ l l  = If<'('(d)l(T), luhcre 1p1 i s  the var in / ion  of !he ((:oti~- 

I ) / (  .z) 17?CC/S'lLl'L / L .  

I,A~,cI-, in 1955, Bartlc, Dunford arid Scllwartz extended tlle abovc thcorc~li 

to  I>oulldcd linear operators i[' : C ( S )  + I', whcr<: S is a compact Tlausdorfl 

5ill;LCc i ~ l l c l  Y is a Ballscli spacc. For tliis, they dc\~clopccl the tlicosy of illtc- 

gri~l,ioll of scalar functions with rcsycct to a \rector ~~~~~~~~~c. Now wc slli~il 

s talc tl~cis rel)resentation tllcorem. 

TEIZOPLEM 2. (Bartle-Dunford-Schwartz represelltation tlieoreln) 

Lct ,S bc a colnpacl I-lansdo~*fl space atzd let U : C ( S )  + Y be a bout~ded 

' S ~ ~ ) ~ o r t c d  I>y tlic C.D.C.1I.T. project C-5%-03 of the Universidad dc 10s Al~cles, 
IlICrida, \renezuelrt, and tlic I~lter~irttio~inl Cooperation projecl in Rlnll~c~natics (1903-31) 
bctwcen CNlt-Italy and COfL'ICIT-Venezuela. 



linear opei.ator, wlzere Y is a Banach space. Theiz there exists a weak* o- 
03 00 

additivc measure G(.) on B(S) with values in Y**(~*G(U Ei) = y*G(&) 
1 1 

jor eacll y* E Y*, wlteilever (Ei)y is a disjoint sequence in B(,S)) such that 

(i) y*G(.) is a regular o-additive Borel measure (a cornplex Borel measure) 

for eaclt y* E Y*; 

(ii) the .nzapping y* -4 y*G'(.) of Y* into C(S)* is weak* to weak*-co~~ti~~uoz~.s;  

(iii) y*U( j )  = f d(y*G), /or each y* E Y*; and 

(iv) JIUI(.= IIGII(S), where 

is called the semivariation o j  G(.) on S. 

Convcrscly, if G(.) is any Y"-valucd vector ineasurc (=additive set iunc- 

lion) dcliilcd on B(S) lor \vl~icli (i) and (ii) hold, tlieil (i i i)  defines a bounded 

lincar opcrator U : C(S) -t Y which satisfies (iv). G'(.) is called tllc reprc- 

scilli~lg mcasure of U and is unique by (iii). 

l'hcy also proved the following rcsults. 

I'lccall that a Banach space Y is said to be wcalcly completc if ,  cach 

sccluencc of vectors in Y which is Cauchy in the wcalc topology, is wcalcly 

convcrgciit to a vector in Y. 

THEOREM 3. (Bartle-Dunford-Schwartz represeiltatioil tlieoreln) 

If Y is weakly complete, then the represeting measure G(.) nssuntes values ill 

Y itself and nzoreover, G'(.) is o-additive in tllc izorm topology of Y. 



A bounded linear operator U : X -+ Y, A', Y Banach spaces, is said to 

be wealily coinpact if { I (Ux ( l  : IIxII 5 1 )  is relatively weakly compact in Y. 

THEOREM 4. (Bartle-Dunford-Schwartz) If U : C ( S )  + Y is weakly 

con~pact,  then the representing measure G(.) of U assumes values in  Y and 

C(.) is a-additive in  the norin topology of Y .  

In 1967, I<luvAnek extended the I3artle-Dunford-Schwartz represent,atio~l 

tlieorem (tlieorem 2) to locally coml)act Hausdorff spaces T ,  with D ( S )  being 

replaced by a D ( T ) ,  the a-ring generated by tlie compact subsets of IT. 

In 1955, Bcssagn and Pclczyiski studied the Banach spaces wliich behave 

well like wealily complete spaces. Let co = {(a,)? : an E C ,  limA, = 0) 
11 

with I((o,)lJ = sup (a,J.  A Banach space A' is said to contain a copy of co if 
n 

tlicrc cxists a closed subspace Z of A' such that Z is topologically isomophic 

to c.0; i.c. tllcrc is a linear bicontinuous isomol~hism from Z o~i to  co, Z l~eiilg 

c~iclowed witli the relative topology. 

THEOREM 5.  (Bessaga-Pelczyliski) A Banach space I" docs not con- 

tain a copy of co (in symbols, co $ y,) if a,nd only if, for cnch sequence ( y n ) y  
00 

of zcctow in  1' with JY*(yn) l  < m /or each y*  E I f * ,  the fovnzul .scricr 

Pclczyriski estended Theorcm 3 of Bartlc-Dunford-Schwartz to Bani~cli 

s]->;lces Y $ co. Moreover, all tliese theorcms can bc este~ldcd to locally coni- 

pact I-lausdorff spaces suitably. 

Thus we havc the followil~g represeiltatioll theorem: 

THEOREM 6. Suppose U is a boundcrl lineur opcrator from Co(T)  to 

Y ,  where ( A )  U is wcakly compact, or ( B )  co $ Y .  The11 the representing 



measure G(.) of U takes values in Y ,  G(.) is a-additive in norm of Y and 

where G(.)  : u B ( T )  -t Y is aB(T)-regular. Moreover, 

Besides, if co c Y ,  then every bounded linear operator U : C o ( T )  -t Y is 

necessarily weakly compact. 

In this context, it will be interesting to know whethcr such a rcprescnta- 
d 

tion theorein can be given to  bounded multilinear operators U : P Co(T;) + 

Y when-% c Y, or when U is weakly compact. This type of study naturally 

lcads to the notion of vector valued multimeasures (=polymcasures). 

Historically speaking, the study of bimeasures goes back to Morse, M., 

and Transue, W. They studied complex valued bimeasures in their melnoirs 

"C-bimeasures A 'and their. superior integral A* ", Rend. Circ. Mat. 

Palermo (2) 4 (1955) 270-300 

ancl 

"C-measures A and their integral cxtcnsion", Ann. of Math (2) 64 (195G), 

480-504 

using a11 aproach similar to Bourbaki. Unfortunately, their theory was not 

suficiently developed to iive such representation theorems. 

I<. Ylinen introduced t11e notion of vector bimeasurcs in 1978 and these 

binlcasures werc found useful in tihe study of stochastic processes and also ill 

Harillonic Analysis. 

Later, from 1987 onwards, Dobsakov published a series of papers on mul- 

tilinear integration with respect to operator valued polymeasures: "On inte- 

gration in Banaclz. spaces, VIII, ..., XIII" in Czech. Math. J. His theory was 



influenced by his earlier theory on vector integration given in "On  integration 

in Banach spaces, [,I[,. . ., VIP' in the same journal. 

Basecl on this theory, Dobrakov proved in 1989 the multilinear integral 

representation of bounded multilinear operators U : Co(Ti) X...X Co(Td) + 

I/', when U is weakly compact, or when G, Y. But this theorem of rep- 

resentation was derived from the earlier multilinear extension theorem of 

Pelczyriski given in 1963. Since the representation theorem is one of the 

pcalis of the multilinear integration theory, it is desirable to have a proof of 

Lhis theorem directly, without any reference to Pelczyriski's result. In bur 

present note, with Dobrakov as  coauthor, we have achieved in giving such a 

direct proof. 
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A Direct Proof of a Theorem of Representation of 
Multilinear Operators on XCo(T,)  

Ivan Dobrakov and T. V. Panchapagesan 

Dedicated to Professor Mi.sclra Cotlar on  the occasion of his eightieth hirth da?y 

ABSTRACT. Let T,,i = 1,2, ..., d, be locally compact Halisclorff spaces 

i~11d let CO(Ti) be the Ba~lach space of all scalar valued conti~luous fiinr- 

tio11s OIL T, vanishi~~g a t  infinity ( with the supremum noml ). Snppose 
d 

IJ : 7 Co(T,) + Y is a l)ou~lcled d-linear operator, where c1ithc.r (A) I' 

is a Banach spare sue-h that cg @ Y, or (B) U is weakly co1npac.t. Using 

the mlilt,ilinear extensio~l theorem of Pelrzyriski, Dobrakov obtainecl i11 

an c~a1ic.r work a multili~lear integral representation of U with resprc-t, 
d 

i,o a uniclue Y-valued Bairc d-multirneasure on X aBo(Ti). The air11 of 
1 

t,11c prcse~it note is to provide a dircrt proof of this rcpresc~ntittion the- 

orcm , without any rcfercncae t,o the said result of Pelrzyriski. Then t l ~ c  

~nultili~lcar clxtcnsion theorem of the latter follows as a corollary. 

1. Introduction 

111 [14] Pa1c:xynski provecl t,ho fo l lowi~~g  c?xtensio11 thaorem of ~n~i l t , i l inoi~r  

opcritt,ors 011 XC(Si), whart: C(Si) is tho Ba~ladl space of all scalar v i~l~ic~t l  

c.o~lt,i~nious fiinctio~ls 011 the: c:o~npi~c:t Haustlorff spa(:(: S;. 

'FH EOR EM (Pelcz yfiski) . Sfr,~)po.~ e SI , . . . , Sd n7e corn,j)a(:t Hnu.sdor:ff ..upcl,cc.u 
t 1 

(1,711, U : X C(S,) + Y i.3 n boun,ded d-linscn7. rnnppinng, ~l~h,crc cith,c7. Y i.3 a 
I 

Unrr ci,,ch .ul~ace .37r ch that co If Y ,  0 7 .  U I:.Y 111ccik;l:y corr~~)clct. T~I ,(;TI~ t h ~ 7 ~ :  C:I:I:.Y t.3 IJ, 
(1 

ILTLZ(I IL(:  bc~undcd d-lincn7. rn,n11111:n,!g U*' : X BS1(Si) + Y .uf~ch th,at 
1 

' 1001 Mritlrcmcitzc..~ Sul~jcrt Closslificcitzorr. Primary 46G00 
Thc~ rc~sc-arvh of the second author was supported by t,hr C.D.C.H.T. 
projec-t C-586 of ULA and the CONICIT(Venezuc~1a)-CNR(Ita1y) int,rr- 
11atio11al cooperation project. 
This paper is i11 fi11al form ancl 110 version of it will be slil)~nitt,ecl for 
p~iblicat,io~l clsc~whc~rc. 



(1 
( i )  [I** 1 X C(S;) = U, nnd 

I 

( i i )  if (fi,,r)F=l c B'ySi) . Y U C ~  that 

li~ri f ,,,, (s,) = f,(s,), for each s, E S,, 
rl+m 

~orr;ovc+, in  thc case (B)  thc oprator U** i s  also weakly com,pact. 

tJsi11g t,ho it1,ovc theorem, Dohrakov provetl i11 [8] that, therc is ii, tl- 
1 1  

~~i~llt,imoa.slire T : X o Bo (Ti) 4 Y s11c:h that 
I 

for (?a(:h (9,) E XBC2(T,), whcrc T, is a locally c:ompac:t Haustlorff' sI>ac:c, 

cr&(T,) is thc o-ring of it11 Bairc sct2s of Ti x i c l  Bs'(T,) is the? c:litss of it11 

l)ou~itletl 13airc fu~ictioris 011 T,,for i = 1,2, ..., d. Morcovor, U*" cxt,c:ntls l i  

itnd is a 1)ountlctl (1-linear t>perat,or with I (U**J( = 1 lull = I IT 1 l ( r ) ,  whcrv 

1 IT 1 l(Ti) is the scalar scmivariatio~i of T i11 (T,).Fi~ially, t,hc TiLIlRC of Y is 

rclii,tivc?ly weakly c:o111p;tc:t if a1it1 only if U is wc;tkly com~>a.c:t,. 

Thc o1)jec.t of the prese~it, 11ot)e is t,o present a tlirert proof of t,hr rnulti- 

li~ioitr i~it,cgrz\l rcpresent,atiori theorem of Dobrakov ant1 the11 t,o tloclucc thc 

c.it,cci thcorcm of Pclcxynski chs a corollary. Then all thct results of Dobrakov 

in [8] r c ~ n a i ~ i  i~itlepc~itlent of Pclczynski's multilinear extension theorem. 



2. Notation and Terminology 

In the sequel, T,Z, i = 1,2 ,..., d, are locally compact Hausdorff spaces. 

Co(T) is the Banach space of all scalar valued continuous functions on T van- 

ishing at infinity, with the supremum norm I 1. I I where 1 1  f 1 I T  = SUP 1 f (t) 1. 
T' t€T 

Similarly, we define Co(Z), for i =1,2 ,... ,d. 

The family of all compact Gas of T is denoted by Ko(T) and of T; by 

ECo(Z), for i = 1,2, ..., d. The a-ring generated by ECo(T) (resp. ECo(Z)) is 

denoted by aBo(T)(resp. aBo(Z)), whose members are called Baire sets of 

T (resp. Z ) .  

The scalar field is denoted by K ( = R or C ). Let Y be a Banach space 

over K , the scalar field of Co(T) and Co(Z). 

d 
DEFINITION 2.1. A mapping U : Co(Z) -+ Y is said t o  be d-linear if it 

is  separately linear o n  each coordinate. 

Such a mapping U is  said t o  be bounded if 

where 1.1 denotes the n o r m  of Y .  W h e n  U i s  bounded, the above supremum 

is  denoted by I IUI I .  If U i s  a bounded d-linear mapping and if {U(fi, ..., fd) : 

llfill 5 1, fi  E Co(Z), i = I,&, ..., d ) i s  relatively weakly compact in Y ,  
Ti 

then U is  said t o  be weakly compact. 

We now proceed to state some definitions and results from the theory of 

multilinear integration of scalar functions. The reader may refer to Dobrakov 

[5,6,7,8,91. 

If Si, i = 1,2 ,..., d, are a-rings of sets in Ti, then let 

d ?$ = { ( A , ,  -..,Ad) : Ai E Si, i = 1,2, s * a , d ) .  



The rectangle ( A l ,  ..., Ad) is denoted by (Ai). 

DEFINITION 2.2.  Suppose Y : X S ;  + Y is a set function such that i t  i.9 

separately g-additive i n  norm of Y .  Then T is called a Y - valued d- 

multimeasure (or d-polymeasure). 

D E F ~ N I T ~ ~ N  2.3 .  Let f ;  = x a O X A i j ,  a,j E K ,  A, n A,, = 0 for j # j l ,  
j=1 

Aij E Si, for j = 1,2 ,  ..., ri and i = 1,2 ,..., d. Such functions f i  are called S i -  

simple functions and ( f ; )  is  said to be XSi-simple. The set of all XSi-simple 

functions is denoted by X S ( S ; ) .  If T : X S i  + Y is a d-multimeasure, then 

u ~ e  define 

where ( f ; )  is  given as above. 

DEFINITION 2.4. For (A; )  E X S ;  and for a d-multimeasure Y : X S ;  + Y ,  

wc define the scalar semivariation I lY ll(Ai) by ,. 
Ilrll(Ai) = s ~ ~ { l i ~ , , ( f i ) d r l  : ( f i )  E xs(si), l l f i l l  Ti < l , i  = 1,  ..., d }  

and IlT(l(T) = s ~ p { l l r l l ( A i )  : ( A i )  E X S ; } .  

THEOREM 2.5. For a Y-valued d-multimeasure T : X S i  + Y, ((YII(Ti) I:Y 

finite. 

THEOREM 2.6.  Let S ( S ; )  be the closure of S ( S i )  with respect to the to~~olo!l?/ 

of uniform convergence in  the space of the bounded scalar function3 on Ti. 

Let f; E S ( S i )  and let ( f i ln i ) ;=,  c S ( S i )  he such that 

for i = 1,2,. . .,d. If Y : X S ;  + Y is a d-multimeasure, then 



exists in Y ,  uniformly with respect to (A;) E XS;. Moreover, this limit is 

in.dependent of the converging sequences ( fipni). 

The above theorem motivates the following 

DEFINITION 2.7. Let fi E S(S;) and let (f;,ni)E=l and Y be as in Theomm 

2.6. Then we say that ( fi)  is Y-integrable and the Y-integral of (f,) over 

(A;) E XS; is de,fined as 

hi 1 ( f ~  = nl lim I . . .  , n d  J (Ai 1 (f;.,)d+. 

Moreover, the Y-integral of (f;) over (T,) is defined as that on XN(fi), ujh,er.r: 

N(f;) = {ti E Ti : fj(ti) # O ) ,  i = 1,2 ,..., d. 

We have the following generalized Lebesgue bounded convergence theo- 

rcrn (shortly, LBCT) for the Y-integrable functions in XS(Si).See Theorern 

3 of 181. 

THEOREM 2.8. Suppo,se filni E S(Si) for ni = 1,2, ... and fiBni(t;) 4 f;(ti) 

as ni + oo, for each ti E T; and for i = l ,2  ,..., d. Also suppose 

Then 

for all (Ai) E XSi. 

Let Bn(Ti) denote the smallest class of bounded scalar functions 011 Ti 
containing Co(T;), which is closed under the operation of pointwise limits of 

uniformly bounded sequences of functions. In other words, if Co(T;) c C aritl 

if, for (fn)y c C with SUP, 1 1  frill < 00 i~nd  with fn(ti) + f(t i)  aij 71 + 00, 
Ti 

for each ti E T;,  it follows that f E C, then Bn(Ti) C C. Thus BC2(Ti) is 

the class of all bounded Baire functions on T,, which also coincides with the 



family of all bounded Baire measurable scalar functions on T;. 

d 
THEOREM 2.9. Let T : ]I( aSo(T,) -+ Y be a Baire d-multimeaaure. Then: 

3. A Theorem of Uniqueness 

The following theorem states that a Y-valued d-multimeasure T on XgDo(T,) 

is determined by the integrals &,,( f;)dT, (f,) E XCo(Ti). 

d 
THEOREM 3.1. Suppose TI ,  T2 : oDo(T,) - Y are d-multimea,rursa such 

that 

d 

for all (f;) E XCo(T;). 1 Then TI = T2.  

Proof. 'Let C; E Ko(z ) .  By Theorem 55.B of Halmos 1121 there exists a 

sequence {hi,ni}z=l in Co(T;) such that hijni(tj) \ x,, (ti), for each ti E T, 

and for i = 1,2, ..., d. Then by (1) and by LBCT (Theorem 2.8) we have 

TI(C1) = Tz(C2). Thus 

for Ci E &(Ti), i = 1,2 ,..., d. 

LC? t 

Cl = (El E gDo(T1) : T1(El,Cz, ..., Cd) = T2(El7C2, ...,Cd ) 

forCi E Xo(T,),i = 2,3, ..., d}. 

By (2) it follows that Ko(Tl) C C1. Consequently,by the separate finite 

additivity of T1 and T2 we conclude that R(Ko(Tl)),the ring generated by 



KO(Tl) is contained in C1. 

Let be a monotone sequence in C1, with E = lim En.  Thcri 1)y 
n 

the separate a-additivity of T1 and T2 we have 

for each C, E &(Ti), i = 2,3 ,..., d, since En E C1 for all n. Thus E E C1 

and consequently, C1 is a monotone class containing R(Ko(Tl)). The11 1);y 

Thcorem 6.B of Halmos (121, C1 coincides with aDo(Tl) and thus 

for all El E aBo(Tl) and for all Ci E KO@), i = 2,3 ,..., d. 

Now let 

C2 = {E2 E aBo(T2) : Tl(E1, E2,C3, ..., Cd) = T2(E1, E2,C:j, ..., C,i) 

for all El E aDo(Tl) and for all C; E Ko(T), i = 3, ..., d ). 

By (3), Ko(T2) C C2. By an argument similar to that give11 above\ for CI , 
i t  is easy to show that  R(Ko(T2)) C C2 and that C2 is a monotone C ~ ~ L S H .  Tlicui 

I)y Theorem 6.B of Halmos [12] we conclude that  C2 = aDo(T2). Conti1iiii11g 

t h i ~  itrgu~nent step by step, in the dth step we have 

for all Ei E aDo(Ti), i = 1,2, ..., d-1 and for Cd E Ko(Td), whic:li shows that, 

X:,,(Td) c Ed, where 

forEi E uDo(Z), i  = 1 ,2  ,..., d - 1). 

Then, as in the above, Cd is a monotone class containing R(KO(T,,)) a11(1 

hence Ed = uDO(Td). This shows that TI = Tz. 



4. Direct Proof of Theorem 2 of Dobrakov [a] 

With the preparation given in the earlier sections, we shall now present 

R direct proof of the said theorem of Dobrakov (Theorem 2 of [ 8 ] )  and then 

deduce the multilinear extension theorem of Pelczyriski [14] as a corollary. 

d 
THEOREM 4.1. Let U : % Co(T,) -+ Y be a bounded d-linear operator. 

Suppose either ( A )  co $ Y ,  or  ( B )  U i s  weakly compact. T h e n  there ezi.sts n 
d 

unique d-multimeasure Y o n  aBo(T.) with values in Y such that 

d 
If Od : X Bn(Ti) 4 Y i s  defined by 

1 

then ud i s  well defined, bounded and d-linear. Moreover, Od ezten,d.s U ,  

lludll = 1 lUll = I lY 1 [(T.) and Ud satisfies the following property (P) :  

Let (fi ,ni)E,, c Bn(T.) with 

and with 

lim fi,ni (ti) = f i ( t i )  
n,-.oo 

for each ti E Ti and for 1: = 1,2 ,..., d. T h e n  

If U i.9 weakly compact, then Od i s  also zvenkly compact. 

Finally, th,e bounded d-linear extension Od i s  determined uniquely e i t h l : ~  

By property ( P )  or  B y  the multilinear integral representation; the range of Y 

i s  relatively weakly compact if and only if U i s  weakly compact. 



Proof. Let us prove the theorem by induction on d. Let d=l.  Suppose 

ell @ Y. Let T; be the Alexandroff compactification of TI by ncljunctiori 

of the point {oo) and let u :c(T~) + K be defined by ~ ( f )  = U(f - 

f (oo)). Then by Theorem V1.2.15 of 121 ,~  is weakly compact and hence U 

= U ~ C ~ ( T ~ )  is weakly compact. Thus, in both the cases (A) axid (B), by 

Lemma 2 of Kluvhek [13] there exists a unique Y-valued a-additive regular 

Bore1 measure G on B(Tl) such that 

Let, T = GlaBo(Tl). Then by Theorem 8 of [3], f is T- integrable, 

i~11~l by Theorem 1 of [8] ,( IU(I = I lY 1 1  (TI). Clearly, for the secontl acljoint U4* 

of U we have 

Now let us define u1 = V* IBn(Tl) .Condition (P) holds in virtue of LBCT. 

As Bf1(TI) is closed for pointwise limits of bounded sequences, it follows that 

pn)prrty (P) ir~iplies the uniqueness of the extension u1 of U by ,111 itrg~irnc~~it 

of tra~lsfiriite indurtiori. The integral representation of U also clctc~rr~lirit~s U~ 

uniquely hy Theorem 3.1. Moreover, if U is weakly compact, the11 U" i h  

wrakly compact by the Gantrnacher theorem and hence ~1 is weekly c*o111- 

pac:t. 

Upto some stage we closely follow the proof of Pelczynski [14]. Suppose 
d- 1 

the result holds for d-1. For (f,) E X Co(Ti), let 
I 

The11 Uj, ,..., jd-l is a bounded linear operator on Co(Td) with values i11 Y .  
Then, by the case d= l  established above, for both the cases ( A )  and (B) 



there is a unique a-additive vector measure 

such that 

u f ~ -  f = Ld f f , . , f d . l  7 f d  E Co(Td). 

Fixing fd in Co(Td), let us define 

d-1 
UJd : X 1 Co(T,) + Y 

t?Y 

ufd(fl,..., fd-1)  = U(f1, a * . ,  fd )  E Y. 

Clearly, Ufd is a bounded (d-1)-linear mapping. When U is weakly cornpact,, 

clearly UJd is weakly compact. Thus, when co @ Y, or when U is weakly 

t:o~npa(:t, the intluction hypothesis implies that there is a (d-1)-~~~ultimea,surc\ 
ti- 1 

Y : 7 o& (Ti) + Y such that 

d- 1 
for (f,);'-' E X Co(T,). On the other hand, 

I 

For g E GS1(T,l), let, us tlefi~le 
d 

d-1 
: X Co(Ti) + Y 

d 1 



Since gd is a bounded Baire measurable function, U is well defined.Moreovta, 
gd 

Sr, fd d'fl,... l l ,~ f i+bf : , f i+ l , . . ,  f d - l =  U(f1, ..-, fi-1, nfi + Bf;, f i t , ,  . a * ,  fd) 

= aU(f1, a m - ,  f d )  + PU(fl, ..., fi,  a * . ,  fd )  

= aLd f d  d'f , , ,  fL1 + 

+P id fd , , f i - l  ,fi,fi+l , . . . , f d - \  

for cu, ,O E K , f i  E Co(Ti), 2' = 1,2 ,..., d. Then by Theorem 3.1 it follows that 

Using the above equality in (4), we conclude that U, is a (cl-1)-linear 
d 

operator. 

We clairn that U is bounded. In fact, 
g d  

Since Uf, , . ,  fd-,  ( f d )  = JTd f d  d'fl, ..., fd-1 (2), 

1 lUfl ,..., fd-I  1 1  = 1 1'11 ,..., fd- I  ll(Td). 

Therefore, 



If co @ Y, then by induction hypothesis there exists a (d-1)-multimeas~irr 

d- 1 
: X oB0(Ti) + Y y4 1 

fi)r each g l  E Bn(Td), f, E Cn(T,), i= 1,2, ..., d - 1. Moreover, its li~iiclll~ 

I,oon(led (cl-1)-linear extension uY satisfying property (P) is give11 by 
d 

for 9 ,  E BC2(Tj),i= 1,2, ..., d - 1. Further, by induction liypothcsis, (Iq, 1 )  = 
a i L  

1 1 ~ 1 ,  d I1 = ll~9dll(r):-'. 

Sapposr now U is weakly compact. Let B, = {f, E Co(T,) : Ilf,ll,; 5 1 }. 

'T'hc~i tlicx range U(Bl X.. .X Bd) is convex and is relatively wcakly (*o~~il)i~(.t  

in Y. Therefore, by Corollary V.3.14 of Dunford and Schwartx [ I  11, t h t ~  

norm (.losure of U(BI X. . .X Bd) is weakly compact. Let Ii: = c.losl~rc~ ol' 

t J ( B ,  x...x Bd). 

W(: c:lai111 that, U is weakly compact, whenever U is so. In fic:t, I)y ( 4  ) 
B,i 

it; slifficcs to prove the result for (Ig I I , j 1. 
d 7,l 

Lvt //g,ll/,[h j 1. Lrt (fd,n)", C Blr ancl let 1i1n n f;,,,,(t) = ! I , , ( / ) ,  C)I. P .  ( / :  

I E TI.  Lct f; E B,, 1. = 1,2, ..., d-1. Then by LBCT itrltl by (3) i~ritl ( 4 )  



fd,n d r f l  ,..., fd-1 

= lirn 

~ e t  c = {gd E B"(T~) : llg 1 1  1 and ug ( B ~ x . . . x B ~ - ~ )  c K ) .  BY 
d T d  d 

the above argument, the closed unit ball of the first Baire class B1(Ti) of 

bounded functions is contained in C. By a usual argument of transfinite 

iridllction, and by applying LBCT as in the above, it can be shown that C 

(mineides with the closed unit ball of Bn(Td). Thus % is a weakly cornpart, 

operator for gd E Bn(Td) with llg 1 1  5 1 and consequently, for arbitrary 
d T d  

9 ,  E Ba(Ti). 

Thus in c ~ 3 e  (B), by induction hypothesis, there is a (d-1)-nmltimeils~lre 
d-1 

Y ,  : X oBn(T,) i Y such that 
I 

fi,r each -9 E Dn(Td), f; E Co(z), i = 1,2, ..., d-1. Moreover, its urliclnc~ 
d 

I,ou~aled (d-1)-linear extension & satisfying property (P) is given by 
d 

for g ,  E Dn(T,), i = 1,2, ..., d-1, in virtue of LBCT. Further, by intlllct,io~~ 
1 

hypot,hesis, I(UgdIl = llq~l = l(Ygdll(~i)$-'. 

111 the light of (6A) a i d  (7A), or (6B) and (7B), the (d-1)-rn~lltimeas~lrc? 

Y is well defined for gd E Da(Td) and hereafter let us treat cases (A) an(L 
gd 

(B) simultarleously. 



We define 

by putting 

Since U is (d-1)-linear, Ud is (d-1)-linear in the first (d-1) coordinates. 

Moreover, by (4) it is clear that Ud is separately linear on the dth coordinate 

also. Therefore, Ud is d-linear. 

d 
by (5). Thus Ud is bounded. Moreover, since Udl 7 Co(fl) = U, it follows 

that JJUdlJ = IIUII. 

We define 

ud : B"(T~) x...x zP(T~) + Y 

By Theorem 2.6 and Difinition 2.7, the integral, and hence the operator 

uA, is well defined. By (6A) (resp. (6B)) ud extends Ud. ObviousIy, ud is 

sttparately linear in the first (d-1) coordinates. 

Now 



fibs E BiL(T,), i = 1,2 ,..., d, and g: E Ba(Td). Let g = fi E C"(T,), for i = 
1 i 

i 2,. . . ,(l- 1 .  Then by (6A) (resp.(GB)) 

1'1111s I)y Tlicorani 3.1, (8) and (10) we have 

i 1 1 1 t I  c~o~ln~l~ie~it,ly, by (9) it follows that ud is separately liliear o r 1  t , l 1 ( 5  11"' 

c . c  , c  ,I*( I i ~ l i t . t , ~  itl~o. Thus ud is d-linear. 

I)y l.Il(~or(:m 2.8 ant1 by ( 6 ) .  Thus Od is bounded. Since U' rxt,nlcls IJ" i i , r l c l  

111:''11 = 111111, we concl~~de that l(i"l(1 = IJUlI. 



d 
We f i n e  Y . )  : aBn(T,) + Y by putting 

Since x ~ ( ~  E Bn(Tn), 

(x!~ 7 -.., X A ~ - ~  V x A d  = ud(xA1 7 xAd)  E y 

ant1 is well defined. By (4) and (6A) (resp. (6B)) 

fix f; E .Co(T1), i = 1,2, ..., d-1. By induction hypothesis, TXAd is a (d-1)- 
d-1 

rm~lti~ncasure on X oBn(T;) and hence Y is separately a-additive in thc first, 
1 

rl-1 coordinates. To show that Y is separately o-additive on the dth coorcli- 
d-1 

lri~tr idso, let us rxtend (11) to (gl):-l in X Bn(T,). 
1 

Let, (fi,,);=, C Co(Ti) be bounded and let lim fi,,(ti) = g.(ti), for C R C : ~ ~  
n 

ti E z, 2' = 1,2 ,..., d-1. Then by LBCT and by (11) 

w Thus, for the seqiience of o-additive set functions {Yfi,n,fi,n ,,.,, fd -,,, )n=,  

lhn Yf l , r r , , , . , f d - l , n  ( A ~ )  exists in Y n+w 

for ctlcdl Ad E aBo(Td). Since Theorem 1.4.8 of 121 is valid for a -rings t,oo i111tl 

since the uniform a-additivity is the same as uniform strong adclitivity on cr- 

rings for o-additive vector measures, it follows that there exists a a-atlclit,ivc: 

Y -valued nleanure Ygl , .  ,,gd-l (say) on oBo(Td) such that 

li1u Yfl.. ..fd-l.n (Ad) = +u, .... r,-, (Ad  n+oo 

i~11d the ~neif~ure  Ygl ,..,,gd-l depends solely on gl , . . . , gd- and is irldepe~~clc~~t. 

of t,hc converging sequences {fi,n)F=l , i = 1,2, ..., d-1. Then 



I)y ( 1 1 )  a i d  by LBCT. Thus ( 1  1 )  holds with g ,  in place of f , ,  for i = 1 , 2 ,  ..., ti- 
d-1  

1 .  This shows that ( 1 1 )  is valid for ( g . ) : - l  E B1(T,), where B1(T,) is t,hr 

first Bairc! class of bounded functions on Ti. Assuming the validity of ( 1  1 )  for 
d -  1 

( )  E X Bp(T,) for all ordinals ,f3 strictly less than a countable ordi11a.l 
1 

t u ,  one can show by the above argument that the equality ( 1 1 )  holds for all 
d -  l 

(.y.):-' E q B" (Ti) .  Now, by transfinite induction we conclude that ( 1  1 )  
d - 1  

holrls for all (g , ) f l  E 7 b 2 ( T , ) .  

Thus Tg1 , , , , , ,  d-l : a&(Td) + Y is well defined and is u-additive for cadi 
d -  1 d -  1 

E BR(Ti). Consequently, for (A; )  E X 1 oBo (Ti),  

I>PCRI~SP of the validity of ( 1 1 )  for ( X , i ) : - ' .  Therefore, Y is sepwat,cly 

a-additive on the dth coordinate too and thus T is a d-multimeasurc or1 

4 I n B 0 ( ~ , ) .  

By ( 1 2 )  and by the definition of ud we have 



(13) = T(Al,  ..., Ad) 

for A, E aBo (T,), i = 1,2,. . . ,d. Fixing Al , . .. , Ad- 1 ,  and replacing xAd I,y a 

nBo(TJ) - sirnple function s, by the separate linearity of Ud and tho definition 

of the integral we deduce from (13) that 

S i m : ~  eiich gd E Bn(Td) is the uniform limit of a sequence of aBo(Td) - sirnplc 

finictio~is, it the11 follows by LBCT that 

Similarly, replacing xAd- by .qd-, E Bn(Td- 1) and keeping XAl ..., XAd-2 7 

fixed, it (:a11 be show11 that 

for !I E BS1(T,I-I). Proceeding step by step, finally i t  follows that, 
ti- I 

for ,q, E BS1(r), i = l ,2 ,... ,(I. 

d 
Since Udl X Co(T,) = U, 

(14) u ( f i )  = / ( f i ) d ~ ,  (fi) E c o ( ~ ) .  
(Ti) 

Property (P) holds for Ud by LBCT. 

By Theorern 3.1 axid by (1 4), Y is determined uniquely by U. Co~isequent,- 

ly, the operator Ud is also determined uniquely by U. If u is a bounded 



d 
&linear extensiori of U to Bn (Z) ,  satisfying property (P) ,  then by an 

argu~nent of transfinite induction one can show that property ( P )  implies 

u = ~ d .  

Now, let us show that U is weakly compact if and only if the range of 

T is relatively weakly compact. If U is weakly compact, then let B1, . . . , Bd 

and K be a3 in the above, where we proved the weak compactness of the 

operator U, in case (B). If (fi,,),"==, C Co(T,) are bounded secluences with 
d 

1 f i n  < 1, and if f,,,(t;) + g,(ti) for each ti E Z, then by LBCT 
T8 

BF an argument of transfinite induction it then follows that 

and hence U' is weakly compact. Consequently, the range of T, being con- 

ti~i11ed in K ,  is relatively weakly compact. 

If the range of T is relatively weakly compact, then by the argument, 

given on p.292 of [8] we conclude that Od and hence U, is weakly compact. 

This completes the proof. 

COROLLARY 4.2 .  Pelczyriski '3 theorem /Id] on multilinear exten,sion (,9cc 
d 

1ntr.oduction) ho1d.s also for multilinear operator.9 on X Co(Ti). 
1 

Proof. If we define U** = ud, where ud is as in Theorem 4.1, then U** is 

the required bounded d-linear extension of U as in Pelczynski's theorem. 

COROLLARY 4.3.  Condition (ii) i n  Pelczyriski's theorem (in Introduction) 

i.r the same as condition ( P )  given i n  Theorem 4.1. 



Proof. Clearly, condition (P) of Theorem 4.1 implies condition (ii) of Pel- 

czy6ski7s thcorern, since U** = i?QY Corollary 4.2. Conversely, if conciitiori 

(ii) of Pclczyilski's theorem holds, then as shown by Dobrakov [8], 

d 
is a separately a-additive d-multimeasure on X Bn(Ti) and 

1 

Then U** satisfies property (P) by LBCT of multimeasures. 

5. Concluding Remarks 

The range of a a-additive Banach space valued measure defined on a rr- 

ring of sets is relatively weakly compact. This result is essentially due to 

BartJe, Dunford and Schwartz [' I ] .  This result implies that, for a a-adtlit,ivc\ 

vector measure G ( . )  : aBo(T) -+ Y, Y a Banach space, the operator U : 

Bsl(T) -, Y given by 

is weakly compact, where T is a locally compact Hausdorff space. 

Siricc there arc examples of non weakly compact multilinear operators 

(soe 11. 385 of [14]) frorn C(S) into a Hilbert space , S a compact Haustiorff 

spw.e, t,hc i~itegral representation of a bounded multilinear operator IJ on 
t 6 
X Co(T,), with range in a Banach space Y not containing co, does not gui1.r- 
I 

i ~ l t ~ e c  the weak compactness of the operator U. Consequently, by Theorcrt~ 

4.1, the range of the associated multimeasure of U is not relatively weakly 

c:orxipac t . 

d 
Thus the integral represeritation of a multilinear operator U on X C.;, (Ti) 

I 
d 

with respect to a d-multimeasura + on q aB,,(T,) with values in Y docs riot 

imply that the multilinear operator U is weakly compact. This is coritrary 

to the situatiori of bounded linear opearators on Co (T) .This ohservatiori has 

rriotivated our recent note (101. 
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